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Abstract: Magnetization vector inversion has been developed since it can increase inversion accuracy
due to the unknown magnetization direction caused by remanence. However, the three components of
total magnetizations vector are simultaneously inverted and then synthesized into the magnetization
magnitude and direction, which increases the inherent non-uniqueness of the inversion. The positions
of the three components of the magnetization vector are originally consistent. If there is a lack of
constraints between them during the inversion process, they may be misaligned, resulting in a large
deviation between the synthesized vector model and the ground truth. To address this issue and
at the same time increase the accuracy of the edges of the inversion models, this paper proposes
a magnetization vector inversion scheme with model and its gradients’” constraints by sparse Lp
norm functions based on the amplitude of the three components of the magnetization vector instead
of a single component to improve the accuracy of the inversion result. To evaluate the inversion
accuracy performance, an improved evaluation index is also proposed in this paper, which can better
evaluate the accuracy of the shape, position and magnetization amplitude of the inversion model. The
proposed inversion method can recover the models with higher accuracy compared with traditional
methods, indicated by the inverted model and the evaluation indexes. Simulation results based on
the open-source SIMPEG software and inversion on actual measured Galinge iron ore deposit (China)
data verified the effectiveness and advantages of the proposed method.

Keywords: magnetization vector inversion; sparse Lp constraint; remanent magnetization;
evaluation index

1. Introduction

Magnetic vector inversion (MVI) can be applied to obtain the subsurface three-
dimensional distribution including shape, position and magnetization magnitude and direc-
tion of magnetic targets with remanence, such as geological and mineral exploration [1-3]
in geophysics. This also has important practical value in the study of magnetic distribu-
tion in spacecraft [4], accurate identification of important military targets [5], detection
of underground ferromagnetic pipeline [6,7], detection of unexploded ordnance [8], and
nondestructive testing [9]. Especially for the discrimination of dangerous objects, such as
unexploded bombs, the shape of the high-precision 3D reconstruction can assist in accurate
identification and reduce the risk of damage [10]. The accuracy of the inversion model is
crucial for discriminating the shape of the inversion model.

Magnetic anomaly forward modeling, or magnetic response, is the basis for inversion.
Many scholars have studied the forward modeling of gravity and magnetic anomalies of
different models and given calculation formulas. Sharma [11] developed a rapid computa-
tion of magnetic anomalies due to a body of any shape with the aid of formulae derived
for the field caused by a finite rectangular prism. Plouff [12] presented a forward calcu-
lation method for the gravitational and magnetic anomalies of a prism with polygonal
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cross-section and applied it to terrain correction. Guo et al. [13] deduced the theoretical
expression of the total magnetic anomaly of the cuboid and its gradient field without
analytical singularity in the upper half space. Ren et al. [14] computed accurate magnetic
anomalies caused by realistic magnetic 3D structures.

The traditional scalar susceptibility inversion method assumes there is no remanent
magnetization in the magnetic target and only considers the induced magnetization which
is generally known. However, the total magnetization is the vector addition of the in-
duced and remanent magnetizations. Remanent magnetization may cause the overall
magnetization direction to be non-parallel to the geomagnetic field, leading to misleading
interpretations [15]. There are many studies on how to deal with remanence [16-22], but
magnetization vector inversion has more advantages for dealing with complex cases such
as remanent magnetization in the object, which is more in line with the requirements of
actual measurement.

Magnetization vector inversion divides the underground magnetization into three
components for inversion to solve the problem of unknown magnetization direction caused
by remanent magnetization. This method can invert magnetization amplitude and direction
at the same time, but the unknown parameters to solve are three times that of the traditional
scalar susceptibility inversion method [23], which in turn increases the nonuniqueness
inherent in the inversion. This requires adding more constraints to the objective function.

Many studies on magnetization vector inversion have already been conducted. Parker
et al. attempted to construct a three-component magnetization model using the semi-norm
minimization procedure [24]. Wang et al. [25] developed a magnetization vector tomog-
raphy imaging, but the method works for homogeneous objects separated by the overall
magnetization direction. Lelievre and Oldenburg [26] presented a comprehensive study of
magnetization vector inversion in Cartesian and spherical coordinates systems, respectively.
In the Cartesian coordinate equation, the overall magnetization direction is divided into
a component parallel and two components perpendicular to the geomagnetic field, con-
straining the three components of magnetization respectively. In the spherical coordinate
equation, the three components of magnetization need to be converted into the magnitude
and direction (i.e., declination and inclination) of magnetization for constraining inversion.
Liu et al. [27] proposed a step-by-step magnetization vector inversion method. Firstly,
the magnitude of the total magnetization was calculated from the magnetic amplitude
data, and then the magnetization inclination and declination were calculated by means
of correlation coefficient method or conjugate gradient inversion. In order to reduce the
non-uniqueness of MVI, studies try to add more constraints to the objective function of
optimization. Zhu et al. [28] added Gramian function to the objective function to constrain
the three components. Results show that it can play a certain role, but the inversion results
still need to be improved. Li and Sun [29] introduced a fuzzy c-means clustering algorithm
in the objective function to constrain the magnetization direction. When the number of
clusters is known, it can play a good role in constraining, otherwise, the inversion results
will be affected. Fourier et al. [30,31] developed the magnetization vector inversion in
the Cartesian and the spherical coordinate system, adding the oriented sparse Lp norm
constraint to the objective function to obtain a model with a clearer boundary, especially
for restoration of blocky models. The inversion results in the spherical coordinate system
are better than those in the Cartesian coordinate system. But the former involves nonlinear
transformation, which increases the complexity of the calculation and requires the well-
developed initial model for inversion. Ghalehnoee et al. [32] further studied the algorithm
in the Cartesian coordinate system and changed the sparse constraint function from the
amplitude of a single component to the modulus of three components, increasing their
mutual restraint. However, the results show that the corner information of the inverted
block model is lost.

Currently, the accuracy of the 3D MVI in Cartesian coordinate system is not high
enough. The reason is that the inversion problem itself has multiple solutions. When
inverting three-component magnetization vector models at the same time, inconsistencies
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between the positions of them are prone to occur. Especially for the accuracy of the edge in
MVI, the current method is still powerless. In addition, the evaluation of inversion results
is usually judged by human subjectivity or by mean square error (MSE) [33] or root mean
square error (RMSE) [34], which cannot reflect the inversion effect of edges. There is a lack
of evaluation metrics that can evaluate the edge of the inversion model.

The purpose of this study is to improve the accuracy of the inversion. Under the
regularized inversion framework, in the Cartesian coordinate system, we propose a mag-
netization vector inversion method with model and its gradient constraints by the sparse
Lp norm based on the magnitude of the three-component magnetization models. The
sparse Lp norm is useful for producing sparse solutions, easily getting models with sharp
boundaries [30,35]. Constraining the three-component magnetization models with their
amplitude will increase the constraints between them, and it is easy to obtain a vector
model with higher accuracy. Sensitivity weighting [31] is used to counteract the decay of
the magnetic signal with distance, and upper and lower bound constraints are used to
further reduce the non-uniqueness of the inversion.

For the evaluation of inversion results, inspired by model shape similarity evaluation
in computer vision, the intersection over union (IOU) index combining with the existing
magnitude similarity measure RMSE, we propose a new evaluation index that can compre-
hensively evaluate the similarity of the shape, position and magnetization magnitude of
the inversion model with the ground truth.

The proposed MVI method and the inversion evaluation index are validated by two
synthetic examples. The results show that the inversion effects of the method proposed in
this paper are superior to that of the traditional magnetization vector inversion method
and the method in the previous study [32]. The inversion accuracy has been significantly
improved, which can be indicated by the inverted model and evaluation indexes. In
addition, the actual measured magnetic data of the Galinge iron ore deposit (China) are
inverted using the proposed method in this paper. The inversion results are consistent with
the real geological information. Since this method can obtain a high-precision model, it can
be applied to large-scale mineral exploration and it has great potential for fields with high
precision requirements, such as unexploded ordnance detection.

2. Methods
2.1. Amplitude and Gradient Constraints Based Magnetization Vector Inversion

In the inversion process, the model region is generally divided into orthogonal 3D
grid magnetization cells with constant magnetic susceptibility. When total magnetization

in jth cell can be expressed as
— — —

M; = x;Ho + Mjrem (1)

where Kj and 1?4 jrem are the magnetic susceptibility and remanent magnetization of jth cell,
respectively, and Hj is the earth’s magnetic field.

The magnetic field B at point r; resulting from a volume V containing magnetization
in continuous form can be formulated by [15]

1
|r—1j|

B(rj) =V / M(r)-V i @)
where V is a differential operator.
The N data d”" = [dy,...,dy]" predicted by discrete model can be calculated as

d”’¢ = Fm (©)]
where m =[xy, ..., K] T is the model vector containing the magnetic susceptibility in each
cell. Fis an N-by-M forward operator which maps the contribution of M number of prisms,
each contributing the response measured over N observed locations. The response of each
small prism can refer to the paper [31].
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The noise contained in the data is assumed to be independent and zero-mean Gaussian.

Different from the scalar susceptibility-based inversion, magnetization vector inver-
sion divides the vector magnetization into three components for simultaneous inversion.
The forward formula [31] in discrete system is as follows:

Ky
d’"® = Fm = [F,F.F,] | %, (4)
Kw
d”¢ € RN F,, Fy, Fyy € RNVM m = [1,5001,] T € R?M (5)

where d”” is predicted data. F,, F, and F,, are forward operators in three Cartesian
directions respectively. Model m describes magnetization along the three Cartesian direc-
tions, which is three times the number of unknown parameters compared to the scalar
susceptibility-based assumption. Specifically, d”"* = By, By, B:] Tis the three-component
magnetic field data. F is a dense 3 by 3 symmetric matrix, described as follows:

1o Fex F xy Fyz
F=_"(Fy Fy Fp ©6)
s
Fyz Yz 2z

where yg is the magnetic permeability of free space. For the specific calculation formula of
the F tensor, please refer to the article [31].

The inversion problem is formulated as an optimization problem where the Tikhonov
objective function can be formulated as [36]

$(m) = ¢ + Bpm subject to g < Py* 7)

where & is data misfit term, measuring the L2 norm of the data calculated by the subsurface
model through forward formula and the observed data. @;* is the target misfit and S is the
regularization parameter. @y, is the regularization term where prior information can be
integrated. Further @, can be described as [31]

N d}’” o dqbs 2
9a=1)_ () = W, (Fm —a) ||, ®

i—1 0i

where d°”® is observed data. W, is the data weighting matrix generally determined by the
inverse of the variance o of the data, describing the noise level of the data. A more detailed
@ formula can be described as [31]

Om = &sps + ax Py + “y¢y +oazp, =
2 9)
Z acr ||wCrVCrDCr (m - m7€f> HZ/

C=1U,0,W '=5,X,},Z

where J;, @y, @y, I, are the constraint functions of the models and their gradients in the
three Cartesian directions and &, ayx, ay, &, are the corresponding coefficients, respectively.
The magnetization vector inversion applies the same constrained functions as above for the
three-component models. Functions V and D are volumes of integration and discrete dif-
ference operators. The W is a combination of two weighting functions including sensitivity
weighting function and the sparse constraint weighting function. The formula is as follows

W = WpW; (10)
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where Wp acts like a depth weighting function [36] for counteracting the decay of the
magnetic data with depth. Refer to the paper [31] for details.

. w 12
Wp = dlag[ max(w)] 1 (11)
=N 2 44
== (12)
w; 2,
_ 9F[m]
)= %m (13)

W, is the sparse Lp norm constraint function, which is approximated by the Lawson
norm [37] as shown in Equations (14) and (15). The sparsity of the model is controlled by
setting the p value. A large p value, such as p = 2, tends to penalize the larger amplitude of
the model during the iterative inversion, resulting in a smoother solution. Smaller p values,
such as 0, 1 or a number in between, tend to penalize the part of the model with smaller
amplitude during the iterative inversion solution so that many solutions are zero, resulting
in sparse solutions and a model with clear boundaries [38].

m?
Z|mi|p%2(m2+€l2)1— (14)
1 1 .
1
1
We=) ———7 (15)
Y (2 e2)

If no constraints are added between the three-component models inverted, due to
the non-uniqueness of the inversion, the problem of inconsistency in the position and
shape of the three-component models is easy to occur. The detection of objects with high
edge sharpness requirements will be affected. The degree of sparsity or sharpness of the
boundaries of the model is controlled by the sparsity norm function. Applying the sparse
norm function to the model gradients can lead to sharper edges.

In this paper, to further improve the inversion accuracy, specifically to get a model
with good edge accuracy, the models and their gradients are constrained by a magnitude
based sparse Lp norm function. It can not only further increase the constraints between
the three-component models but also can obtain a model with sharp edges. The magni-
tude and sparse Lp constraint functions for the three-component models are shown in
Equations (16) and (17). The new objective function with sparse constraints on the models
and their gradients is shown in Equation (18).

Wia=) = (16)
! (m%mp + £2>
1
Mamp = (m%, + g + m%,) ’ (17)
2
¢ = [Wq(Fm—d”) || +
2 (18)

2
B Y L aglWeWi 4Ve D, (m—my)
C=1L,0,W I'=5,X,Y,Z

Overall, the inversion process is as follows:

As shown in Figure 1, the first is initialization and calculation. Divide the subsurface
into discrete 10 m x 10 m x 10 m squares and represent them in the form of magnetization.
The reference model m,, is selected according to the prior information, and in this paper,
it is zero. Parameters as, ax, ay, &z, ps, Px, Py, P need to be set manually. Then, calculate



Remote Sens. 2022, 14, 5497

6 of 19

the forward operator F,, F;, Fy,. difference operator Dy, Dy, D;, data weighting matrix
W,;. The predicted data is calculated according to the forward operator in Equation (4).
The sensitivity weighting matrix is calculated according to Equation (11). The magnitudes
of the three-component models were calculated according to Equation (17). After that,
Equation (16) is used to calculate the sparse Lp constraint matrix based on amplitude
constraints. Set the initial regularization parameter {3 from eigenvalues of data misfit terms
and model minimum terms.

Require:
d°’, m,.; = 0, m = [m,, m,, m,]” € R** F,, F,,F,,D,,D,.D,
As, Ay; Ay, Az, Dss Px> Dys Pz» Wa
Repeat:
1. Calculate: Wp, Wy, 4, B, dP"¢, myp,,
2. Minimize the objective function ®
Vd = 0— i =[m,, m,, m,,]” € R3M
Until:
Maximum iteration or min (Vm) is reached.

Figure 1. Inversion process based on the method proposed in this paper.

Next is the optimization process. Minimize the objective function Equation (18) using

IRLS [30] and Gauss-Newton method to get a new model value m. Update 3 according
to the ration of data misfit value and the target value, when the former is greater than
the latter, 3 increases, otherwise, 3 decreases. At each iteration, upper and lower bounds
constraints on the magnetic susceptibility are introduced. When the physical property falls
outside the bounds, it will be returned to the nearest value. Then, returning to the second
step, the loop stops when the maximum iteration or the minimum change of the model
is reached.

2.2. Evaluation Index of Inversion

At present, the evaluation of inversion results is usually judged by human subjectivity
or RMSE, where RMSE describes the distance between the inversion model and the ground
truth. The smaller the distance, the higher the similarity and the inversion accuracy.
However, human subjective judgment is not precise and is prone to errors. RMSE cannot
evaluate shape similarity well, resulting in insufficient or inaccurate evaluation.

In this paper, the intersection over union (IOU) is introduced to evaluate the similarity
of the inverted 3D models. IOU is usually employed to evaluate the similarity of two-
dimensional or three-dimensional models in computer vision [39,40]. The larger the value,
the better the position and shape similarity. When the two models are completely coincident,
the IOU is the largest and the value is 1. Considering the IOU can only describe the shape
and position similarity of the models but cannot evaluate the magnitude similarity, this
paper combines RMSE and IOU to describe the magnitude, position and shape similarity
between the inversion model and the ground truth.

We can define the similarity variable as S. The intersection over union can be formu-
lated as [41]

Vv TSIV > e) « I(V)}
vuv S {I(I(Vi>e) +1(Vy)}

Siou (19)
where I (-) is the indicator function, V; is the predicted value, V; is the ground truth, and ¢
is the threshold. Sjoy; is the ratio of the overlap and union of two models. That is to say,
the more the two models overlap, the greater the value of S;oy.

The equation of SgysE is

(20)
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Truth model slice of X

where 1f; is predicted data and m; is the ground truth.

The evaluation index combining Sirr and Srpse, proposed in this paper, abbreviated
as S IRE is
Siou

—_— 21
SRMSE + € @

SIRE =
where ¢ is a small value to prevent the denominator from being zero. The larger the value
of Sirg, the better the inversion effect.

3. Inversion of Synthetic Data

To illustrate the effectiveness of the proposed algorithm, synthetic examples of two
type targets will be presented in this section. The first target shown in the figure in
Section 3.2 is a cuboid with the length, width, height, depth of 60 m, 40 m, and 40 m,
30 m, respectively. Its magnetic permeability is 0.05 SI. The amplitude, inclination and
declination of the geomagnetic field are 50,000 nT, 90°, and 0°, respectively. The total
magnetization inclination and declination of the model are 30° and 30°, respectively, and
the height of the observation point from the ground is 10 m. The second target shown
in the figure in Section 3.2 contains two bulk targets of the same size with magnetization
inclination and declination of 30°, 30° and 60°, —45°, respectively. The observation data
of the two examples are 20 x 20 grid data with 10 m intervals. The type of observational
data used is three-component magnetic data with 5% of the maximum amplitude noise.
The observation height is 10 m above the ground. All simulations are based on SimPEG
software [42].

3.1. Comparison of Evaluation Effect of Srmse, Srou and Sire

The evaluation effects of Sgarse, Siou and Syre are illustrated by the following two
examples. The ground truth of these two examples is a cuboid model as shown in Figures
2a—c and 3a—c. The observation height is 10 m above the ground. The evaluation index
comprehensively focuses on the shape, position and magnetization amplitude of the in-
version result. If the above three quantities are accurate, the magnetization direction will
generally be accurate.

0.05 Inversion model (Cartesian) slice of X Inversion model (Cartesian) slice of X

-50 0 50
x (m)

Truth model slice of Y

0.025 0.020

0.020

0.015

I
z(m)

0.0152

N

0.010
0.010

0.005 0.005

-50 s 100 s 0000 TS 100 -50 0 50 100 50 0-000
X (m)

Inversion model (Cartesian) slice of Y

50 0 50
X (m)

Truth model slice of Z

0
X (m)

0.025 0.020

0.020

0.015
2

0.010

2 (m)

0.0152

0.010

0.005 D065

0.000 0.000

-100 =50 0 50 100
X (m) x (m)

Inversion model (Cartesian) slice of Z Inversion model (Cartesian) slice of Z
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00152 E »
- 0.010
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0.005 0005

0.00 ~100 0.000  ~100 0.000

150 =150 -100 -50 0 150
X (m) X (m)

100 150

Figure 2. Slices in three Cartesian directions of the ground truth (a-c) and inverted model 1 (d—f) and
model 2 (g-i) under different regularization and constraint parameters, respectively.
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Figure 3. Slices in three Cartesian directions of the ground truth (a—c), inverted model 3 (d—f) and

model 4 (g-i) under different data types of TMI and three-component magnetic field data, respectively.

The two inversion results of the first example are obtained under different regulariza-
tion and constraint parameters. The regularization parameters ps, px, py, p- of model 1 are
0,2,2,2, respectively, and the model minimum term of objective function is constrained by
the magnitude of the three components of magnetization. The regularization parameters ps,
Px, Py, Pz of model 2 are 0, 1, 1, 1, respectively, and no amplitude constraints are imposed.
The coefficients of each regularization term as, ay, ay, - of two examples are both 1.0, 1.0,
1.0, 1.0, respectively. The data types are all three-component magnetic field data of Bx, By,
and Bz. Figure 2a—c are slices of the ground truth, (d—f) and (g-i) are slices of the inversion
model 1 and model 2, respectively. The evaluation indexes of the inversion results are
shown in Table 1. Observed by eyes, the inversion results of model 2 is closer to the ground
truth due to the similarity in shape. It can also be reflected by the Sjoy; value. The Sjoy
value of model 2 is higher than that of model 1. However, the Sgprsg of model 1 is smaller
than that of model 2, which implies that magnetization magnitude of the inversion model
11is closer to the ground truth than model 2. This is contrary to the subjective judgment of
human beings. Taking these two factors into consideration, the S;grg of model 2 is greater
than that of model 1, reflecting that the inversion result of model 2 is better than that of
model 1, which is consistent with the human evaluation. This shows that only using SgrasE

as an evaluation index may lead to wrong judgments in some case.

Table 1. Evaluation indexes of inversion results.

Index Model 1 Model 2 Model 3 Model 4
Siou 0.277 0.315 1.000 1.000
SRMSE 0.352 0.378 0.160 0.052
SIRE 0.789 0.834 6.255 19.108

The two inversion results of the second example are obtained by inversion of different
data types. The inversion of model 3 uses total magnetization (TMI) data while model 4
uses three-component magnetic field data of Bx, By, Bz. The regularization parameters p;,
Px, Py, Pz of the two models are 0, 0.8, 0.8, 0. The coefficients of each regularization term
s, Ky, ty, &z are 1.0, 0.6, 0.6, 0.2, and amplitude constraints are imposed. Figure 3a—c are
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slices of the ground truth, (d—f) and (g—i) are slices of the inversion model 3 and model
4, respectively. The shapes of the two inversion models are consistent with the ground
truth, and the Sjpy; values in Table 1 are also the maximum value of 1.0. At this time, it is
impossible to judge which effect is better just by Sjo;. However, the Sgpsg of the model
4 is smaller than that of model 3, indicating that the amplitude of the inversion model is
closer to the ground truth and the inversion effect of model 4 is better. The Sjrr considering
the shape and magnetization amplitude of model 4 is much higher than that of model 3,
and it is finally judged that the inversion result of model 4 is better than that of model 3.

Combining the above two examples, there are cases where Sgpsp and Sjoyy cannot
evaluate the inversion effect alone. The S;rr index proposed in this paper can address
these two drawbacks.

3.2. Comparison of Different Inversion Methods for Single Model

In this subsection, inversion results of three inversion methods, such as the consistency
of the inversion model, the accuracy of the magnetization direction and the performance
indicators proposed in this paper, are compared. Method 1 uses a traditional MVI whose
objective function consists of model minimization and model gradient minimization [30]
without the amplitude constraints of the three components. The objective function of
method 2 only includes model minimization with the amplitude constraints of the three-
component models without model gradients’ constraints. The objective function of method
3 includes model minimization and model gradient minimization with the amplitude
constraints of the three-component models. The above three methods are all based on the
sparse regularization framework.

The Lp norms and corresponding coefficient settings of the model minimization
and model gradient minimization functions in the three Cartesian directions of the three
methods are shown in the Table 2. The objective function constrained by the L0 norm tends
to obtain a more compact target. The larger is the norm, the more likely it is to obtain a
smooth model. The smaller the value of the coefficient of the function, the stronger the
constraint of the corresponding function.

Table 2. Regularization term coefficients and p values for the sparsity norms.

Methods N Xy ay 0 Ps Py py P,
Method 1 1.0 0.6 0.6 0.2 0 0.8 0.8 0
Method 2 1.0 0 0 0 1.0 - - -
Method 3 1.0 0.6 0.6 0.2 0 0.8 0.8 0

A schematic diagram of single model, its slices of magnetization vector model along
the X, Y, and Z directions are shown in Figure 4. The three-component observed data pro-
duced by this model are shown in Figure 5. The slices in Y direction of the three-component
models inverted by method 1 shown in Figure 6a—c demonstrates that the positions of the
three-component models are seriously inconsistent, which results in incoherent synthe-
sized magnetization vector model shown in Figure 7a—c. Magnetization inclination and
declination of the inversion model are shown in Figure 8a, which are far from the ground
truth indicated by the red star.
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Figure 4. (a) Schematic diagram of a single model; Slices of magnetization vector model along the X
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Figure 6. Y slices of the three-component magnetization models inverted by method 1 (a—c), method
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Figure 8. Polar scatter plots showing inverted magnetic inclination (radial) and declination (axial) of
method 1 (a), method 2 (b) and method 3 (c¢) and the ground truth (red star).

The inversion results of method 2 shown in Figure 6d—f present that the position
consistency of the three components has been improved compared to that of method 1.
This shows that adding Lp sparsity norm constraints based on amplitude can improve
the consistency of the model. However, the edge of the inversion model is not sharp,
resulting in poor similarity with the ground truth, that is, poor accuracy. The synthetic
magnetization vector model shown in Figure 7d—f has the same conclusion. Inverted
inclination and declination shown in Figure 8b have a wide distribution range, indicating
that there is still inconsistency between the three components.

The inversion results of method 3 presented in Figure 6g—i show that the positions
of the three-component models are consistent, results in a synthesized model illustrated
in Figure 7g—i with good consistency and integrity. Inverted inclination and declination
presented in Figure 8c are consistent with the ground truth To sum up, the method proposed
in this paper has the best inversion effect.

Table 3 shows the scores of the three inversion results by different evaluation indexes,
including Sioy, Srmse and Sirg proposed in this paper. For the inversion results of the
three methods, the conclusions of the three evaluation indexes are the same, that is, method
3 is the best. This is consistent with the analysis of the inversion model above. In addition,
the evaluation index Sjrg proposed in this paper has a more obvious discriminating effect
compared with the other two because it has a larger span.

Table 3. Evaluation indexes of inversion results.

Index Method 1 Method 2 Method 3
Siou 0.503 0.698 1.000
SRMSE 0.336 0.323 0.052
SIRE 1.497 2.159 19.108

3.3. Comparison of Different Inversion Methods for Dual Models

To compare the three inversion methods in a more complex situation, the second
example designs two models with inconsistent magnetization directions, as shown in
Figure 8a. The magnetization declinations of two model are 30° and —45°, and magnetiza-
tion inclinations are 30° and 60°, respectively. The Lp norms and corresponding coefficient
settings of the model minimization and model gradients” minimization functions in the
three Cartesian directions of the three methods are shown in the Table 4.
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Table 4. Regularization term coefficients and p values for the sparsity norms.
Methods o oy ay o Ps Py py P,
Method 1 1.0 0.6 0.6 0.6 0 0.7 0.8 0
Method 2 1.0 0 0 0 1.0 - - -
Method 3 1.0 0.6 0.6 0.6 0 0.7 0.8 0

Figure 9 shows the schematic diagram of dual models, slices of magnetization vector
dual models along the X, Y, and Z directions. The three-component observed data produced
by dual models are shown in Figure 10. The magnetization vector models inverted by the
three methods are shown in Figure 11, presenting that the inversion accuracy of method 1
is the worst, while method 3 is the best. The position and shape consistency of the model
inverted by method 1 is poor. The boundary of the model inverted by method 2 is not
sharp, while the model inverted by method 3 is almost completely consistent with the
ground truth. This conclusion can also be shown by the polar scatter plots of magnetization
inclinations and declinations as shown in Figure 12. The magnetization inclination and
declination obtained by method 3 and proposed in this paper are the closest to the ground
truth values (red stars) and have the highest accuracy.
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Figure 9. (a) Schematic diagram of dual models; slices of magnetization vector dual models along
the X (b), Y (c), and Z (d) directions.
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Figure 10. Three-component observation data of Bx (a), By (b), Bz (c) of the dual model.
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Figure 11. Slices along the X, Y, and Z directions of the magnetization vector models inverted by
method 1 (a—c), method 2 (d—f), and method 3 (g-i), respectively.
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Figure 12. Polar scatter plots showing inverted magnetic inclination (radial) and declination (axial)
of method 1 (a), method 2 (b) and method 3 (c) and the ground truth (red stars).

Table 5 shows the scores of the three inversion results of dual models by S;ou, Srmse
and Sjrg. It shows that the inversion effect by the method proposed in this paper is best.
The conclusions drawn from the evaluation indexes are consistent with the results observed
by the inversion model.
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Table 5. Evaluation indexes of inversion results.

Index Method 1 Method 2 Method 3
Siou 0.281 0.414 1.000
SRMSE 0.482 0.455 0.029
SIRE 0.584 0.909 34.232

4. Inversion of Real Data

In this study, real measured data of Galinge iron ore deposit located at the center
of Qimantage metallogenic belt in Qinghai province (NW China) is used to verify the
effectiveness of proposed method. For detailed information about the Galinge iron ore
deposit, please refer to the papers [17].

The observation range of Galinge iron ore deposit is 1827 m in the east-west direction
with a total of 100 points, and 1589.7 m in the north-south direction with a total of 87
points. Underground is divided into prismatic grids with sides of 30 m. The observation
height is about 2 m, and the local geomagnetic inclination and declination are 50° and —4°,
respectively. The norms of model minimization and model gradient minimization in x, y,
and z directions are 0, 0.8, 0.8 and 0, respectively, and the corresponding coefficients of the
corresponding functions are 1.0, 1.0, 1.0, and 1.0, respectively.

The inversion was performed for 35 iterations. The inverted results of slices along the
X,Y, Z planes of inverted Galinge iron ore deposit are shown in the Figures 13-16. They
present that the shape, location, and magnitude of the inversion are similar to that in those
papers [17,32].

Inversion model (Cartesian) of slice X

0.4

250 500 750 1000 1250 1500 1750

Figure 13. Slices along the X planes of inverted Galinge iron ore deposit.

Inversion model (Cartesian) of slice Y

0.4

250 500 750 1000 1250 1500 1750
X (m)

Figure 14. Slices along the Y planes of inverted Galinge iron ore deposit.
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Figure 15. Slices along the Z planes of inverted Galinge iron ore deposit.
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Figure 16. Slices along the Z planes of inverted Galinge iron ore deposit.

Figure 17 shows contour plots of the predicted data by the inverted model, observed
data and residual data. The predicted data is very close to the observed data, with a residual
of around 30 nT.
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Figure 17. Contour plots of predicted data (a), observed data (b) and residual data (c).
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Figure 18 shows the polar scatter plots of inverted magnetization inclination and
declination with large, medium, and small cutoff values. When a large cutoff value is
applied, the average value of inverted magnetization declination is 25°, as shown by
the regions with large magnetization amplitudes in Figure 11. There are two distinct
magnetization inclinations, around 30° and 45°. When the cutoff value becomes smaller,
the magnetization direction of more regions can be displayed.

Polar scatter plot Polar scatter plot

1804 1809

210% 210°

270° 270°

Figure 18. Polar scatter plots showing inverted magnetic inclination (radial) and declination (axial)
with large (a), medium (b), and small (c) cutoff values and the result of Liu [17] in red star.

5. Conclusions

In this study, a magnetization vector inversion method where the model and its three
Cartesian gradients are simultaneously constrained by the sparse Lp norm based on the
magnitude of the three-component models is proposed. This method can obtain a more
consistent and sharper model by adjusting the norm and the corresponding coefficient of the
sparse constraints. In addition, to better evaluate the inversion effect, this paper proposes
a new evaluation index Sjrg that combines Sgpse and Sjoyy, which solves the problem
that Sgarse and Sjoy alone cannot accurately evaluate the inversion results. According
to synthetic examples of single and dual models, the methods proposed in this paper
have a superior inversion accuracy, which can be reflected by the inversion model and the
evaluation indexes. This method solves the inconsistency of the inversion in the Cartesian
coordinate system and obtains inversion models with good edge accuracy. The model
inverted from the measured Galinge iron ore deposit (China) data is consistent with the
real geological information. This method has great potential to be applied to scenarios that
require high inversion accuracy, such as the inversion of small objects, but the inversion of
deeper objects still needs further research.
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