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Abstract: The Weihe River Basin (WRB) of China is located in an arid and water-scarce semi-arid
region with a fragile ecological environment, and it is meaningful to study the spatial and temporal
changes in vegetation and terrestrial water storage changes in a small-scale inland basin. This
study uses normalized difference vegetation index (NDVI) data and Gravity Recovery and Climate
Experiment (GRACE) and GRACE Follow-On (GRACE-FO) time-variable gravity field models to
derive changes in vegetation cover and water storage in the WRB from 2002 to 2020. Firstly, taking
NDVI as the breakthrough point, the temporal and spatial characteristics of vegetation were analyzed
by trend analysis method and F-test. Then, GRACE and GRACE-FO were used to derive water
storage variations. Finally, the correlation between NDVI and water storage variations is discussed
using the Pearson correlation analysis. The results show that the overall trend of NDVI is increasing,
and the increasing trend is more evident before 2014, and after that, there is a significant fluctuation.
The spatial distribution shows a large spatial variability, but the growing area still accounts for the
majority, and the change varies by vegetation type, among which the cultivated vegetation is more
influential. The overall change in terrestrial water storage showed a decreasing trend of −0.09 cm/yr,
and also reflected a solid intra-annual regular cycle, i.e., reaching a trough from October to November
and a peak from May to June each year. The correlation is 0.6 on the time scale, and there was a
3-month lag between NDVI and TWS. On the spatial scale, the percentage of areas with a negative
correlation was about 95.4%, probably due to increased water consumption and evapotranspiration.
The study’s results can help to understand the relationship between vegetation and water storage in
the WRB and provide scientific support for local environmental management.

Keywords: WRB; NDVI; GRACE; TWS; correlation analysis

1. Introduction

Vegetation is a fundamental element of terrestrial ecosystems. It is the natural link
between soil, water, and the environment and plays an essential role in the terrestrial
carbon balance and the regulation of the climate system [1]. Terrestrial water storage (TWS)
usually includes the total amount of water stored in groundwater, soil water, surface water
(lakes, rivers, and reservoirs), glaciers, and snow. It is a major component of the global
water cycle [2–5]. It also plays a vital role in protecting the ecological environment and
forming extreme hydrological events. Meanwhile, terrestrial water is also an important
prerequisite for keeping vegetation green, regulating about half of the vegetation growth in
global ecosystems and thus strongly influencing the global carbon cycle [6–9]. In addition,
vegetation as an essential component of terrestrial ecosystems is important for regulating
water balance at regional and global scales [10]. Therefore, a clear understanding of terres-
trial water and vegetation is needed. Similarly, a clear understanding of the interactions
between terrestrial water and vegetation greenness is particularly crucial for predicting
future water cycles, especially in arid and semi-arid regions [11]. In this regard, the Normal-
ized Difference Vegetation Index (NDVI) is considered to be a good indicator for identifying
vegetation areas and long-term changes in their condition [12–15]. An increase in NDVI
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usually indicates enhanced vegetation growth and a decrease in NDVI usually indicates
reduced plant growth [9]. The study of vegetation response mechanisms to changes in ter-
restrial water storage has become an important element of regional ecological conservation
and healthy development, which has significant ecological, social, and economic impacts.

In recent years, it has been shown how land greenness affects the global water cycle
and regional terrestrial water balance, such as by altering the terrestrial water cycle [16].
Papagiannopoulou et al. [17] showed that water availability is the primary driver of global
vegetation greenness anomalies, and that 61% of vegetation has limited land surface water
resources despite the relative importance of Northern Hemisphere temperatures during
the growing season. At the same time, the impact of climate warming has strengthened the
water dependence of mountain vegetation [18,19]. The increase in vegetation cover also
means more water demand [20].

The time-variable gravity field models from the Gravity Recovery and Climate Exper-
iment (GRACE) or GRACE Follow-On (GRACE-FO) provide a unique opportunity [21]
to quantify and investigate changes in terrestrial water storage (TWS) on regional and
global scales. They have become an essential hydrological tool for quantifying basin-scale
TWS [22]. The TWS obtained from GRACE has become a valuable data source for studying
vegetation–soil–moisture relationships [23]. Yang et al. [24] reported that the TWS observed
by GRACE is a better measure to explain the dynamics of Australian vegetation than pre-
cipitation. Xie et al. [25] demonstrated a consistent trend of statistical significance between
vegetation greenness and GRACE TWS on a global scale. They showed that increasing
vegetation greenness is an important cause of declining water storage in northern and
western China. Andrew et al. [26] further explored the relationship between the TWS
anomaly (TWSA) and vegetation using the discrete wavelet transform technique. Their
results showed that the decomposed TWSA explained the changes in vegetation better
than the original TWSA. Different vegetation types have different degrees of one-way or
two-way causality between NDVI and TWS [27]. It has also been shown that vegetation
captures only part of the total precipitation, and precipitation provides only indirect infor-
mation on plant water status [24,27]. In summary, TWS is a more direct indicator of soil
moisture available for plant growth, and therefore, correlates with vegetation changes to a
greater extent. However, most of the literature aims to investigate the relationship between
changes at large scales, and very little literature has examined the response between NDVI
and TWS of vegetation in small-scale inland basins.

Studies have shown that vegetation change and water resources interact and restrict
each other [28,29]. Human activities also intensify the balance between them [30]. Li
et al. [31] demonstrated that changes in vegetation conditions can lead to significant changes
in water storage, especially in the Yellow River basin, where the effect of vegetation changes
is more pronounced, and different vegetation types contribute differently. The WRB, as part
of the Yellow River Basin, also has this effect. With the implementation of the “Grain for
Green Project” and the “Three North Protection Forest Project” [32], the vegetation cover
rate has increased significantly [33]. Correspondingly, the increased vegetation consumes
more water resources [34], especially the excessive consumption of soil water [35]. The
contradiction between the excessive consumption of soil water and the sustainability of
the restored vegetation is becoming more and more prominent, further threatening the
sustainability of the ecosystem and socio-economic development. Therefore, it is of great
scientific significance and social value to monitor WRB water reserves and explore the
response relationship between water reserves and vegetation, which can rationally utilize
and effectively manage regional water resources and improve the ecological environment.

This study investigates the relationship between WRB vegetation and TWS using
NDVI products and GRACE and GRACE-FO time-variable gravity field models. The
second part of the paper introduces the study area and data; the third part explains the
data processing methods used; the fourth part gives the corresponding results; the fifth
part gives a specific analysis of the results; and the sixth part gives the conclusion.
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2. Study Area and Datasets
2.1. Study Area

The Weihe River Basin (WRB) is the region where the Weihe River, the largest tributary
of the Yellow River in China, is located. The Wei River originates in the Bird Rat Mountains
of Gansu and flows through three provinces (autonomous regions) of Gansu, Ningxia, and
Shaanxi [36], eventually injecting into the Yellow River. It is located between 33.5–37.5◦N
and 103.5–110.5◦E, with a total area of nearly 1.35 × 105 km2. The WRB can be divided into
two parts: the western part is the Loess Hills and Gullies area, and the eastern part is the
Guanzhong Plain area, with a high topography in the northwest and a low topography in
the southeast. The topography of the watershed is high in the northwest and low in the
southeast, and the mountains on both sides are tilted towards the mainstream of the Wei
River. The area is characterized by severe soil erosion and fragile ecosystems. It is located
in a semi-arid region with aridity and water scarcity, with a warm spring and little rain,
hot and rainy summer with drought, a calm and wet autumn, and cold and dry winter
with little rainfall [37]. The WRB is rich in vegetation resources and has a wide variety
of vegetation types. Because most of the WRB has excellent conditions for agricultural
production, cultivated plants are most widely distributed in the WRB, with an area of
83,500 km2, accounting for more than half of the total basin area [38]. The geographical
location is shown in Figure 1.

Remote Sens. 2022, 14, 5532 3 of 21 
 

 

processing methods used; the fourth part gives the corresponding results; the fifth part 
gives a specific analysis of the results; and the sixth part gives the conclusion. 

2. Study Area and Datasets 
2.1. Study Area 

The Weihe River Basin (WRB) is the region where the Weihe River, the largest tribu-
tary of the Yellow River in China, is located. The Wei River originates in the Bird Rat 
Mountains of Gansu and flows through three provinces (autonomous regions) of Gansu, 
Ningxia, and Shaanxi [36], eventually injecting into the Yellow River. It is located between 
33.5–37.5°N and 103.5–110.5°E, with a total area of nearly 1.35 × 105 km2. The WRB can be 
divided into two parts: the western part is the Loess Hills and Gullies area, and the eastern 
part is the Guanzhong Plain area, with a high topography in the northwest and a low 
topography in the southeast. The topography of the watershed is high in the northwest 
and low in the southeast, and the mountains on both sides are tilted towards the main-
stream of the Wei River. The area is characterized by severe soil erosion and fragile eco-
systems. It is located in a semi-arid region with aridity and water scarcity, with a warm 
spring and little rain, hot and rainy summer with drought, a calm and wet autumn, and 
cold and dry winter with little rainfall [37]. The WRB is rich in vegetation resources and 
has a wide variety of vegetation types. Because most of the WRB has excellent conditions 
for agricultural production, cultivated plants are most widely distributed in the WRB, 
with an area of 83,500 km2, accounting for more than half of the total basin area [38]. The 
geographical location is shown in Figure 1. 

 
Figure 1. The geographical location of the study area and some densely populated cities. 

Human activities in the WRB have become increasingly widespread in recent dec-
ades. Surface water extraction and groundwater extraction have increased rapidly due to 
the increase in population, industry, and agricultural land area. As the economy is grow-
ing, agricultural activities are still increasing, which leads to an increase in agricultural 
water use. According to the statistics of the Ministry of Water Resources, in 2008, the irri-
gated area taken from WRB was about 9500 km2. Additionally, due to the water consump-
tion of irrigated farmland, excessive irrigation directly reduces regional drainage [39]. In 
addition, about 130 reservoirs were built after 1949, with a total capacity of 1.67 billion m3 
[40]. The construction of these reservoirs has led to an increase in evaporation due to the 

Figure 1. The geographical location of the study area and some densely populated cities.

Human activities in the WRB have become increasingly widespread in recent decades.
Surface water extraction and groundwater extraction have increased rapidly due to the
increase in population, industry, and agricultural land area. As the economy is growing,
agricultural activities are still increasing, which leads to an increase in agricultural water
use. According to the statistics of the Ministry of Water Resources, in 2008, the irrigated
area taken from WRB was about 9500 km2. Additionally, due to the water consumption of
irrigated farmland, excessive irrigation directly reduces regional drainage [39]. In addition,
about 130 reservoirs were built after 1949, with a total capacity of 1.67 billion m3 [40]. The
construction of these reservoirs has led to an increase in evaporation due to the rising water
surface area in the WRB, which has exacerbated the water shortage. With climate change,
the water shortage in the WRB has become severe, and more severe drought events have
occurred [41].
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2.2. Datasets

The TWS was determined from the mass changes detected by the Gravity Recovery
and Climate Experiment (GRACE) satellite [42], while the GRACE and GRACE-FO data
were obtained from ICGEM (http://icgem.gfz-potsdam.de/series/10.5067/GFL20-MC060,
accessed on 7 November 2021.) release of UTCSR monthly gravity field data, selected for the
time period April 2002 to May 2020. The data are all GSM model data from RL06 [43], where
the accuracy of the C20 term coefficients is very low, and the corresponding coefficients
of the original data need to be replaced using the C20 term coefficients provided by the
Global Satellite Laser Ranging System [44]. The sliding polynomial method of Swenson
et al. [45] is used to decorrelate the data, and the Gaussian filter with a smooth radius of
300 km is used to denoise the data. The spatial resolution of the final terrestrial water
storage is 0.25◦ × 0.25◦. There also are some missing data in the GRACE dataset, and the
missing data in these months are filled by the dataset of reconstructed terrestrial water
storage change in China based on precipitation by Zhong et al. [46,47].

The NDVI data selected in this paper are MOD13A3 data of the same period as GRACE
data, which are obtained from the NASA website with a temporal resolution of one month
and a spatial resolution of 1000 m. The data were rescaled using the resampling tool in
ArcGIS to match the GRACE cell size. MODIS-NDVI products are data that have been
processed for water, cloud, and heavy aerosol data processing, so its data products have
certain quality assurance. Because MODIS-NDVI products are widely used in research
fields such as regional vegetation cover change [37]. The WRB vegetation type data are
obtained from the Data Center for Resource and Environmental Sciences of the Chinese
Academy of Sciences, as shown in Figure 2.
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Precipitation, evapotranspiration, and temperature data are from the 5th generation
reanalysis data ERA5-Land, one of the most advanced reanalysis data officially released by
the European Centre for Medium-Range Weather Forecasts (ECMWF) in 2019. Its spatial
resolution is 0.1◦ × 0.1◦and the time resolution is one month. Its time coverage is from
1950 to now. The data can be downloaded from the official website (https://cds.climate.
copernicus.eu/cdsapp#!/home, accessed on 5 July 2022).
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3. Method
3.1. Trend Analysis

Trend analysis is a method that reflects the direction and rate of NDVI change by
performing linear regression analysis on variables that change over time, thereby predicting
their trends. The calculation formula for trend analysis is as follows [48]:

Slope =
n ∑n

i=1(i × NDVIi)− ∑n
i=1 i × ∑n

i=1 NDVIi

n ∑n
i=1 i2 − (∑n

i=1 i)2 (1)

where Slope is the gradient of the image regression equation, NDVIi is the mean NDVI in
the first year of i, and n is the length of time of the study. When Slope > 0, NDVI tends to
increase; when Slope < 0, NDVI tends to decrease.

3.2. F Test

To further evaluate the vegetation change status, the F-test was used to analyze the
significance of NDVI change trends and indicate the level of confidence in the trend change.

s = avg(y)− Slope × avg(x) (2)

ỹi = s + Slope × xi (3)

U =
n

∑
i=1

(ỹi − y) (4)

Q =
n

∑
i=1

(ỹi − y)2 (5)

F = U × n − 2
Q

(6)

where n is the study time series, U is the error sum of squares, Q is the regression sum
of squares, ỹi is the fitted regression value, yi is the value of xi, and yi is the mean of n.
The sample size in this study is 19, and the significance levels of α = 0.05 and α = 0.01
are selected. Fα(1, n − 2) = F0.05(1, 17) = 4.45 and Fα(1, n − 2) = F0.01(1, 17) = 8.40 are
obtained by checking the table. Based on the obtained values of Slope and F, the spa-
tial trends of NDVI were classified into the following six levels [49], i.e., slowly decrease
(Slope < 0, 0 < F < 4.45), significantly decrease (Slope < 0, 4.45 < F < 8.40), extremely
significant decrease (Slope < 0, F > 8.40), slowly increase (Slope > 0, 0 < F < 4.45),
significantly increase (Slope > 0, 4.45 < F < 8.40), and extremely significant increase
(Slope > 0, F > 8.40).

3.3. Correlation Analysis

The Pearson correlation analysis is a method to study the degree of correlation between
elements. By calculating the correlation coefficient R between water storage and NDVI, it
can effectively point out the degree of influence between the two. The range of R is [−1, 1].
If R > 0, the two are positively correlated. If R < 0, the two are negatively correlated. If
R = 0, there is no linear correlation. The formula for calculating the Pearson correlation
coefficient Rxy of variables x and y is as follows.

Rxy =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2 ∑n
i=1(yi − y)2

(7)

where n is the sample size; xi and yi are the values of the two variables x and y for the first
year i; x and y are the mean values of x and y.
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3.4. Calculation Method of Water Storage Change Based on GRACE/GRACE-FO Data

In the time-varying gravity level data of GRACE/GRACE-FO, tidal effects (including
ocean tides, solid tides, and polar tides generated by the Earth rotation) and non-tidal
effects have been deducted in the GRACE/GRACE-FO data processing. Therefore, except
for the calculation error of the gravity level model and the model error of atmospheric and
marine tides, the GRACE/GRACE-FO time-varying gravity field reflects the mass change
of non-atmospheric and oceanic parts, i.e., the change of land water volume. The basic
equation for the inversion of surface mass redistribution from time-varying gravity levels
is as follows [50]:

∆σ(θ, λ) =
aρa

3

∞

∑
l=0

l

∑
m=0

Plm(cosθ)× 2l + 1
1 + kl

(
∆Clmcosmλ + ∆Slmsinmλ

)
(8)

In the above equation, a is the radius of the Earth, ρa is the mean density of the Earth,
θ and λ are the geocentric colatitude and longitude, l and m are the degree and order of the
spherical harmonic expansion, kl is load Love numbers of the solid earth, ∆σ(θ, λ) is the
variation of the surface density of the surface material, ∆Clm and ∆Slm are the variations
of the Stokes coefficient, Plm(cosθ) is fully normalized Legendre function of degree l and
order m.

The land surface mass change can be expressed in terms of Equivalent Water Height
(EWH), i.e., converting the mass change to water height change ∆h:

∆h(θ, ϕ) =
aρave

3ρw

∞

∑
l=0

l

∑
m=0

2l + 1
1 + kl

Plm(cosθ)
(
∆Clmcosmλ + ∆Slmsinmλ

)
(9)

In the absence of violent crustal movements such as earthquakes, we can approximate
that the change in the Earth’s land surface mass is caused by the change in water storage [51],
so the change in land water storage can be calculated from Equation (9).

4. Results and Analysis
4.1. Spatial and Temporal Characteristics of Interannual Vegetation NDVI

By averaging the NDVI values for each month in the WRB from 2002 to 2020 to repre-
sent the average NDVI level for that month, we obtained the NDVI time series variation
graph (i.e., Figure 3). We can know that NDVI shows strong seasonal characteristics with
significant intra-annual variation, starting roughly from April when the NDVI starts to
return to green, almost peaking in July, August, and September, and then starting to decline
after that. On the whole, it shows a slight upward trend.

The interannual variation of the average NDVI in WRB is shown in Figure 4. The
interannual variation of NDVI in the region during the study period shows a weak greening
trend and the distribution of NDVI ranges from 0.214 to 0.262, with an annual average
NDVI of 0.245. In addition, there was a big browning trend from 2002 to 2003, and then
there was a greening trend from then until 2014, and then there was a big fluctuation after
2014, and the trend was down-up down.

The average annual NDVI of WRB is shown in Figure 5. The spatial NDVI in the WRB
varies widely, ranging from 0.1073 to 0.7069, with higher NDVI values in the south and
smaller NDVI values in the northwest, gradually increasing from northwest to southeast.
Geographically, the NDVI presents characteristics that are more consistent with the geo-
graphical characteristics. The mountainous areas such as the northern Qinling Mountains,
Liupan Mountains, Ziwu Mountains, and Huanglong Mountains have dense forests and
high vegetation coverage, so the NDVI in these areas is more prominent, generally greater
than 0.6. The NDVI in the Guanzhong Plain is between 0.3 and 0.6, and the vegetation
types in this area are more comprehensive. At the same time, agricultural land accounts
for most of the land, so the NDVI value is in the middle position. Along the WRB, some
areas are densely populated urban areas, which are affected by human activities, so the
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NDVI value of this area is low. In the northwest region, this area is a gully area of the Loess
Plateau, with low vegetation cover and a few grassland types, so the NDVI is generally
less than 0.2.

Remote Sens. 2022, 14, 5532 7 of 21 
 

 

 
Figure 3. Time series of NDVI changes (Green rectangles indicate NDVI values for April and purple 
rectangles indicate NDVI values for July, August, and September). 

The interannual variation of the average NDVI in WRB is shown in Figure 4. The 
interannual variation of NDVI in the region during the study period shows a weak green-
ing trend and the distribution of NDVI ranges from 0.214 to 0.262, with an annual average 
NDVI of 0.245. In addition, there was a big browning trend from 2002 to 2003, and then 
there was a greening trend from then until 2014, and then there was a big fluctuation after 
2014, and the trend was down-up down. 

 
Figure 4. Annual average NDVI changes. 

The average annual NDVI of WRB is shown in Figure 5. The spatial NDVI in the WRB 
varies widely, ranging from 0.1073 to 0.7069, with higher NDVI values in the south and 
smaller NDVI values in the northwest, gradually increasing from northwest to southeast. 
Geographically, the NDVI presents characteristics that are more consistent with the geo-
graphical characteristics. The mountainous areas such as the northern Qinling Mountains, 
Liupan Mountains, Ziwu Mountains, and Huanglong Mountains have dense forests and 
high vegetation coverage, so the NDVI in these areas is more prominent, generally greater 
than 0.6. The NDVI in the Guanzhong Plain is between 0.3 and 0.6, and the vegetation 
types in this area are more comprehensive. At the same time, agricultural land accounts 

Figure 3. Time series of NDVI changes (Green rectangles indicate NDVI values for April and purple
rectangles indicate NDVI values for July, August, and September).

Remote Sens. 2022, 14, 5532 7 of 21 
 

 

 
Figure 3. Time series of NDVI changes (Green rectangles indicate NDVI values for April and purple 
rectangles indicate NDVI values for July, August, and September). 

The interannual variation of the average NDVI in WRB is shown in Figure 4. The 
interannual variation of NDVI in the region during the study period shows a weak green-
ing trend and the distribution of NDVI ranges from 0.214 to 0.262, with an annual average 
NDVI of 0.245. In addition, there was a big browning trend from 2002 to 2003, and then 
there was a greening trend from then until 2014, and then there was a big fluctuation after 
2014, and the trend was down-up down. 

 
Figure 4. Annual average NDVI changes. 

The average annual NDVI of WRB is shown in Figure 5. The spatial NDVI in the WRB 
varies widely, ranging from 0.1073 to 0.7069, with higher NDVI values in the south and 
smaller NDVI values in the northwest, gradually increasing from northwest to southeast. 
Geographically, the NDVI presents characteristics that are more consistent with the geo-
graphical characteristics. The mountainous areas such as the northern Qinling Mountains, 
Liupan Mountains, Ziwu Mountains, and Huanglong Mountains have dense forests and 
high vegetation coverage, so the NDVI in these areas is more prominent, generally greater 
than 0.6. The NDVI in the Guanzhong Plain is between 0.3 and 0.6, and the vegetation 
types in this area are more comprehensive. At the same time, agricultural land accounts 

Figure 4. Annual average NDVI changes.

The spatial trends in WRB are shown in Figure 6. The statistics on Slope are tabulated
in Table 1. According to Table 1, 86.8% of the WRB has shown an increase over the years,
and only 13.2% shows a decreased trend.

The significance of NDVI changes in the WRB can be obtained by F-test. The results
are shown in Figure 7, and the statistics of their classification results are shown in Table 2.
The proportion of slowly changing areas and significantly changing areas in the WRB are
about half each, among which the slowly changing areas are roughly located in areas with
high original NDVI, while the significantly changing areas are located in areas with low
original NDVI. Therefore, it can be considered that the significance of NDVI change is
influenced by the original NDVI.
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Table 1. Graded statistics of NDVI trend.

Trend Classification Basis Number of Pixels Percentage (%)

Decrease Slope < 0 18,108 13.2
Increase Slope > 0 119,802 86.8

To calculate the trend of NDVI changes in the WRB for each image element and
to indicate the intensity of the changes at the same time, the results of the F-test were
analyzed by superimposing the results with the slope of the trend. The NDVI trends
were divided into six categories and the percentage of the image elements was counted
at the same time, and the results are shown in Figure 8 and Table 3. About 23.1% of
the WRB showed a decrease in NDVI. The highly significant decrease in NDVI is found
in the cities along the Wei River, such as Baoji and Xi’an, which are densely populated
and have mostly construction land, as confirmed in other studies [52]. Meanwhile, the
highly significant increase in NDVI is 30.1% and is located in the northwestern Loess
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Plateau region, which proves that the vegetation cover is increasing greatly. The ecological
environment is believed to have been significantly improved.
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Table 2. Statistics of F-test results for NDVI changes.

Classification Basis Number of Pixels Percentage (%)

Slow change 0 < F < 4.45 68,671 49.8
Significant change 4.45 < F < 8.4 26,026 18.9

Extremely significant change F > 8.4 43,213 31.3
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Table 3. Statistical results of significance classification of NDVI trends.

Classification Basis Number of Pixels Percentage (%)

Slowly decrease Slope < 0, 0 < F < 4.45 15,069 10.9
Significant decrease Slope < 0, 4.45 < F < 8.4 1300 0.9

Extremely significant decrease Slope < 0, F > 8.4 1739 1.3
Slowly increase Slope > 0, 0 < F < 4.45 53,602 38.9

Significant increase Slope > 0, 4.45 < F < 8.4 24,726 17.9
Extremely significant increase Slope > 0, F > 8.4 41,474 30.1

4.2. Spatial and Temporal Characteristics of Terrestrial Water Storage

Figure 9 shows the variation of water storage in the WRB obtained by inversion of the
GRACE and GRACE-FO data, and the regularity can be seen to some extent. As a whole,
it is still in a decreasing trend of −0.09 cm/yr, as found by linear fitting. A comparison
with rainfall data shows that fluctuations in water storage are broadly consistent with
fluctuations in rainfall. In particular, the sudden decline in water storage after 2015 was
also influenced by the significant reduction in rainfall. Figure 10 shows the skin temperature
and total evapotranspiration of WRB. In Figure 10a, the variation in water storage over most
of the time period is inversely proportional to the variation in temperature. What is more
apparent is that water storage is at a lower level from 2006 to 2010, but the temperature
is at a higher level. Similarly, water storage declines more rapidly after 2015, when the
temperature is also at a higher level. This would suggest that changes in water storage
are also influenced by temperature. In Figure 10b, changes in water storage from 2002
to 2013 are more consistent with evapotranspiration. However, particularly from 2015 to
2018, water storage declined significantly and evapotranspiration was at a high level. This
also suggests that evapotranspiration has little effect on TWS when water storage is on a
relatively increasing trend. When evapotranspiration is high, this has an impact on water
storage changes.
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Figure 9. Time series of EWH and Precipitation in WRB.

The time series of water storage is further analyzed, and the interannual long trend
changes are obtained by signal extraction, as shown in Figure 11a. It offers an overall
downward trend of −0.09 cm/yr, and presents different rise and fall in different periods,
showing repeated rise and fall in these nearly two decades, especially in 2017 and 2018
when the downward trend increases. Figure 11b is the result obtained by extracting the
periodic signal, seeing that the water storage changes also show a robust intra-annual
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variation pattern, with an overall regular periodicity, reaching a valley from October to
November and a peak from May to June.
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Figure 11. TWS time series extraction, (a) interannual trend variation, (b) annual cycle variation.

Taking the average of the TWS of the WRB from April 2002 to July 2020 to reflect the
water storage in the region as shown in Figure 12. The water storage in the WRB shows a
gradual decrease from the northwest to the southeast, which may be because the area is
in an arid and semi-arid region with low precipitation. The northwest area is not suitable
for planting due to its high terrain, so the vegetation type is single. There are also studies
showing that in grassland and forest-steppe areas, the soil water consumption of natural
vegetation and artificial vegetation is significantly different, with artificial vegetation
consuming more soil water than natural vegetation [53]. In addition, densely populated
areas, such as Xi’an and Baoji, are also located in this area, and more water is used for
agricultural irrigation [54]. These artificial disturbances increase water consumption and
make water storage less.
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Figure 13 shows the changes in water storage during the study period. As a whole,
the water reserves in this area are gradually decreasing, and gradually increasing from the
west to the northeast, which to some extent, is also in accordance with the characteristics of
more precipitation in the south and less precipitation in the north.
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In response to the inconsistency between the distribution of annual average water
storage and the trend of WRB, it has been shown that water consumption increases during
the process of extensive vegetation restoration, and evapotranspiration increases at a rate
of 4.39 mm a−1 in the Loess Plateau where the WRB is located [55]. Li et al. showed
that the most critical factor of vegetation type affecting water storage in the Yellow River
basin is agricultural land, followed by forests, grasslands, shrubs, and others [31]. The
northeastern part of the WRB is the main concentration of broadleaf forests. In contrast, the
northwestern part is the main concentration of grasslands, and the central part is the main
cultivation area for crops, so it is somewhat consistent with the variation of water storage
reflected in Figure 12. In addition, the western part of the WRB is higher in elevation and
less populated. At the same time, the terrain gently slopes down to the northeast, and the
population density increases to varying degrees, so the influence of human activities may
also affect the changes in water storage to some extent.
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4.3. NDVI and Terrestrial Water Storage Correlation Analysis

Figure 14 shows the interannual signal of water storage and the curve of variation in
NDVI. Both water storage and NDVI in the region show more fluctuations, and seasonal
characteristics are more obvious. Overall, there is a consistent trend and intra-annual
pattern, which indicates some consistency in the changes in water storage and NDVI in
the region.
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Figure 14. Time series of interannual variation of water storage and NDVI.

Figure 15 shows the correlation between water storage in the WRB and NDVI on a
time scale, and it can be seen that there is a significant correlation between the two, with
a maximum correlation coefficient of 0.6. There is also a certain lag in NDVI compared
to water storage changes, with a lag time of 3 months, which is consistent with the study
of Zhong et al. [56]. It can be understood that the change in water storage makes NDVI
change gradually with it, and would not produce an immediate effect.
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Figure 15. Correlation between water storage and NDVI.

The spatial correlation between water storage variation and NDVI in the WRB is
shown in Figure 16. It can be seen that there are significant differences in the response of



Remote Sens. 2022, 14, 5532 14 of 20

water storage changes and NDVI, with correlation coefficients ranging from −0.8 to 0.8.
According to Figure 16 and Table 4, the NDVI of vegetation in the region mainly showed
negative correlations, and the areas with negative correlation coefficients accounted for
95.4%. In comparison, the areas with positive correlations accounted for 4.6%, primarily
distributed along the WRB.
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Figure 16. Spatial-scale correlation between water storage and NDVI.

Table 4. Spatial-scale correlation grade classification statistics.

Correlation Coefficient Number of Pixels Percentage (%)

−0.8–−0.5 11,692 8.594
−0.5–−0.3 49,630 36.481
−0.3–0 68,731 50.522
0–0.3 5576 4.099

0.3–0.5 395 0.290
0.5–0.8 19 0.014

To more intuitively see the impact and significance of the correlation between water
storage and NDVI at this site, the correlation coefficients were divided into positive and
negative correlations, and the significance was divided into weak, low, and significant
correlations. According to Figure 17 and Tables 5 and 6, the spatial correlation between
water storage and NDVI in the WRB is mainly negative, accounting for 95.4% of the study
area. In comparison, the positive correlation only accounts for 4.6%, mainly in the coastal
and western areas of the WRB. The weak correlations are mainly in the Loess Plateau hills
and valleys in the northwest, where the elevation is high and the vegetation cover is low.
Xi‘an and other densely populated cities also show a weak correlation. The areas with
low correlation are mainly the central areas, especially agricultural planting areas. And
the significant correlations are in the central grassland areas and the forest areas in the
south. Therefore, it is also understandable why there is a large probability of a negative
correlation between TWS and NDVI in WRB, which has been confirmed by Zhao et al. [57]
and Ghorbanian et al. [58]. Therefore, it shows the degree of correlation in this region is
highly correlated with vegetation type.
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Table 5. Spatial-scale correlation statistics of water storage and NDVI.

Relevance Classification Basis Number of Pixels Percentage (%)

Negative correlation r < 0 129,802 95.4
Positive correlation r > 0 6241 4.6

Table 6. Spatial scale significance classification statistics of water storage and NDVI.

Relevance Classification Basis Number of Pixels Percentage (%)

Significant correlation 0.5 < |r| < 0.8 11,711 8.60
Low degree of correlation 0.3 < |r| < 0.5 50,025 36.77

Weak correlation |r| < 0.3 74,307 54.63

5. Discussion
5.1. Main Influencing Factor of TWS

In our study, we also use precipitation, temperature, and evapotranspiration to discuss
their effects on TWS. Obviously, the main reason for the change of TWS is the influence of
precipitation, with evapotranspiration and temperature accounting for a small part. It is
not difficult to understand that precipitation can be regarded as the main source of water
storage input, while evapotranspiration is one of the destinations of TWS output, and the
change in temperature will affect precipitation and evapotranspiration to a certain extent.
Because of the implementation of the ecological policy, the vegetation in this study area has
obviously turned green. Some studies [59,60] show that the water consumption function of
vegetation in arid and semi-arid areas exceeds the water storage function. Zhou et al. [61]
show that the water consumption function of vegetation in the Loess Plateau is dominant.
This is consistent with the result that the change in water reserves is negatively correlated
with NDVI in a large area. Therefore, the increase in NDVI is also one of the factors that
affect the decrease in TWS in WRB.

5.2. Main Influencing Factor of NDVI

We all know that precipitation and temperature are the direct factors of vegeta-
tion growth, so we combine them with NDVI for analysis. The results are shown in
Figures 18 and 19. Through calculation, we get that the correlation between precipitation
and NDVI is 0.9, and the correlation between temperature and NDVI is 0.88. Therefore, the
change of NDVI is mainly influenced by precipitation and temperature.
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5.3. NDVI and TWS Correlation Analysis

As for the reason for the 3-month lag between the change in water storage and the
change of NDVI, it is understandable to us because the growth of plants does not have an
immediate effect on the change of water.

For the spatial scale, 95.4% of the regional area shows a negative correlation and the
correlation is not high, which is something we should explore. First of all, if the influence
of rainfall temperature on NDVI is greater, then the influence of TWS on NDVI will be
lower. Then, WRB terrain is high in the northwest and low in the southeast, which leads to
less water reserves in areas with high terrain and more water reserves in areas with gentle
terrain. However, due to the dense population and abundant agricultural production
in the plain area, a large amount of irrigation water makes the consumption of water
reserves increase, even in a downward trend. However, due to the large-scale restoration
of local vegetation, NDVI shows a large-scale increasing trend, which will lead to this
large-scale negative correlation trend. It has also been shown that this is due to the response
of vegetation growth to water and climate varies with vegetation type [7], as well as the
different sensitivity of vegetation to TWS [62], and the increase in vegetation cover is the
main reason for the increase in evapotranspiration and the decrease in TWS [31]. Within
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this, there are different degrees of negative correlations, the vegetation type in the northwest
is mainly sparse grassland, and the correlation with water is mainly weak, despite the
increasing trend of NDVI. In the Jinghe and Beiluohe regions, the impact on vegetation is
also significantly increased due to the more abundant water storage. Still, the vegetation
type is mainly cultivated plants and disturbed by human factors, so the region shows a
low correlation. In the Qinling and Ziwuling forest areas, the growth trend of NDVI is
weak. Although dense trees consume a lot of water, they also have strong water and soil
conservation ability, and the change in water reserves is not obvious, so the correlation of
forest areas will also show a low correlation. In the Jing River Valley and the Beiluo River
Valley, this area is the gathering place of shrubs and other vegetation, and it is also the best
area for agricultural cultivation, which consumes a lot of water resources. At the same
time, NDVI increases significantly, resulting in a highly significant negative correlation. Of
course, these are the results based on the discussion of this study, and the specific causes
are certainly more complex, which is subject to further research.

6. Conclusions

Weihe River is the largest tributary of the Yellow River of China. To better understand
the ecological change in WRB, this study investigated the spatial and temporal variation of
NDVI of vegetation in the WRB from April 2002 to May 2020 and the variation of TWS, and
discussed the response relationship between them. The results demonstrate the following.

The NDVI in the WRB shows a prominent increasing trend, with higher NDVI values
in the south and smaller NDVI values in the northwest, gradually increasing from northwest
to southeast. In addition, the overall trend of NDVI is more obvious, and the browning
rate is higher than the greening rate. Only 23.1% of the areas show a decreasing trend of
NDVI, among which, the extremely significant decreasing areas are located in the densely
populated urban areas. Meanwhile, the extremely significant increasing areas account
for 30.1% and are located in the Loess Plateau area in the northwest, which proves that
the vegetation cover is increasing at a great rate. Water storage in the WRB shows a
decreasing trend, with the annual average water storage showing a gradual decrease from
the northwest to the southeast, and the sharpness of the decline in water storage gradually
aggravates from the west to the northeast. It is probably the result of multiple factors. In
particular, rainfall was the main factor. Temperature and evaporation dispersion also have
an effect.

The correlation analysis shows a consistent trend and intra-annual pattern between
TWS and NDVI, which indicates some consistency between the changes in water storage
and NDVI in the region. There is a great correlation between them in time scale, and the
lag of NDVI to TWS is about 3 months. On the spatial scale, there is a significant difference
in the response relationship between them, mainly showing a negative correlation, and the
significant degree is different, mainly as follows: the correlation is weak in the hilly areas
of the Loess Plateau with low vegetation coverage and high altitude areas, and densely
populated cities such as Xi’an; the middle agricultural planting area is a low correlation; the
significant correlation areas are the grass gathering area in the middle and the forest area in
the south, which also indicates that the correlation degree is related to vegetation types.

Overall, the existing results have confirmed the basic feasibility of using GRACE
TWS as a tool to explore the hydrological impact of plant greenness and the interaction
between vegetation greenness and land water conditions. In particular, TWS is considered
as an ideal index to study the impact of vegetation change on land water conditions [25].
Therefore, the interaction between TWS and vegetation in the WRB studied in this paper
is feasible and helps to improve the understanding of the relationship between terrestrial
water and vegetation change in the region. However, this study only provides preliminary
progress of the relationship between TWS and vegetation NDVI in the WRB, which needs
to be investigated further. The next step is to further study the specific reasons for the
correlation between TWS and NDVI.
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