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Abstract: Remote sensing image scene classification has drawn extensive attention for its wide
application in various scenarios. Scene classification in many practical cases faces the challenge
of few-shot conditions. The major difficulty of few-shot remote sensing image scene classification
is how to extract effective features from insufficient labeled data. To solve these issues, a multi-
scale graph-based feature fusion (MGFF) model is proposed for few-shot remote sensing image
scene classification. In the MGFF model, a graph-based feature construction model is developed to
transform traditional image features into graph-based features, which aims to effectively represent
the spatial relations among images. Then, a graph-based feature fusion model is proposed to integrate
graph-based features of multiple scales, which aims to enhance sample discrimination based on
different scale information. Experimental results on two public remote sensing datasets prove that
the MGFF model can achieve superior accuracy than other few-shot scene classification approaches.

Keywords: few-shot learning; graph-based feature; multi-scale feature fusion; remote sensing image
scene classification

1. Introduction

Scene classification of a remote sensing image is a significant assignment, which has
attracted significant attention in various applications. Recent years have witnessed the
continuous improvement of imaging technology, then the resolution of remote sensing
images has gradually increased, and more useful information can be captured from remote
sensing images, including extensive land cover information, such as terrain, mountain,
as well as water. For different scenes, remote sensing images are processed differently.
It is of great significance to assign semantic labels to remote sensing images [1,2], which
is helpful for the management and analysis the remote sensing data in a unified manner.
Therefore, scene classification aims at classifying remote sensing images based on similar
scene characteristics by extracted features [3]. Currently, scene classification technology
has been broadly applied in geological exploration, planning management, environmental
monitoring, object detection, and other fields [4,5]. The methods for remote sensing image
scene classification consist of three types according to visual features, which are methods
derived from low-level visual features, middle-level visual representations, and high-level
visual information [6].

The classification methods based on low-level visual features obtain the structure,
edge, and other basic information from images, where these features are extracted based on
traditional hand-crafted methods. For example, scale-invariant feature transform (SIFT) [7]
is used to obtain low-level visual features, which has been frequently adopted for the scene
classification of remote sensing images. The spatial envelope feature algorithm [8] adopts
global feature information to classify remote sensing images, which can represent the overall
information of images macroscopically. Nevertheless, scene classification derived from
the global feature information is difficult to handle complex scenarios of remote sensing
images. Furthermore, low-level visual features contain less semantic information, which is
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challenging to obtain satisfactory results for scene classification with high complexity and
non-uniform spaces.

The classification approaches derived from middle-level visual information encode
the local features extracted by traditional manual approaches, and further optimize the
feature representation with more recognition ability. Among middle-level feature based
methods, bag-of-words model (BoVW) [9] is one of the most classic methods. BoVW model
uses SIFT to extract local features from images, and then encodes local features into global
features using visual word bags. Thus, BoVW combines various underlying visual features
to enhance the performance of recognition ability of the model itself [10]. Many subsequent
methods [11,12] that use multiple features to deal with the scene classification are developed
based on BoVW. Although mid-level feature based methods achieve superior results than
low-level feature based methods, they also face many shortcomings. In particular, the
methods of re-representing local features will ignore the relationship among each local
feature, which weaken the classification effect.

As for classification approaches derived from high-level visual information, they
are mainly employing deep neural networks, which can learn more abstract semantic
information from remote sensing images. Recent years have witnessed that the deep
learning technology has greatly improve the performances in numerous visual assignments,
and various convolutional neural networks, such as AlexNet [13], VGG-VD-16 [14], and
GoogLeNet [15] have been proposed for image classification task. Penatti et al. [16]
first adopted convolutional neural network to deal with scene classification of remote
sensing image, which is proved to achieve superb results. Polarimetric-feature-driven
deep CNN [17] is proposed to solve PolSAR classification with limited training samples.
A convolutional neural network is used in the task of image scene classification, which
is usually divided into three training methods. The first is complete training, which is
conducted under the condition that all weight parameters of the network are initialized
randomly, and good performance is obtained [18,19]. The second is to directly use the
trained model as a feature extractor, and then use the extracted features in the scene
classification task through algorithm processing [20]. The third is to transfer the trained
parameters to the model to achieve better results [21]. Compared with approaches derived
from low-level information, as well as middle-level information, classification derived from
high-level visual features can completely express the deeper abstract semantic information
of images, which is capable for enhancing the performance of scene classification.

Generally, classification methods based on deep learning technology require exten-
sive labeled samples for network training. If the training samples are insufficient, deep
model will face the problem of overfitting, which may result in a sharp decrease in the
performance on the test set. As for most practical applications, it is quite challenging to
collect extensive labeled samples, and collection of annotated samples often consumes a lot
of time. Therefore, scene classification of remote sensing images in a few-shot case is of
great significance. Inspired by human cognition of novel objects based on prior knowledge,
few-shot learning has been developed to learn policies for recognition and classification
with quite limited labeled samples [22,23]. At present, few-shot learning methods are
mainly derived from meta learning, as well as transfer learning.

In contrast with optical images, remote sensing images possess the distinctions of
large size, abundant data, and rich land cover information [24]. Since remote sensing
images capture complex ground scenes, performance of scene classification will be affected
by environmental factors and other factors [25]. Specifically, if there exist distinguished
intra-class differences, remote sensing images of the same category may be classified into
different categories, where intra-class variability arises because similar scenes contain large
differences in underlying feature space. Furthermore, remote sensing images of different
types may be classified into the same scene because they contain similar backgrounds
or spatial structures, where this phenomenon is called as inter-class similarity. These
issues, mentioned above, will reduce the efficacy for scene classification. In addition,
traditional scene classification methods generally utilize deep features of the top layer for
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classification, but the front layer features still contain useful information. Such information
may be lost during convolution or other operations. Therefore, the extraction of multi-scale
feature is beneficial to expand the information from remote sensing images. How to utilize
multi-scale features in a few-shot case is also an issue that needs to be resolved.

For few-shot scene classification of remote sensing images, a multi-scale graph-based
feature fusion (MGFF) model is proposed, which aims at excavating effective features in
few-shot cases. In our approach, we firstly pre-train a feature extractor to learn multi-scale
features of remote sensing images, and then a transposed convolution is applied to correct
the extracted multi-scale features. After that, image features are transformed into graph-
based features based on the construction module. Finally, a graph-based feature fusion
model is proposed to enhance sample discrimination based on different scale features. The
major contributions of this paper are summarized as follows:

• A graph-based feature learning model is developed to learn features from remote
sensing images firstly, which enables to effectively express the spatial relations among
remote sensing images. It is able to take advantage of relation information for scene
classification, which is beneficial to few-shot scene classification.

• A graph-based feature fusion model is proposed, which can integrate graph-based
features of multiple scales. It is able to enhance sample discrimination based on
different scale features, which integrates more abundant and effective semantic infor-
mation. The proposed model can take full advantage of image features to improve
few-shot classification accuracies, which reduces the influence of inconsistent semantic
information.

• Experimental results on two public remote sensing data illustrate that the proposed
MGFF yield an improvement of classification accuracy about 2–10% contrast to other
advanced methods, which proves the efficacy of our MGFF model.

The remainder of this paper is organized as follows. Section 2 presents the related work.
Section 3 describes the MGFF model in detail. The results and discussions are, respectively,
shown in Sections 4 and 5. In the end, conclusions are summarized in Section 6.

2. Related Works

In this section, related work related to remote sensing image scene classification,
few-shot learning, and graph learning will be introduced in detail.

2.1. Remote Sensing Image Scene Classification

Although remote sensing image scene classification consists of three categories ac-
cording to different visual features, classification derived from high-level information
utilizes the powerful learning ability of deep neural network [26,27], which can excavate
discriminative information from remote sensing images. Deeper abstract semantic infor-
mation enables to boost the classification performance. Therefore, methods derived from
deep learning are widely adopted to deal with the scene classification of remote sensing
image [28–30].

In deep learning based methods, a convolutional neural network (CNN) has been
broadly adopted for scene classification [31,32]. Nogueira et al. [33] applied a CNN to
extract features and used linear SVM for scene classification. Cheng et al. [34] proposed a
discriminative CNN to deal with the problem of misclassification due to factors of intra-
class dissimilarity and inter-class similarity. Wang et al. [35] proposed an attention loop
CNN model for scene classification, which can extract high-level feature information and
guarantee effective discarding of non-critical information. Tang et al. [36] proposed class-
level prototype guided multi-scale feature learning method, which enables to make a
distinction from different semantics with limited labeled samples. Rafael Pires et al. [37]
developed a transfer learning method to learn the effect of a CNN in dealing with the scene
classification task, which demonstrates the feasibility of transfer learning from natural
images to remote sensing images. Zeng et al. [38] proposed specific contrastive learning
model, which enables to boost the scene classification accuracy with limited supervised
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samples. Although the above works make an effect on boosting the performance of remote
sensing image scene classification, they all focus on extracting high-level visual features
from remote sensing images, but low-level features and middle-level features also contain
useful information. Therefore, multi-scale feature fusion should be considered to learn
abundant information from different scale features.

2.2. Few-Shot Learning

In recent years, few-shot learning has drawn great attention, which aims to enhance
the learning capacity on the novel categories with fewer labeled samples [39,40]. Few-shot
learning has also been developed for remote sensing image scene classification, where
various few-shot learning approaches have been widely applied [41,42]. The follow-up
work is to design a more suitable few-shot learning method for remote sensing image scene
classification. Alajaji et al. [43] proposed a prototype network, which combines with a
pre-trained SqueezeNet to obtain better prototype features of each category. Jiang et al. [44]
proposed a multi-scale metric learning (MSML) method, which extracts multi-scale features
and learns the relations among samples for few-shot classification. Due to the issues of
intra-class difference, as well as inter-class similarity in remote sensing images, prototype-
based few-shot learning models ignore the verification of prototype features, which reduce
the scene classification performance. To overcome these issues, Cheng et al. [45] proposed
a Siamese prototype network (SPNet), which develops prototype self calibration and
mutual calibration to optimize sample features. Zeng et al. [46] proposed an iterative
distribution learning network, where three sub-modules are developed to improve the
discrimination of features. In the network, the similarity distribution learning model
is adopted to calculate the relationship of different instances, the label matching model
is utilized as few-shot classifier derived from prior knowledge, and the attention-based
feature calibration model is developed to optimize the sample features and yield the final
features for the next iteration.

Meta learning is also adopted to few-shot scene classification. In [47], a meta learning
based method named RS-MetaNet is proposed to learn a metric space through a series of
assignments, which is suitable for scene classification with limited label data. Li et al. [48]
proposed a discriminative learning based adaptive matching network (DLA-MatchNet),
which is a few-shot learning method that adds a matcher into the feature extractor. In [49],
a life-long few-shot learning model is proposed for few-shot classification, which realizes
knowledge transferring from one dataset to a novel dataset.

2.3. Graph Learning

Graph learning aims to study how to apply deep neural networks on graph-based
data, and has accomplished various classification tasks. In recent years, graph learning [50]
has been adopted to few-shot learning tasks and realized effective results, where a series of
graph neural networks (GNNs) have been proposed [51,52]. GNNs can utilize the available
information of similar samples for classification.

Several recent studies have been proposed to enable the neural network to handle the
graph structures [53]. In a graph convolutional network (GCN) [54], a graph convolution
operator is introduced, which can be cascaded to obtain a deep learning architecture. A
graph attention network (GAT) [55] extends the GCN model by adding a learnable attention
kernel, which allows to assign different weights to the set of adjacent nodes. A simplified
graph convolutional network (SGC) [56] optimizes the network structure by simplifying
the non-linear transformation function to the single linear transformation function, which
achieves superior results with fewer parameters. A graph-based embedding smoothing
network (GES-Net) [57] adopts an unsupervised non-parametric regularizer, severed as
embedding smoothing, which can obtain superb results for few-shot remote sensing image
scene classification. Although the above works all use graph learning to solve classification
tasks, the fusion of graph features may result in missing of useful information and reducing
the stability of deep network. Therefore, effective utilization of a graph-based neural
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network needs to be studied to fully excavate the image features for enhancing few-shot
scene classification performance.

3. Methodology

The proposed multi-scale graph-based feature fusion model is shown in Figure 1.
In our framework, a pre-trained feature extractor is firstly adopted to extract multi-scale
image features. Furthermore, a transposed convolution operation is applied to correct the
extracted multi-scale features. After that, image features are transformed into graph-based
features based on the construction module. Finally, a graph-based feature fusion model
is proposed to enhance sample discrimination based on different scale features, which is
utilized for scene classification.

RS 
Images

Feature Extractor
with Transposed 

Convolution

Multi-Scale Features

Construction of Graph-Based Features

Nodes of Graphs

Calculating Cosine Similarity Multi-Scale 
Graph-Based Features

Fusion of Multi-Scale 
Graph-Based Features

+

Fused Graph-Based Feature

Softmax
Classifier

Predicted 
Labels

Fused 
Algorithm

Ship

Church

Stadium

Lake

Figure 1. The framework of proposed multi-scale graph-based feature fusion model.

3.1. Problem Formulation

The problem with few-shot remote sensing image scene classification is in utilizing an
extremely limited number of labeled data for training a classifier. As for few-shot learning
tasks, all the samples can be divided into two distinct datasets, named Dbase and Dnovel ,
where there is no overlap in categories. In Dbase, each category includes abundant labeled
data, which can be adopted for training and validation. However, in Dnovel , there are only
extremely limited number of labeled data of each class, which is applied for testing.

During the training and validation process, we split Dbase into four different parts
without overlap in categories, namely, Strain = {xi, yi}, Qtrain =

{
xj, yj

}
, Svalid = {xm, ym},

Qvalid ={xn, yn}, in which xi denotes the ith sample, and yi denotes corresponding label.
Strain and Qtrain are applied during the training process. Svalid and Qvalid are adopted
during the validation process.

In the training process, the parameters of pre-trained feature extractor are updated
on Strain, and the evaluation of the classification module is conducted on Qtrain. When
the evaluation results tend to be stable, it can be considered that the feature extractor
has been well trained. In the testing process, we can regard the classification as a M-
way Z-shot K-query task, where Z labeled samples of each class (M × Z samples in
total) are applied as the prior knowledge, and M× K unlabeled samples are utilized for
prediction. We split DNovel into two parts, which are Stest =

{
xp, yp

}
(p = 1, 2, . . . , M× Z),

and Qtest =
{

xq, yq
}
(q = 1, 2, . . . , M× K). The number of labeled samples is extremely

small, where the shot number Z is set to 1 or 5 in the experiments.

3.2. Extraction of Multi-Scale Features

To extract multi-scale features from images, ResNet-12 is adopted as the backbone
in our framework. ResNet-12 contains four residual convolution blocks and one average
pooling layer. The structure of the backbone is shown in Figure 2. Each residual convolution
block is composed of three convolution layers, batch normalization layers and ReLU layers,
alternately.
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Figure 2. The structure of the backbone.

Considering the sample number of the training set is insufficient, data augmentation
is utilized to extend pseudo training samples, where random rotation is applied to generate
pseudo images. Thus, original images and generated images are used for deep network
training. The loss function of backbone optimization is defined as follows:

Lt = (1− λ) · L(I) + λ · L(R) (1)

where Lt stands for the total loss, L(·) denotes cross-entropy loss function, L(I) represents
the loss of original images, L(R) stands for the loss of the generated images, and λ is a
hyperparameter in order to balance the two types of loss.

Considering the scarcity of samples, we prefer to improve our deep network from the
perspective of sample feature enhancement. As for traditional classification methods, only
the top layer features are utilized for final classification. However, the low-level features
as well as mid-level features from deep neural network also contain useful information,
which may be weakened or even disappeared during the convolution and pooling op-
erations. Therefore, multi-scale feature fusion is beneficial to expand the information of
image features.

As mentioned above, the feature extractor used in this paper can be divided into five
stages, namely, four convolution blocks and the last one average pooling block. Thus,
we can combine these five stages to obtain multi-scale features. Considering that multi-
scale fusion requires the consistency of dimensions, a transposed convolution operation is
adopted to revise features of each stage to a certain extent. The structure of the extraction
of multi-scale features is shown in Figure 3.

Therefore, for a remote sensing image Xk, the extraction of multi-scale features can be
defined as follows:

Fk = {Ti[Pi(Xk)]}5
i=1 (2)

where Fk denotes the extracted multi-scale features of the sample Xk, Ti[·] represents the
ith transposed convolution layer, Pi(·) stands for features output from the ith stage of the
hidden layer, and the input image passes through the 1th, 2th, . . . , and 5th stage of the
hidden layers.

vStage 1 Stage 2 Stage 3 Stage 4 Stage 5

vTC 1 TC 2 TC 3 TC 4 TC 5

Extraction of Multi-Scale Features  

Revision of 
Multi-Scale Features  

TC: transposed convolution

Figure 3. The structure of the extraction of multi-scale features.
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3.3. Construction of Graph-Based Features

In order to obtain more effective expression of the spatial information among remote
sensing images, a construction model of graph-based feature is proposed based on the
KNN algorithm, which can construct graph-based features to reflect relation information.

Assume the image features have the size of N ×C×H ×W, where N expresses the
batch size, C denotes the channel number of the feature, H and W, respectively, represent
the height and the width of the feature. Graph-based features mainly include two types of
features, one is node features Vi and the other is edge features Ei. In this paper, the feature
of a whole graph is defined as follows:

Gi = {Ei, Vi} (3)

where i represents the ith graph constructed by the ith scale image features, and i ∈ [1, 5].
Node features are essentially the denoted image features. More specifically, features

of a node come from the features of an image obtained by the feature extractor. In our
settings, batch norm is applied, which means N (batch size) images are imported at one
time. Therefore, node features of a graph include features of N images. In our proposed
model, features of different scales are considered, and all the node features in a graph are
acquired at the same scale. Then the node features can be written as follows:

Vi =
{

FT
1,i, FT

2,i, . . . , FT
N,i

}
(4)

where Vi ∈ RN×d, and Fk,i ∈ R1×d represents the image features of the kth sample on the
ith scale.

At the same time, we perform matrix transformation on the image features. The
dimensions of features are transferred to N ×T ×W, where T is equal to C× H, which will
not cause loss of information and aims to simplify the later calculation and programming.

The edge features reflect the degree of similarity among nodes, which are represented
by an adjacent matrix Ei ∈ RN×N . In order to obtain the adjacent matrix, cosine similarity
between any two nodes is calculated firstly. For a certain node m, the cosine similarity can
be calculated as follows:

Rm,i = [cos(Fm,i, Fn,i)] (5)

where n denotes the sample index, and n ∈ [1, N]. Theoretically, we can calculate the
distance between any two nodes. In order to reduce the model complexity, neighbor nodes
are searched by KNN algorithm, where the most similar nodes are considered. For a
certain node, the top k most similar nodes of the same class are represented, where the
cosine similarity denotes the edge connection between them. Other nodes with much lower
similarities are set to 0, which stands for no edge connection. Thus, the modified cosine
similarity results with KNN algorithm can be denoted as R̂m,i.

Based on cosine similarity results, the adjacency matrix can be defined as follows:

Ri[m, n] =

{
R̂m,i[1, n] if m 6= n
0 else

(6)

Then, the adjacency matrix is normalized to yield the final adjacency matrix Ei. The
normalization process is represented as follows:

Ei = U−
1
2

i RiU
1
2
i (7)

where Ui stands for the degree diagonal matrix, and Ui[m, n] = ∑n Ri[m, n].

3.4. Fusion of Multi-Scale Graph-Based Features

To integrate different scale features, a fusion model of multi-scale graph-based features
is developed to obtain more abundant and effective semantic information. The fusion model
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is considered from two perspectives, which are node features and edge features. With
regard to node features, which are essentially image features, we can consider that features
obtained from the deeper layers contain more abstract information, and, thus, the fusion
weight should be larger for the deeper layers. At the same time, features from low-layer
network include abundant detailed information, which should not be negligible. For scene
classification, the proportion of low-layer features is relatively small, and, thus, the fusion
weights of them are relatively lower.

As for edge features, they are constructed based on cosine similarity among node
features. The edge feature can reflect the spatial relation between two nodes. Only when
the cosine similarity of two nodes reaches a certain level, there can be a non-zero edge
feature expression. The images of the same scene have the characteristics of high similarity
information, even if there are some individual differences. Drawing on this assumption, we
believe that after repeated training, features with high similarity extracted by the model are
the key to classification and are worth retaining for feature fusion. The most straightforward
way is to directly multiply the edge features and the node features, which can ignore the
features of nodes that are not connected by edges.

Denoting the fused graph as Gf, which includes the fused node features Vf and the
fused edge features Ef. It can be defined as follows:

Gf = {Ef, Vf} (8)

Based on the above analysis, the node features of five graphs with different scales are
fused, where the fusion process is defined as follows:

Vf =
4

∑
i=1

αiEi
βi Vi + α5(I + E5)

β5 V5 (9)

where I represents the identity matrix, and α and β stand for the hyper-parameters. In our
framework, features of the fifth scale are obtained by the deepest layer, which means they
contain the most effective information. I is to enhance features of the fifth scale and fuse
more effective information. α is to weight graph-based features obtained from different
scales to balance the importance of features from different levels. Here, features obtained
from the deeper layer are corresponding to larger weight. Therefore, we set the rule that
α1 ≤ α2 ≤ α3 ≤ α4 ≤ α5. β is the degree to balance the neighbor information. The smaller
the β, the stronger the degree will be expressed.

After the node features are fused, the fused edge features are also constructed using the
same method as above. The initial matrix based on the fused node features is generated as
Rf, and the corresponding degree diagonal matrix is denoted as Uf. Thus, the standardized
fused edge features are defined as follows

Ef = U−
1
2

f RfU
1
2
f (10)

Finally, fused graph-based features of five scales are utilized for few-shot classification,
where the logistic regression classifier is trained by Strain and Qtrain, and updated by Stest.
Labels of samples from Qtest are predicted to calculate classification accuracy.

4. Results

In this section, two public remote sensing datasets are applied to verify the effective-
ness of the MGFF model. The datasets, parameter setting and experimental comparisons
are presented in detail.

4.1. Datasets

The evaluation of MGFF model is executed on two public available datasets, including
NWPU-RESISC45 and WHU-RS19. These two datasets are depicted in Figure 4. NWPU-
RESISC45 dataset [58] is a public dataset for remote sensing image scene classification,
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which was created by Northwestern Polytechnical University. This dataset consists of
31, 500 images with 45 categories, including airplane, chaparral, dense residential, forest,
rectangular farmland, and so on. Each type consists of 700 images with 256× 256 pixels. In
the evaluation experiments, 45 classes are divided into 25, 10, and 10 classes to, respectively,
serve as the training set, validation set, as well as testing set. The details of data partitioning
are reported in Table 1.

Airplane Airport Baseball Diamond Basketball Court Beach Bridge

Church Circular Farmland Cloud Commercial AreaChaparral

Forest Freeway Golf Course Ground Track FieldDesert

Dense Residential

Harbor

Industrial Area Intersection Island Lake Meadow Medium Residential

Mobile Home Park Mountain Overpass Palace Parking Lot Railway

Railway Station Rectangular 
Farmland

River Roundabout Runway Sea Ice

Ship Snowberg Sparse Residential Stadium Storage Tank Tennis Court

Terrace Thermal Power Station Wetland

Airport Beach Bridge Commercial

Desert Farmland Forest

Industrial Meadow Mountain

Football Field

Port Railway Station

Residential River

Pond

Park

Viaduct

Parking

(a) (b)

Figure 4. Datasets utilized in the experiments, (a) images of NWPU-RESISC45 dataset, (b) images of
WHU-RS19 dataset.

WHU-RS19 dataset [59] is a benchmark for remote sensing image scene classification,
which was established by Wuhan University. The dataset consists of 19 categories, including
mountain, beach, park, commercial, farmland, railway station, desert, meadow, football
field, industrial, forest, pond, parking lot, river, residential viaduct, port, bridge, and
airport. Each category contains 50 or more images with 256× 256 pixels. In the evaluation
experiments, 19 categories are divided into 9, 5, and 5 categories to serve as the training set,
validation set, as well as testing set, respectively, which is shown in Table 1.



Remote Sens. 2022, 14, 5550 10 of 19

Table 1. Details of NWPU-RESISC45 dataset and WHU-RS19 dataset.

Datasets Training Validation Testing

NWPU-RESISC45

Sea ice; Beach;
Rectangular farmland;

Mountain; Stadium; Storage tank; Mid residential;
Cloud;Railway; Power station; River;

Ship; Desert; Runway; Intersection;
Forest; Island; Sparse residential; Dense residential;

Baseball Diamond; Terrace; Parking lot;
Lake; Meadow; Railway station; Golf course;

Snowberg; Tennis Court; Circle farmland ;
Airplane; Palace; Overpass; Airport;

Ground field;Harbor; Commerical area; Freeway;
Bridge; Chaparral; Industrial area; Basketball court;
Church; Wetland;

Mobile home park;

WHU-RS19

Park;
Residential;

Airport; Farmland; Viaduct;
Football field; Railway station; Mountain;

Meadow; Port; Pond;
Desert; Forest; Commerical;

Parking lot; Beach; River;
Bridge;

Industrial;

4.2. Experimental Settings

In our experiments, ResNet-12 is adopted as the backbone in our framework for feature
extraction. In the pre-training stage, the weight factor λ of loss function is set to 0.5, and
SGD optimizer is utilized as the optimization method. The learning rate is set to 0.001 and
the batch size is set to 64. In order to construct graph-based features, the number of nodes
in a graph should also be consistent with the batch size, which is set to 64. The settings of
experiment parameters are summarized in Table 2. Other hyper-parameters are selected
based on the experimental results, which have been discussed in the following subsection.

Table 2. The settings of experiment parameters.

Parameters Values

λ 0.5
learning rate 0.001

batch size 64

4.3. Comparisons with the State-of-the-Art Approaches

To verify the efficacy of the MGFF model, several state-of-the-art approaches for
the same image scene classification task are applied for comparisons, including SCL-
MLNet [60], Meta-SGD [61], TPN [62], Relation Net [41], MAML [63], DLA-MatchNet [48],
and GES-Net [57]. In the field of few-shot scene classification of remote sensing images,
the most concerned indicator is the overall classification accuracy. In order to compare
fairly with other methods, we adopt the overall accuracy (ACC) as the evaluation index. In
the experiments, classification results of 5-way 1-shot case and 5-way 5-shot case of each
method are presented in Tables 3 and 4, respectively.

It can be clearly seen from Table 3 that our MGFF model produces the best accuracies
under conditions of the two cases on NWPU-RESISC45 data, surpassing the GES-Net
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model by 4.26% and 0.97%, respectively. Compared with DLA-MatchNet, MGFF model has
6.29% and 1.61% improvements in 5-way 1-shot case and 5-way 5-shot case, respectively.
Furthermore, the proposed MGFF is more advanced in terms of accuracy compared to the
remaining other compared methods. It is verified that our proposed multi-scale graph-
based feature fusion model is able to yield superb performance on NWPU-RESISC45 data.

Experimental comparisons conducted on WHU-RS19 dataset are shown in Table 4.
Our proposed MGFF model presents the best results in cases of 5-way 1-shot and 5-
way 5-shot. It exceeds the GES-Net model by 0.64% and 2.49%, respectively. Compared
with DLA-MatchNet, MGFF model has 8.21% and 4.97% improvements under the two
conditions. In addition, MGFF yields better few-shot classification performance contrast to
other advanced approaches.

The above results illustrate that the proposed MGFF model is capable of effectively
utilizing the limited information from a few samples, and through multi-scale graph-based
feature fusion, information of the low-level features can be greatly reconciled with that
of the high-level features. At the same time, our model excavates the spatial relations by
construction of graph-based features from image features, so as to obtain more effective
information than traditional methods. Therefore, the proposed MGFF is able to effec-
tively ameliorate the accuracy of remote sensing image scene classification with limited
labeled data.

Table 3. Classification accuracies of 5-way 1-shot and 5-way 5-shot on the NWPU-RESISC45 dataset.

Method 5-Way 1-Shot 5-Way 5-Shot

SCL-MLNet [60] 62.21 ± 1.12 80.86 ± 0.76
Meta-SGD [61] 60.69 ± 0.72 75.72 ± 0.49

TPN [62] 66.52 ± 0.76 78.47 ± 0.64
Relation Network [41] 66.41 ± 0.48 78.53 ± 0.41

MAML [63] 47.32 ± 0.10 63.03 ± 0.55
DLA-MatchNet [48] 68.80 ± 0.70 81.63 ± 0.46

GES-Net [57] 70.83 ± 0.85 82.27 ± 0.55
MGFF (Ours) 75.09 ± 0.94 83.24 ± 0.65

Table 4. Classification accuracies of 5-way 1-shot and 5-way 5-shot on the WHU-RS19 dataset.

Method 5-Way 1-Shot 5-Way 5-Shot

SCL-MLNet [60] 63.36 ± 0.88 77.62 ± 0.81
Meta-SGD [61] 51.59 ± 0.92 63.95 ± 0.87

TPN [62] 59.24 ± 0.86 71.43 ± 0.67
Relation Network [41] 60.88 ± 0.42 79.76 ± 0.67

MAML [63] 51.06 ± 0.21 65.83 ± 0.17
DLA-MatchNet [48] 68.27 ± 1.83 79.89 ± 0.33

GES-Net [57] 75.84 ± 0.78 82.37 ± 0.38
MGFF (Ours) 76.48 ± 0.96 84.86 ± 0.76

In order to comprehensively present the classification effect of the proposed method,
precision (PRE) and F1 score (F1) are also adopted as the evaluation indicators. The few-shot
classification results of the proposed model are shown in the Table 5. It can be found that
under two conditions, PRE and F1 on the two datasets achieve excellent results close to
ACC, which shows the effectiveness and stability of the proposed model.
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Table 5. Classification results of our proposed model on two datasets.

Indicators
NWPU-RESISC45 WHU-RS19

5-Way 1-Shot 5-Way 5-Shot 5-Way 1-Shot 5-Way 5-Shot

PRE 75.19 ± 0.96 83.75 ± 1.09 76.08 ± 1.16 84.97 ± 0.59
F1 73.80 ± 0.62 82.85 ± 0.93 74.09 ± 1.08 83.52 ± 0.64

ACC 75.09 ± 0.94 83.24 ± 0.65 76.48 ± 0.96 84.86 ± 0.76

Moreover, similar to other literature [46,57], the confusion matrix is utilized to evaluate
the performance of few-shot remote sensing image scene classification. Figure 5 shows the
confusion matrices of the proposed model with different conditions on two datasets. It can
be seen that performance of 5-way 5-shot is superior to that of 5-way 1-shot.
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Figure 5. Confusion matrices of our proposed model with different conditions on two datasets.
(a) the confusion matrix on the NWPU-RESISC45 of 5-way 1-shot case, (b) the confusion matrix on
the NWPU-RESISC45 of 5-way 5-shot case, (c) the confusion matrix on the WHU-RS19 of 5-way
1-shot case, and (d) the confusion matrix on the WHU-RS19 of 5-way 5-shot case.

5. Discussions

To further clearly discuss and illustrate the effectiveness of MGFF model, three kinds
of ablation experiments are conducted, which are the effect of graph-based features, the
effect of multi-scale feature fusion strategy and the effect of parameters.

5.1. Effect of Graph-Based Features

In our proposed model, in order to extract the spatial relation information, we con-
struct graph-based features from the image features. To validate the effectiveness of this
module, few-shot classification with or without graph-based features is conducted. In
the comparisons, we perform linear weighted fusion of image features obtained from the
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feature extractor and transposed convolution layers. The compared results on NWPU-
RESISC45 and WHU-RS19 are shown in Figure 6.
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Figure 6. Comparisons of different types of features on two datasets. (a) shows the test results on the
NWPU-RESISC45 dataset with different types of features, (b) shows the test results on the WHU-RS19
dataset with different types of features.

It can be clearly seen from Figure 6, accuracy of the image feature fusion model
is obviously lower than that of the graph-based feature fusion model. On the NWPU-
RESISC45 dataset, under the two conditions, the accuracy results of the image feature
fusion model are 66.47% and 75.06%, respectively, which are 8.54% and 7.98% lower than
that of the graph feature fusion model. On the WHU-RS19 data, under the two conditions,
the accuracy results of the image feature fusion model are 68.15% and 78.40%, respectively,
which are 8.22% and 6.31% lower than that of the graph-based feature fusion model. It
can be concluded that graph-based features reflect more effective information than image
features, which have a significant effect on improving the accuracy of few-shot remote
sensing image scene classification.

5.2. Effect of Multi-Scale Feature Fusion Strategy

In MGFF model, a multi-scale graph-based feature fusion model is introduced to
integrate high-level graph-based features with low-level graph-based features, where
features of five different scales are fused. To illustrate the effectiveness of this fusion
module, we conduct experiments on single-scale feature. In the compared model, the
top-level features are obtained after five stages of the feature extractor, which is utilized for
training and testing. Compared results obtained on NWPU-RESISC45 and WHU-RS19 are
presented in the Figure 7.

It can be clearly seen that without multi-scale feature fusion, the accuracy drops
significantly. On the NWPU-RESISC45 dataset, under the two conditions, the accuracy
results of the single-scale feature are 61.04% and 69.52%, respectively, which are 13.93% and
13.60% lower than that of the multi-scale feature fusion model. On the WHU-RS19 data,
under the two conditions, the accuracies of the single-scale feature are 64.63% and 73.69%,
respectively, which are 11.69% and 10.99% lower than that of the multi-scale feature fusion
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model, respectively. The compared results show that the multi-scale feature fusion model
can make the features expressing specific information that the single-scale feature do not
have, which is able to provide more effective knowledge for scene classification. Therefore,
the developed multi-scale feature fusion strategy makes a great effect on boosting the
accuracy of few-shot remote sensing scene classification.
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Figure 7. Comparisons of different scales of features on two datasets. (a) shows the test results
on the NWPU-RESISC45 dataset with different scales of features, (b) shows the test results on the
WHU-RS19 dataset with different scales of features.

5.3. Discussions of Parameters

In MGFF model, the parameters have great influence on the classification results.
Thus, it is of great significance to analyze the parameters. There are mainly three types
of hyperparameters in the proposed model, including parameters of graph-based feature
construction model, parameters of multi-scale graph feature fusion, and parameters of the
test condition.

In our graph-based feature construction model, the hyperparameter k determines the
number of connections between each node and other nodes in a single graph, which affects
the expressiveness of edge features. So as to specifically illustrate the influence caused by
the hyperparameter k to the final classification performance, we select a number of different
values to conduct experiments under the condition of N = 64. The relevant experimental
results are presented in the Figure 8, where k is changed from 1 to 14. It can be seen that
the settings of different k will cause obvious differences in the classification accuracies, and
the maximum difference of the accuracy changing can even reach about 6%. Furthermore,
the classification performance will be achieved the best when k is set to 6.

In our multi-scale graph-based feature fusion model, the fusion is conducted based
on Equation (9), where there are multiple hyperparameters. These hyperparameters have
a direct and important impact on the fusion of features. In order to explore the degree of
their influence, we set four different groups of values for α1 to α5, including A1(α1 = 0.25,
α2 = 0.25, α3 = 0.25, α4 = 0.25, α5 = 0.25), A2(α1 = 0.20, α2 = 0.20, α3 = 0.20, α4 = 0.20, α5 = 0.25),
A3(α1 = 0.05, α2 = 0.05, α3 = 0.05, α4 = 0.05, α5 = 0.25), and A4(α1 = 0.05, α2 = 0.10, α3 = 0.15,
α4 = 0.20, α5 = 0.25). In addition, for β1 to β5, we assume that they are all equal and set
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12 different values ranging from 0.5 to 3. Experimental results on NWPU-RESISC45 and
WHU-RS19 are presented in Figure 9.
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Figure 8. Analysis with different values of k on two datasets. (a) shows the test results on the
NWPU-RESISC45 dataset with different values of k, (b) shows the test results on the WHU-RS19
dataset with different values of k.
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Figure 9. Accuracy with different values of αi and βi on two datasets. (a,b) the results on the NWPU-
RESISC45 under the condition of 5-way 1-shot and 5-way 5-shot, respectively. (c,d) the results on the
WHU-RS19 under the condition of 5-way 1-shot and 5-way 5-shot, respectively.
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It can be clearly seen from the Figure 9 that αi and βi make a great effect on the
performance of the model. With different hyperparameter settings, the maximum impact
on the accuracy can reach about 8%. For α1 to α5, it is obvious that the weight setting of
group A4 is optimal compared to the weight setting of other groups. The results verify that
different hyperparameters should be set according to the scales of the graph-based features.
For β1 to β5, it is obvious the optimal parameter setting is 1.5. The results also show that a
certain degree of exponentiation is beneficial to improve the classification results.

During the testing, the parameters of the test conditions can illustrate the accuracy
of MGFF model on different cases. So as to explore the effect of the test conditions on the
few-shot classification results, different numbers of shot are set for analysis, where the
results on the two datasets are shown in the Figure 10.
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Figure 10. Accuracy with different numbers of shot on two datasets.

From Figure 10, as the shot number increases, the accuracy of the proposed model
on two datasets also increases. The growth rate is much faster when the shot number is
lower than 5. When the shot number is greater than 5, the growth rate of the accuracy is
gradually slowing down. Therefore, it is more appropriate for us to choose the number of 1
and 5 as the main test conditions, which, respectively, reflect the few-shot learning ability
of MGFF model in the most extreme condition.

6. Conclusions

In this paper, a multi-scale graph-based feature fusion (MGFF) model is proposed
for few-shot remote sensing image scene classification. In MGFF model, the graph-based
feature learning is proved to take advantage of relation information for scene classification.
Moreover, the graph-based feature fusion model is proposed to integrate graph-based fea-
tures of multiple scales, which is verified to excavate more abundant semantic information
and enhance sample discrimination. Experimental results on two public remote sensing
datasets illustrate that the proposed MGFF method can achieve superior accuracy than
other advanced few-shot scene classification approaches.

As for few-shot remote sensing image scene classification, there are still some issues
worthy of further research. In the remote sensing data, there are still some noise data in the
labeled samples. Therefore, it is an important research direction to establish a classification
model with strong robustness that overcomes the influence of noise samples.
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