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Abstract: Transfer learning has been shown to be an effective method for achieving high-performance
models when applying deep learning to remote sensing data. Recent research has demonstrated
that representations learned through self-supervision transfer better than representations learned
on supervised classification tasks. However, little research has focused explicitly on applying self-
supervised encoders to remote sensing tasks. Using three diverse remote sensing datasets, we
compared the performance of encoders pre-trained through both supervision and self-supervision
on ImageNet, then fine-tuned on a final remote sensing task. Furthermore, we explored whether
performance benefited from further pre-training on remote sensing data. Our experiments used
SwAV due to its comparably lower computational requirements, as this method would prove most
easily replicable by practitioners. We show that an encoder pre-trained on ImageNet using self-
supervision transfers better than one pre-trained using supervision on three diverse remote sensing
applications. Moreover, self-supervision on the target data alone as a pre-training step seldom boosts
performance beyond this transferred encoder. We attribute this inefficacy to the lower diversity
and size of remote sensing datasets, compared to ImageNet. In conclusion, we recommend that
researchers use self-supervised representations for transfer learning on remote sensing data and that
future research should focus on ways to increase performance further using self-supervision.

Keywords: machine learning; self-supervision; computer vision; transfer learning; SwAV; semantic
segmentation; satellite imagery; domain adaptation

1. Introduction

Deep Neural Networks (DNNs) typically require large labeled training datasets to
achieve satisfactory recognition accuracy. This is a major limitation of DNNs in remote
sensing applications, where the data are often limited in availability, expensive to purchase,
and time-consuming to label. In object recognition applications, for example (e.g., detection
of aircraft, boats, oil rigs), large quantities of overhead imagery must be manually inspected
to find instances of the target objects, and there is no guarantee that a sufficiently large
number of target instances will be found in any particular collection of overhead imagery.
Due to these challenges, training data are often scarce in remote sensing applications, which
limits the recognition accuracy of DNNs. This problem is often referred to as a few-shot or
low-shot learning problem, and it is a well-studied problem in machine learning [1–4].

Several approaches have been proposed to address this problem. One strategy, called
data augmentation, increases the dataset size by applying transformations to the original
dataset that allow each image to be used multiple times in the model (e.g., by rotating an
image 90%, each image has four distinct views possible) [5]. Another strategy, synthetic
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imagery, consists of generating data using simulated overhead imagery [6]. Both data
augmentation and synthetic imagery are methods to increase the amount of training data
artificially. A complementary approach is to pre-train a model so that it does not learn from
scratch but rather learns low-level features like edges and shapes that would be shared
between datasets. This strategy is called transfer learning, and it is a standard method for
model initialization as it can improve accuracy and decrease training time [7]. An example
transfer learning pipeline can be visualized in Figure 1.

Figure 1. The model architectures used in our experiments. In the self-supervised pre-training step
(1), the training data were fed through a ResNet-50 architecture, and the SwAV loss from the fully
connected layer was used to train the model. Once the ResNet-50 encoder was trained, the fully
connected layer was detached, and the model weights were saved. (2) To fine-tune, the ResNet-50
model was attached to a U-Net decoder, with the ResNet-50 weights coming from the previous step
and the remaining weights randomly initialized. During training, both the U-Net and ResNet-50
weights were updated using the soft-IoU loss between the actual and the predicted masks.

The efficacy of transfer learning depends on the pre-training dataset and the pre-
training task. In theory, the pre-training dataset should be similar to the target dataset.
For example, if one wanted to train a model to detect airplanes in satellite images, it would
make intuitive sense that a model pre-trained to detect cars in satellite images would
outperform a model pre-trained to detect dogs in ground-level captured natural imagery,
as the large satellite imagery dataset would help the model learn features that are shared
with the target dataset. However, this is not necessarily the case. Pires de Lima et al. [8]
showed that ImageNet, a large natural imagery dataset, frequently outperforms remote
sensing datasets when used in a supervised classification pre-training task, even when
the target dataset is in the remote sensing domain. This is because ImageNet contains
1000 classes and 1.4 million images. The dataset size and class diversity allow the model
to learn a variety of features that are unmatched by smaller remote sensing datasets [9].
Furthermore, the optimal model weights for the supervised ImageNet classification task are
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freely available through the most commonly used machine learning frameworks, making
this pre-trained model a popular choice among practitioners.

Regarding the impact of pre-training tasks on transfer learning, recent research has
shown that self-supervised methods often outperform supervised methods [10]. For exam-
ple, self-supervision applied to the ImageNet dataset outperforms supervised classification
on ImageNet when applied to remote sensing tasks [11]. Self-supervision involves using
a pre-training task that does not require explicitly labeled data to uncover features that
might benefit the model on target tasks. Instead, implicit labels are derived from the
unlabeled data themselves. For example, an image might be randomly rotated, and the
self-supervised task would be to predict the amount by which the image has been rotated
(i.e., the classes would be 0, 90, 180, and 270 degrees). Through this task, the model may
learn which features determine the intrinsic orientation of the images. Other examples
of such tasks include colorization, prediction of missing pixels, and solving jigsaw puz-
zles [12–15]. Self-supervised methods enable the model to learn features beyond those
learned through supervision, as supervised methods merely teach the model to learn those
features that help the model discriminate between the manually labeled classes. In contrast,
self-supervised methods teach the model to learn inherent features of the dataset, which,
depending on the method, may allow for more expressive features to be learned.

Despite self-supervision’s promise, many state-of-the-art self-supervision methods to-
day are often difficult to implement in practice. They require large datasets and substantial
computational resources to be effectively applied, which precludes their widespread use
among practitioners. For example, SimCLR and SimCLR v2 [16,17] achieved state-of-the-art
performance on the ImageNet classification task using batch sizes of 4096, while another
method, BYOL [18], achieved state-of-the-art performance, but required 64 graphics pro-
cessing units (GPUs). Access to this number of GPUs may limit users of this method to
those with access to high-performance computing environments or to those willing to pay
for additional resources. Because of this additional hurdle, the efficacy of self-supervised
methods is dependent upon their ability to pre-train models that transfer well to multiple
domains. Essentially, we want to apply self-supervised pre-training once to a large dataset
and reuse the learned weights in various of circumstances. To make such a pre-trained
model optimized for the domain of remote sensing, a variety of self-supervision techniques
have emerged [19–21]. Recent research has suggested that, while these methods result in
pre-trained models that transfer better to remote sensing applications than the supervised
ImageNet encoder, the self-supervised ImageNet encoder still frequently wins [10,11,22].
Again, this is likely due to ImageNet’s size and diversity.

Because the model pre-trained on ImageNet still prevails, Risojevic et al. suggest
a paradigm called domain-adaptive pre-training, in which a model is pre-trained on
ImageNet, then further pre-trained on a remote sensing dataset so that it can adapt to the
remote sensing domain [11]. A similar strategy referred to as hierarchical pre-training
by Reed et al. supports this paradigm by showing that self-supervised pre-training is
improved when it occurs sequentially over multiple datasets. In our work, we seek to
explore this paradigm further using three distinct remote sensing datasets. Previous work
on remote sensing datasets was limited to classification tasks, so we opted instead for
semantic segmentation tasks, as these tasks are generally more difficult and are relevant to
a broader range of remote sensing tasks. Furthermore, we seek to test this paradigm using a
less computationally expensive self-supervision method, SwAV [23]. This self-supervision
method has demonstrated state-of-the-art performance on the ImageNet classification
task and is easily implemented using smaller batch sizes and fewer GPUs, which makes
applying SwAV to new datasets cheap and accessible for increased reproducibility. The code
for this method is open-source, and pre-trained models are available through the Torch
model Hub. A more detailed description of how SwAV works can be found in Appendix A.

By testing the ability of SwAV pre-trained encoders to transfer to remote sensing
datasets, we hope to inform practitioners in the field of a more effective and computationally
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efficient method for boosting performance on target tasks. Thus, through our experiments,
we make the following contributions:

• We further demonstrate that the model pre-trained through self-supervision on Ima-
geNet outperforms the model pre-trained using the supervised ImageNet classification
task on three distinct remote sensing tasks, suggesting that practitioners should apply
transfer learning using self-supervised models as a standard practice.

• We evaluate the performance improvement of a model pre-trained using SwAV on
ImageNet, along with the extra improvement possible through further pre-training,
with different amounts of labeled training data available for fine-tuning. We found
that using of the self-supervised encoder is most beneficial in data-limited scenarios,
and as more labeled data are available for the target task, the performance gap between
encoders decreases.

• We show that, when using the SwAV model with pre-trained weights from ImageNet,
further pre-training of SwAV on the target dataset does provide additional accuracy
improvements, although often these improvements are minor. Our experiments
suggest that a larger unlabeled target dataset yields larger improvements during this
additional pre-training step.

The code used for our experiments is publicly available on GitHub, linked in the Data
Availability Statement.

2. Materials and Methods
2.1. Experimental Design

Each of our experiments consisted of two steps: (1) the pre-training of an encoder
on a specified dataset and (2) the fine-tuning of that encoder on a target task. Since our
experiments aimed to evaluate the impact of the pre-training pipeline on performance, we
developed five different pre-training pipelines, as outlined in Table 1. We then applied
these five pre-trained encoders to three target datasets so that we could compare relative
performance in each of the datasets.

Table 1. The first experiment used an encoder pre-trained using supervision on the ImageNet
classification challenge. The second encoder was pre-trained using SwAV on ImageNet, and the third
was pre-trained using SwAV on just the target data. For experiment four, we applied SwAV to the
target data using the weights initialized from being pre-trained on ImageNet. Lastly, for experiment
five, we took the initialized encoder using SwAV on ImageNet and then further applied SwAV using
all three datasets to determine whether the model benefited from seeing a larger quantity of remote
sensing data.

Experiment # Pre-Training Method
Stage 1 Pre-Training
Dataset (via Weight

Initialization)

Stage 2 Pre-Training
Dataset

1 Supervised ImageNet None
2 Self-supervised (SwAV) ImageNet None
3 Self-supervised (SwAV) None Target
4 Self-supervised (SwAV) ImageNet Target

5 Self-supervised (SwAV) ImageNet Building + Field
Delineation + Solar

For the first step of the experiment, pre-training consisted of either downloading the
weights of a model using Torch’s model hub or applying SwAV to a dataset or combination
of datasets. The supervised ImageNet and SwAV ImageNet encoders were available on
Torch’s model hub, making them easy to use in practice. We explain how to download these
model weights in Appendix B. When applying SwAV, we used the code written by the
SwAV authors and applied it to the target datasets, with one small change: we implemented
a flag to indicate whether or not to initialize the model using the SwAV ImageNet weights
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before applying it to the specified dataset. Further details on applying SwAV are provided
in Appendix C, with the scripts used to create each model available in this project’s GitHub.
Since both model weights were available for the ResNet-50 architecture, we used this
architecture as the encoder for all our experiments.

For the second step of our experiments, we attached the pre-trained ResNet-50 encoder
to a U-Net decoder, as visualized in Figure 1 [24,25]. This architecture was chosen because
all of the downstream tasks selected were semantic segmentation tasks and because the
ResNet encoder to U-Net decoder model has been shown to be remarkably successful
within the field of semantic segmentation in remote sensing [26].

Task fine-tuning was performed on an NVIDIA GeForce RTX 3080. A learning rate of
1e-3 with a batch size of 16 was used for all experiments using the Adam optimizer. The soft
IoU loss, based on the loss function used in [27], was used for all tasks. For each experiment,
we trained the model for 100 epochs. At each epoch, validation set performance was
calculated, and final model parameters were selected based on this validation performance.
For each task, the training dataset was restricted to 64, 128, 256, 512, and 1024 images. This
was so that we could evaluate the impact of pre-training under real-world conditions where
practitioners have a varying amount of target labels. Lastly, we performed the fine-tuning
step three times for each encoder, task, and dataset size combination so that we could
capture a mean and variance for each model.

2.2. Datasets

Three semantic segmentation tasks were selected in the domain of remote sensing.
These tasks consisted of a building segmentation task, a field delineation task, and a solar
photovoltaic array segmentation task. These tasks were chosen because the datasets were
sufficiently distinct from one another, which would allow any conclusions to generalize
beyond looking at any one task alone. Additionally, semantic segmentation is more
challenging than scene classification, meaning that our results might generalize better to
other tasks. Table 2 details the datasets, the training and test sizes, the image sizes, and the
task type.

The training and test datasets were mutually exclusive for each of the datasets.
The training dataset was divided into subsets of 64, 128, 256, 512, and 1024 images so
that target task performance could be evaluated using a varying labeled dataset size.
The same test set was used for each of the models learned so that performance could be
comparatively evaluated. Apart from the smaller training datasets used for fine-tuning,
the number of images used for self-supervised pre-training was unrestricted so that all
unlabeled data could be used. This extra unlabeled data reflect conditions likely to be
found by practitioners, as unlabeled data might be abundant and labeled data scarce.

Table 2. The three semantic segmentation datasets used for our experiments. The training size varies
from 1572 for the farm parcel delineation dataset to 75,020 for the Inria aerial image labeling dataset,
allowing us to study the effect of training dataset size. The images either come in size 224 × 224 or as
5000 × 5000 Sentinel-2 tiles that we retile to get 224 × 224 tiles.

Dataset Train Set Size Validation Set Size Image Size Task Type

Inria Aerial Image Labeling 75,020 1024 5000 × 5000
(retiled to 224 × 224)

Semantic segmentation
(pixelwise labeling)

Solar Photovoltaic Array Detection 28,245 1024 5000 × 5000
(retiled to 224 × 224)

Semantic segmentation
(scarce object detection)

Farm Parcel Delineation 1572 198 224 × 224 Semantic segmentation
(boundaries delineation)
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2.2.1. Building Segmentation

The INRIA building segmentation challenge provides a dataset with several sets of
images, where each set corresponds to a specific city. For each city, masks are provided
that outline buildings in the images [28]. For our experiments, we only used the dataset for
Austin, Texas, with the training/validation split done according to the recommendations
from the referenced paper. Again, the data were re-tiled to 224 by 224 pixels for use in our
experiments. The whole training data were used for the self-supervision step, consisting of
75,020 images.

2.2.2. Solar Photovoltaic Array Detection

The solar photovoltaic dataset, further described in [29], provides high resolution
(0.3 m/px) satellite imagery of several cities in California with labeled solar arrays. This
task serves as an example of scarce object detection within semantic segmentation, in which
the object is not seen in every image. However, the object itself is relatively trivial to select
when it does appear in the image.

For our experiments, the images were downloaded and split into training and test
sets, using an 80/20 split. Since the images were 5000 by 5000 pixels, the images in each
set were re-tiled to be 224 by 224 pixels for the ResNet-50 pipeline. That is, we took the
original images and divided them into chunks of 224 by 224 images for simpler input
into the ResNet-50, which takes this size by default. For self-supervision, we used the
entire training dataset (without labels) resulting from the re-tiling, which consisted of
28,245 images. To get the smaller training sets for the fine-tuning step, we randomly
sampled 64, 128, 256, 512, and 1024 images from the training dataset.

2.2.3. Field Delineation

The field delineation dataset, introduced in [30], uses Sentinel-2 satellite imagery of
size 224 × 224 pixels at a 10m resolution. This dataset consists of boundaries of farm
parcels in France, with the option to configure the mask as the boundary or as the parcels
themselves. For our experiments, we used the more challenging task of predicting the
boundaries, and we randomly selected 64, 128, 256, 512, and 1024 images from the training
set for model training. We used the validation dataset provided by the dataset authors to
evaluate performance.

The total size of the training set is 1572 images, all of which were used for self-
supervision. This smaller dataset serves as a useful example for illustrating the lower
performance of self-supervision when trained using a smaller dataset.

3. Results

The results of our experiments are summarized in Figure 2, in which the pixel IoU
for each target task is plotted as a function of the fine-tuning dataset size, with each of
the pre-training paradigms shown as a separate line. The general ranking, from worst
performing to best performing, tends to be SwAV trained on the target data, then the
supervised encoder, SwAV trained on ImageNet, then SwAV initialized on ImageNet with
in-domain data.
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Figure 2. Pixel IoU plotted as a function of the number of labeled training samples used in fine-tuning,
with results separated out by task.
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3.1. Representations from Self-Supervision on Imagenet Transfer Better to New Tasks Than
Supervised Representations

We demonstrate that empirically, a pre-training strategy that uses SwAV on the Im-
ageNet dataset results in an encoder that transfers better to remote sensing tasks than
supervised training on labeled data. The average performance boost resulting from using
self-supervision is visualized in Figure 3. The difference is always positive, demonstrating
the gains from self-supervision. The difference in performance appears to diminish with a
larger set of labeled data, suggesting that the self-supervised encoders may have similar
performance to the performance of supervised encoders with larger sets of labeled data.
However, we may consider the performance of the self-supervised encoder as an upper
bound on the performance of the supervised encoder, suggesting that the self-supervised
encoder should be preferred.

We also note that the magnitude of differences is far more significant in the building
and solar datasets than the difference found in the crop delineation dataset. Qualitatively,
the crop delineation task is a harder segmentation task. The satellite imagery is of much
lower resolution, and the borders of fields represent a visual feature that is much more
difficult for humans to predict than the border of a building or a solar panel on a roof.
Quantitatively, the magnitude of improvement from increasing the dataset sizes supports
this claim. The IoU difference between the worst and best-performing model is 0.07 in
the crop delineation dataset. In the solar dataset, the difference is 0.6, and in the building
dataset, the difference is 0.4. This indicates more room for improvement with the building
and solar datasets.

Figure 3. Pixel IoU increase resulting from using a self-supervised encoder on ImageNet over the
supervised ImageNet encoder.

3.2. Further Self-Supervised Pre-Training Is of Limited Benefit

While further pre-training beyond the initial pre-training on ImageNet does appear
to boost the performance of the model slightly, it is not clear under which conditions this
performance boost might be expected. Again, we summarize the performance boost using
the difference in pixel IoU in Figure 4.

Notably, the building dataset benefits the most from further pre-training, which
makes sense given the comparatively larger dataset size (the building dataset used for
pre-training has three times more data than the solar dataset and seventy times more data
than the crop delineation dataset). This benefit disappears when there is sufficient labeled
data, suggesting that having more labeled data is still more important than having more
unlabeled data.
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Figure 4. Pixel IoU increase resulting from further pre-training on the target dataset over the
supervised ImageNet encoder.

3.3. The Number of Prototypes Used in Additional Pre-Training Should Match the
Original Model’S

In the original SwAV paper [23], the authors trained SwAV using 3000 prototypes
and found that increasing that number leads to negligible performance gain, given the
computational cost. To analyze the impact of the number of clusters in further pre-training,
we used the original pre-trained SwAV model and further pre-trained it using 100, 1000,
3000, and 5000 prototypes on the INRIA building segmentation dataset. Our results in
Figure 5 show that the best-performing model is the one matching the number of prototypes
used during initial pre-training. The performance gap was most noticeable when using
a small data size. When using 1024 images during fine-tuning, the performance gap is
negligible. This suggests that better results are achieved when the number of prototypes
used in further pre-training matches the number of prototypes in the original model
(in this case, 3000 were used for ImageNet pre-training). Further research may explore
the impact of this relationship number by also varying the number of prototypes in the
original model and re-testing this hypothesis. Given the results, our recommendation for
practitioners under similar situations is to keep the same number of prototypes during
target-side pre-training.

Figure 5. Pixel IoU plotted against dataset size for the INRIA building segmentation task. Additional
pre-training using 3000 prototypes, matching the original model, outperforms all the other models
(green line), although the gap is hardly noticeable as the data size increases.
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4. Discussion

Our experiments demonstrate that the representation learned through self-supervision
on ImageNet transfers better to remote sensing applications than the representation learned
through the supervised ImageNet classification task. This conclusion has been suggested
in recent work [10,11,31]. However, to our knowledge, this work is the first to focus
explicitly on applying a hierarchical self-supervised pre-training paradigm to remote
sensing. Furthermore, we strengthen the conclusions of previous work by conducting
our experiments on semantic segmentation tasks. Our work suggests that the previous
standard of initializing a model using the supervised ImageNet encoder could be replaced
with the self-supervised encoder for better performance at no extra computational cost,
as these self-supervised encoders are freely available and easily accessible.

We additionally confirm the finding that self-supervised encoders pre-trained on
ImageNet tend to transfer particularly well, as discussed in [8]. This finding is counter-
intuitive, as one might expect that a pre-training strategy that uses remote sensing data
would result in better performance on remote sensing tasks. Previous work has explored
the underlying reasons why ImageNet tends to transfer so well, with one main finding
being that it has many classes and that each class is well represented with lots of data [32].
ImageNet has over 1 million images spread over 1000 classes, whereas our largest dataset
only has about 75,000 images and no explicit classes. Indeed, we suspect that the better
performance of SwAV on the building task can at least be partially attributed to its larger
dataset size. We suggest that future work should continue to compare the performance
of the self-supervised ImageNet encoder to self-supervised encoders trained on remote
sensing datasets to continue the search for a domain-specific general encoder.

Furthermore, our work confirms that additional pre-training on the target data, initial-
ized using SwAV pre-training on ImageNet, improves performance, as suggested in [22].
We emphasize that our proposed paradigm is novel from these past works in that we sug-
gest initialization using SwAV on ImageNet (which takes no extra computational effort than
initialization using supervised ImageNet weights) and optional further pre-training using
SwAV on the unlabeled target data (which avoids additional data collection). Furthermore,
our work focuses on performance within the domain of remote sensing.

We additionally find that, in the case of SwAV, the initialization with ImageNet self-
supervised weights prevented model collapse when applying SwAV to the target data.
As the original SwAV paper discussed, mode collapse may sometimes occur during training,
in which all images are assigned to the same cluster (or prototype). This occurred on the
crop delineation dataset when not initialized using ImageNet weights but did not occur
otherwise. To fix this problem in our experiments, we adjusted the hyperparameters
following the suggestions made by Caron et al. in the code repository on GitHub [23].

One limitation of our experiment was the fine-tuning of SwAV hyperparameters
to work better with remote sensing data. Specifically, we suspect that the multi-crop
augmentation strategy might not be optimal for remote sensing imagery. This augmentation
strategy applies two rounds of crops to the 224 by 224 pixels images, then re-scales the
augmented images to be 224 by 224 pixels. Because remote sensing images often comprise
multiple objects of interest, as opposed to natural imagery, which usually contains one
subject, we suspect that the multi-crop strategy may not always be cropped in such a way
to capture related objects. As such, the resulting cluster assignments would be expected to
be far away. If the target imagery is high resolution and the dataset is full of spatially close
objects, then this multi-crop strategy would make sense, as is the case with the building
dataset. Because a building is likely to be a large structure captured in multiple crops,
the cluster assignments would capture similar features of that building. This would not be
the case with the solar dataset, in which solar arrays are sparsely populated throughout the
dataset, and the images contain a mix of suburban and rural areas.

Future work may address these limitations and improve overall performance. For ex-
ample, continued optimization of the SwAV hyperparameters and network configuration
optimal for transfer learning to remote sensing tasks may demonstrate further performance



Remote Sens. 2022, 14, 5500 11 of 14

gains. While we used a convolutional neural network backbone, an alternative, the vision
transformer (ViT) backbone, has been found to explicitly encode spatial information when
trained using self-supervision, which may result in an improved ability to perform transfer
learning [33].

Other training datasets may also yield performance improvements including pre-
training based on the more diverse ImageNet-21K dataset [34]. Alternatively, since our
results demonstrate that in some cases, further pre-training on remote sensing data does
result in boosted performance, this suggests that a general remote sensing encoder might
exist. We believe that the creation of a large, curated remote sensing dataset for training
such an encoder, may enable the more rapid development of high-performance remote
sensing models.

5. Conclusions

This paper presents a new pre-training paradigm that combines the benefits of domain
adaptive pre-training and hierarchical self-supervised pre-training [11,22]. In this new
paradigm, the encoder is always initialized to the self-supervised SwAV-ImageNet weights.
SwAV is then applied to the target dataset to further pre-train using self-supervised learning,
which requires no labeled data. Once the pre-training steps are complete, we fine-tune the
model using a small number of labeled examples. Across all of our experiments, we show
that the self-supervised ImageNet weights consistently transfer better (i.e., yield improved
performance) than a supervised ImageNet model for remote sensing tasks. Our proposed
transfer learning strategy should provide practitioners with an easy method for achieving
better model performance using transfer learning: initialize models with self-supervised
weights. Lastly, we show that this benefit mainly depends on labeled and unlabeled dataset
sizes. If unlabeled data are abundant, then further performance gains can be made through
the additional application of SwAV on the target dataset. As the amount of labeled data
grows, however, then the performance gap between paradigms decreases.

In summary, our key recommendation is that computer vision practitioners in remote
sensing should initialize deep neural networks through self-supervised pre-training rather
than supervised pre-training. This approach can be taken to achieve generally equal or
greater performance on the target task without increasing training time, code complexity,
or cost.
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Appendix A. More Details on SwAV

SwAV stands for “Swapping Assignments between multiple Views of the same image”,
which hints at how the method works [23]. First multiple data augmentations are randomly
applied to an input image at training time to produce multiple views of that image. These
data augmentations start with a multi-crop strategy, in which the image is cropped to
produce two smaller images, then each of those smaller images is further cropped into
three images, for a total of 6 views of each image. Each of these multiple views of the input
image then has horizontal flipping or Gaussian blur applied to augment the image further.

Following data augmentation, each view (i.e., small image crop) is fed through the
ResNet-50 encoder to produce a feature representation of that image. This feature rep-
resentation is used to define a cluster assignment (also called a prototype in the paper).
The distance between cluster assignments between views is then used as the loss function
to be minimized. In effect, this loss function encourages the model to assign the same
cluster to each view of the same image, which directs the model to learn features that the
views have in common during the training process.

The number of clusters is a hyper-parameter defined at model initialization (prior to
any pre-training). However, in practice, the number of clusters should be much greater
than the number of natural classes in the dataset so that sub-classes within each class
may be learned (even if they are not explicit). For example, ImageNet might contain a
class “automobile”, and we want to ensure that variability within this class is captured, so
sub-classes would be sedan, SUV, truck, et cetera. In the original paper, the authors trained
their model on ImageNet (which has 1000 classes) using 3000 prototypes.

Appendix B. Initializing a Model for Transfer Learning

The Torch model Hub (accessible at https://pytorch.org/hub/, accessed on 30 Septem-
ber 2022) is a repository for downloading and publishing deep learning models. Given the
popularity of the ResNet-50 architecture, there are plenty of pre-trained model weights to
choose from that can be loaded to initialize this architecture. The original authors of the
SwAV paper published the model weights for their ResNet-50 model that achieved the
best performance with 3000 prototypes, and this is the model we used for our experiments.
This model can be loaded through the Torch model hub by loading the ResNet-50 with
address facebookresearch/swav:main). Before the loaded model weights can be applied
to a U-Net architecture, two modifications to the model architecture were needed. First,
the model loaded through the Torch Hub comes with a final, fully connected layer. This
layer is not used in our architecture, so these weights were discarded. Second, because we
used a U-Net decoder, intermediate layer outputs were required from the encoder. We
defined a custom version of the ResNet-50 in our GitHub repository that returned these
intermediate layers during the forward call. We direct the reader to our GitHub repository
to see how these requirements were implemented (https://github.com/zcalhoun/ssrs,
accessed on 30 September 2022).

Appendix C. Further Details on Applying SwAV

For the most part, we copied the SwAV hyperparameters used in the original paper to
build the final model. The specific hyperparameters can be seen in the scripts found in our
forked version of the SwAV repository (https://github.com/zcalhoun/swav, accessed on
30 September 2022). Of note is that we used 3000 prototypes for each of our experiments for
consistency. Additionally, we ran SwAV for 800 epochs for each of the encoders generated
in our experiments, following the epochs used in the original paper. We also applied the
multi-crop strategy using 160-by-160 pixel crops, then 96 by 96 pixel crops. This was done
because our input data were already cropped to 224-by-224 pixels, and thus initial cropping
of 224-by-224 would not be effective. Lastly, we ran our experiments using 8 GPUs at a
time with batch sizes of 128, to give an effective batch size of 1024.

https://pytorch.org/hub/
https://github.com/zcalhoun/ssrs
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