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Abstract: Facing the energy transition, solar energy, whether thermal or electric, is currently one of the
most viable alternatives, due to its technological maturity and its ease of operation and maintenance
compared to other renewable energies. However, before its implementation, it is necessary to assess
its potential. Remote sensing represents one of the low-cost solutions for solar energy assessment.
Nevertheless, cloud cover is a main problem when validating the data. This study identifies satellite
GHI profiles that cannot be used in energy production simulation. The validation is performed
using parametric and non-parametric statistical tests. From the profile identified as invalid for
simulation purposes, a site-adaptation methodology is proposed based on statistical learning using
the machine learning algorithms “Best subset selection” and “Forward Stepwise Selection”. Linear
and non-linear heuristic models are also proposed. The final AS7 model is selected through RMSE,
MBE and adjusted R2 indicators and is valid for any sky condition. The results show an increase in
R2 from 0.607 to 0.876.

Keywords: solar resource assessment; cloudiness empirical model; site-adaptation; remote sensing

1. Introduction

The current effects of climate change place the world in a difficult and undeniable
position. The consequences of the use of fossil fuels and their impact on the ecosystem
are leading to a no-return scenario. Due to the increasing trend in the use of fossil fuels in
the production of electrical and thermal energy, and the post-pandemic global economic
recovery, a significant increase in energy consumption and greenhouse gas emissions is
foreseen [1]. Faced with this reality, it is necessary to take timely and, in some cases,
emerging actions to mitigate environmental impact. The development of new technologies,
a higher penetration of renewable energies, and alternative fuels represent some of these
actions. The fight against climate change, following its global impact and disruption of the
world’s economies, has prompted projects for sustainable development. More and more
countries invest in climate-friendly systemic solutions. The commitments made at the last
COP26 climate summit [2] indicated actions to gradually reduce carbon emissions by 45%
within a decade. Additionally, energy plans are to be drawn up by 2022 instead of 2025.

Therefore, the energy transition towards decarbonization must consider the use of
clean energy sources and more efficient technologies, and provide a resilient, independent,
secure, and reliable energy supply model in response to climate uncertainty. Greater
penetration of non-conventional renewable energies requires that electricity generation
projects be located in areas of high energy potential; thus, it is crucial to assess surface
renewable resources.
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The meteorological variable estimations, such as wind speed and direction, ambient
temperature, humidity, atmospheric pressure, and solar irradiance, are the determinations
necessary for all phases of a renewable energy project. The planning phase allows the
determination of the long-term variability of the resource and forecast energy production
through simulation. The operation phase allows the observation of the system performance
and the identification of problems. In the absence of weather stations, which require
high investment, operation and maintenance costs, there are alternative tools capable of
evaluating several meteorological variables.

One of the most critical meteorological variables is solar irradiance. To obtain infor-
mation regarding solar irradiance, radiometric sensors are necessary, but in their absence,
low-cost alternatives such as meteorological yearbooks, solar atlases or data from remote
sensors are available. Geostationary remote sensors, such as the GOES satellite [3], capture
reflectivity images of the Earth’s surface through its different bands, and through the
application of a physical solar model, quantify the solar resource present in the satellite
coverage. They are currently capable of providing spatio-temporal resolutions of up to 1 km
in 30 min profiles. As technological development advances, satellite resolution is becoming
higher and prediction models more accurate. However, one of the main issues with solar
irradiance estimation is cloud cover [4]. The absorption and scattering effect present in the
atmospheric components, attenuates the flux of extraterrestrial radiation from the sun. For
this reason, predictive models are used. The input data to these models can be obtained
from nearby stations and satellite estimates. According to [5], empirical, semi-empirical,
and physical models can be distinguished in a deterministic way. The empirical model
uses both, surface measurements and satellite estimates taken long term, to generate a
regression model between these two variables. Semi-empirical models use a cloudiness
parameter in the visible satellite channels, which is fitted to a global horizontal irradiance
(GHI) clear-sky model, so corrections can be added for altitude and atmospheric turbidity.
To obtain the irradiance at the Earth’s surface, physical models are used to retrieve from
satellites the properties of clouds and aerosols through the multiple channels of their bands;
the information is calculated in a radiative transfer model.

GHI in minute or hourly profiles is necessary for the forecast simulation of energy
production, as computer programs require fine resolution input data. In [6], the authors
proposed a probabilistic methodology to obtain the irradiance for day-ahead prediction,
using a stochastic differential equation (SDE) model. The usefulness of the model suggests
its application in very short time intervals, especially when it comes to energy markets,
micro-grids or energy storage dispatch systems, where predictions should be as close to
reality as possible.

Nowadays, several studies are focused on improving irradiance from satellite-derived
or re-analysis. As mentioned above, aerosols, cloudiness and temporal variability represent
the main issues to validate satellite imagery data before its application. Satellite images
can quantify the solar resource through models that describe the aerosols present in the
atmosphere and the water vapor within the clouds. The modeled irradiance is often inaccu-
rate. For this reason, different techniques called “site-adaptation” have been developed to
reduce the biases of satellite-derived.

1.1. State of the Art

Site-adaptation may be performed by applying one of three main procedures based
on regression methods, quantile mapping or a combination of both. The work carried out
in [7–9] details the techniques and methodologies used for site-adaptation. This requires
at least one year of high-quality surface measurements. Solar geometry variables such as
solar elevation angle or zenith angle are widely used as predictors of the new correction
model. In addition, atmospheric variables such as aerosol optical depth [10], Linke turbidity
index [11] or air mass could be added. Due to different atmospheric components, terrain
and site meteorological conditions, there is no universal model to reduce satellite radiation
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errors at a specific location. Therefore, it is necessary to develop studies that evaluate
different types of climates and sites.

In [12] an inventory of approaches for site-adaptation of satellite-based DNI and GHI
optimize SolarGIS data through the rescaling method and fitting cumulative distribution
function. The results show that if the differences are larger (the bias is greater than 4%
for the GHI and 7% for the DNI) the use of rescaling or cumulative distribution function
methods can introduce strong inconsistencies. The authors in [13] evaluate the accuracy
of modeled solar irradiance series, their adaptation to specific sites and their long-term
behavior for GHI and DNI. Greater inaccuracy of DNI in relation to GHI of modeled data
with respect to surface measurements. The biases found in the initial DNI model (on
average 6%, up to 15%) are drastically reduced by applying side-adaptation techniques, up
to 15%), both based on linear regression (~2%) and statistical learning (~0%).

The use of Model Output Statistics (MOS) and Kalman filter in [14] to improve GHI
modeled by Weather and Research Forecasting (WRF), reduced the systematic model
error for all sky conditions, in comparison with surface measurements in Paraguay. The
comparison of bias with respect to the raw model provides an improvement for summer
from 68 to −1.1 W m−2 (27% to −1.5%) and spring from 60 to 0.8 W m−2 (29% to 0.3%),
which presents the seasons with the most systematic model errors. RMSE for summer was
from 207 to 169 W m−2 (71% to 61%) and spring was from 198 to 175 W m−2 (75% to 68%).

The technique of Orthogonal Distance Regression (ODR) [15] is used to evaluate GHI
and reduce the bias from the tool of re-analysis COSMO-REA6 in ten European regions.
The results show strong improvement in MAE from 83.2 to 59.4 W m−2 for Sede Boqer
and become slightly worse (97.9–105.2 W m−2) for Lerwick. Furthermore, in [16] a method
for site-adaptation in Colombia through machine learning and solar radiation prediction
using deep learning is proposed. As a consequence, a better performance for the database
was improved through machine learning techniques over the commonly used statistical
methods for site-adaptation. The performance of the models depends on meteorological
data, which have different behavior depending on the location.

Pre-processing technique through Cloud Index Method (CIM) and pos-processing
through linear regression correction are carried out in [17]. The study evaluates the perfor-
mance of ESRA and McClear models in locations out of satellite coverage. Site-adaptation
of Pampa Húmeda is applied to the Heliostat-4 GHI estimates. The results of the site-
adapted McClear model provide the best performance with the lowest rRMSD and KSI at
all locations. However, the McClear model in all sky conditions is sensitive to changes in
the atmosphere such as cloudiness.

In [18], to validate GHI from the Copernicus Atmosphere Monitoring Service (CAMS),
supervised machine learning algorithms are applied to site-adapt the CAMS in Patras,
Greece. Techniques such as Fully Connected Neural Networks, Extreme Gradient Boosting
machines (XGBoost), Random Forests (RF), Elastic Net regression (GLMNET), Multivariate
Adaptive Regression Splines (MARS) and Support Vector Regression (SVR) are used. The re-
sults show significant systematic and dispersion errors exist for all sky (MBE = 22.8 W m−2,
RMSE = 74 W m−2) and cloudy (MBE = 48.2 W m−2, RMSE = 106.5 W m−2) conditions.
Site-adaptation reduces MBE and RMSE at various Solar Zenith Angles (SZAs) and Cloud
Fraction (CF) cases. The lowest RMSE values are revealed for the tree-based Machine
Learning Algorithms (MLAs). The improvement in RMSE extends between 37.1 W m−2

and −9.3 W m−2.
Site-adaptation studies have been carried out in different areas and climates world-

wide. In most cases, different methodologies have improved satellite-derived and re-
analysis data. The literature highlights deterministic correction models ranging from
pre-processing of changes in data distribution and simple linear regressions, to the ad-
vanced application of artificial intelligence in probabilistic techniques. The latter have not
necessarily had the best results to reduce dispersion or bias. On the other hand, the effects
on climate and topography variation present in coastal areas near the Andean region [19]
have not yet been evaluated. Thus, future work may be of significant interest to cover these
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regions. Therefore, as site adaptation techniques continue to progress and satellite-derived
validation achieves greater coverage throughout the world, regional adaptation models
could be possible.

1.2. Ecuadorian Context as a Case Study

Ecuador is a nation whose state policy has included a change in the energy matrix, and
whose current electricity generation is based on thermal and hydroelectric power plants,
with low penetration of non-conventional renewable sources [20]. For the assessment
of renewable resources, there is a dispersed and weak meteorological station network
and access to its information is restricted. On the other hand, alternative information
tools include: the Solar Atlas [21], Wind Atlas [22], and Bioenergy Atlas [23], to cite a few
examples. Although these tools allow a general visualization of the resource potential
available in the Ecuadorian territory, it is not possible to obtain fine resolution profiles.
Thus, Geographic Information Systems (GIS) may be an interesting alternative. However,
before using data from these sources, it is necessary to validate them.

For many years, the tools available for estimating renewable resources in Ecuador have
not been updated in line with the improvements in the resolution of remote sensors. In [24],
the methodology used for evaluating non-conventional renewable resources in Ecuador
through GIS is detailed, highlighting that the areas with the most suitable solar radiation
potential correspond to the locations in the Andes Mountains and the Galapagos Islands.
However, the contribution generated has not been validated with surface measurements.
Likewise, in [25] the updating of the GHI of the Solar Atlas of Ecuador is proposed. The
information collected from the National Solar Radiation Database (NSRDB) of the United
States, through the National Renewable Energy Laboratory (NREL), is validated and
contrasted with surface measurements from three meteorological networks in the country.
The results obtained show that 91% of a total of 54 stations analyzed can only use monthly
information from satellites reliably, compared to 12% that can only use hourly profiles.

Solar irradiance data from the NREL database may be used for simulation purposes
in Ecuador, due to the spatial and temporal coverage of its geostationary satellites. A
physical solar model (PSM) [5] has been developed by NREL, which, through remote
sensing, collects information regarding cloud properties, atmospheric profiles, aerosol
properties, and surface and snow albedo, to produce a fast all-sky radiation model for solar
application purposes (FARMS). However, the high cloud cover present on the Ecuadorian
coast generates serious estimation problems in the model, due to absorption and multiple
scattering within the clouds. Therefore, before using NREL data, it is essential to identify
areas of high cloudiness index for further site-adaptation.

Table 1 summarizes information retrieved from 23 meteorological stations of the
National Institute of Meteorology and Hydrology (INHAMI) [26], located at the highest
altitude sites in the three Ecuadorian regions, plus the island region, where the Galápagos
Islands are located. The sign criteria for latitude and longitude were negative south and
west, respectively. Additionally, they were positive for north and east. The coastal region
has an average cloud cover of about 84%, whereas the provinces with the lowest average
cloud cover are Esmeraldas and Manabí. The Sierra region has an average cloud cover of
72%, with the provinces of Bolivar and Pichincha having the lowest cloud cover. The east
region has an average of 73%, with Morona Santiago and Sucumbíos being the provinces
with the lowest cloud cover. Finally, the Galapagos Islands have an average cloud cover of
75% for Santa Cruz Island. Therefore, the region with the highest percentage of cloud cover
is the Ecuadorian coast, followed by the island, east and Sierra regions, respectively.
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Table 1. Annual average of cloudiness index in various stations in Ecuador.

Region Station Province Latitude Longitude Altitude (m) Cloudiness%

Coastal Zaruma El Oro −3.6988 −79.6113 1100 87.5
Quininde(Conv.Madres Lauritas) Esmeraldas 0.3194 −79.4333 115 75.0
Guayaquil U.Estatal (Radio Sonda Guayas −2.2000 −79.8833 6 87.5

Milagro (Ingenio Valdez) Guayas −2.1155 −79.5991 13 87.5
Pichilingue Los Ríos −1.1000 −79.4616 120 87.5

Julcuy Manabi −1.4800 −80.6322 263 75.0
Santa Elena-Universidad Santa Elena −2.23333 −80.9083 13 87.5

Puerto Ila Santo Domingo −0.4761 −79.3388 319 87.5
Sierra Chanlud Azuay −2.6766 −79.0313 3336 87.5

Laguacoto Bolivar −1.6144 −78.9983 2622 62.5
Cañar Cañar −2.5519 −78.9452 3083 75.0

El Angel Carchi 0.6263 −77.9438 3000 75.0
Totorillas Chimborazo −2.0150 −78.7222 3210 75.0

Cotopaxi-Clirsen Cotopaxi −0.6233 −78.5813 3510 87.5
La Argelia-Loja Loja −4.0363 −79.2011 2160 75.0
Illiniza-Bigroses Pichincha −0.6227 −78.6594 3461 50.0

Calamaca Convenio Inamhi Hcpt Tungurahua −1.2761 −78.8188 3402 62.5
East Macas San Isidro-Pns Morona Santiag −2.2102 −78.1613 1110 50.0

Papallacta Napo −0.3650 −78.1447 3150 87.5
San Jose De Payamino Orellana −0.5038 −77.3175 345 75.0

Lumbaqui Sucumbios 0.0405 −77.3338 580 62.5
Yanzatza Zamora Chinchi. −3.8375 −78.7502 830 87.5

Galapagos Islands Bellavista-isla s.cruz Galápagos −0.7000 −90.3666 194 75.0

The objective of this study is the validation and further site-adaptation of the NREL
GHI for high cloud cover locations but whose methodology may be adaptable to other
sites. The validation considered a parametric and non-parametric analysis of surface GHI
measurements against NREL satellite data. For this purpose, surface and satellite GHI data
were debugged. Two profiles were defined: hourly and monthly. Then, an exploratory
and comparative analysis of the two data sets was performed. The parametric and non-
parametric analysis identified the profile that could not be used due to its variability; and
site-adaptation based on solar geometry, experimental measurements and NREL variables
were developed. A cloud index hypothesis for different sky types was proposed. Linear
and non-linear regressions and the use of statistical learning were applied.

2. Materials and Methods

This article considered the generation of a model capable of reducing the NREL GHI
estimation errors in areas of high cloud cover, mainly on the coast regions close to uplands.
Figures 1 and 2 show the general and detailed scheme of the five development phases
considered. The first stage was based on verification and debugging of surface and satellite
GHI data. The goal was to remove outliers in each data set by comparing surface and
satellite GHI variables.

The second stage considered the application of parametric and non-parametric statis-
tics for hourly and monthly GHI profiles. This phase aimed to validate the satellite data
using surface measurements and the GHI profile which did not comply with the validation
tests was selected for further adjustment. In the third stage, the input variables to the ad-
justment model were defined. The objective in this phase was to select predictor variables,
based on the solar geometry and variables present in NREL, through Pearson’s correlation
analysis. The fourth stage involved the site-adaptation through the generation of the model
with the information obtained in the second and third stages and then the GHI profile
was divided into different sections according to the clearness index Kt. After this process,
linear, non-linear regressions and the application of statistical learning through “Best Subset
Selection” and “Forward Stepwise Selection” algorithms [27] were employed. Finally, the
fifth phase evaluated the best-fit model for any given sky condition using statistical tests.
The objective was to obtain a model capable of improving the correlation of the satellite
data with respect to the initial surface measurements. Each of the five phases is described
in detail in the following subsections.
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2.1. Surface Measurement Set Up

Experimental GHI data were retrieved from the meteorological station of the Univer-
sidad Estatal de Milagro (−2.150, −79.60) Ecuador, with a zenith angle at 12:00 of 72.77◦,
located on the coast at 13 m above sea level, with a humid tropical climate, where two
seasonal periods can be distinguished: one rainy and the other dry. The rainy season is from
December to May, while the dry season lasts from June to November. The annual average
values are as follows [26]: temperature 26 ◦C, rainfall 912 mm, relative humidity 77%, wind
speed 1.3 m s−1 in a SW direction. The average annual cloudiness index corresponds to a
value of 7 octas (87.5%).

The radiometric technology used was an LI-Cor Li 200S pyranometer with a measure-
ment uncertainty of ±3% and data records every 15 minutes. The NRG logger was used
for data acquisition and Symphonie Data Retriever (SDR) software for data processing [28].
Estimation of the satellite solar radiation, from the NREL database [3] was used for the
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same location as surface measurements with spatial and temporal resolution of 2 km and
30 min, respectively. The satellite GOES 17 position was −0.02, −75. The relative position
of the radiometric station to the satellite image pixel was −8.52 × 10−4, −3.995 × 10−3.
The software used for data filtering, statistical analysis, and modeling was R Studio 4.1.1
2021 version. Surface GHI measurements from 2015 were used due to the higher quality of
the data after an exploratory analysis from 2013 to 2017.

2.2. Data Processing

Once the surface and satellite GHI data were obtained, it was necessary to debug
them. The surface data flags considered anomalous were identified using the SDR tool.
The methodology proposed by the World Meteorological Organization (WMO) [29] was
used for their treatment, where the following sequential criteria were highlighted:

• Physically possible limits;
• Extremely rare limits;
• Compared to each other (direct and diffuse irradiance).

The procedure and calculation expressions for data conditioning were described in [30],
where the physically possible values corresponded to the following equation:

−4 Wm−2 < G < ε ∗ Isc ∗ 1.5 ∗ (cosθz)1.2 + 100 Wm−2 (1)

where G represents the global horizontal irradiance, ε is the terrestrial eccentricity, Isc is the
extraterrestrial radiation, and θz corresponds to the zenith angle.

Additionally, extremely rare limits, which exclude night hours from the analysis, were
identified by the following expression:

−2 Wm−2 < G < ε ∗ Isc ∗ 1.2 ∗ (cosθz)1.2 + 50 Wm−2 (2)

Since the radiometric station used as a base in this study does not have the instruments
to measure direct and diffuse irradiance, the sum of these variables has not been compared
with the global irradiance G.

Likewise, for the recovery of missing data, interpolation of the known measurements
at their upper and lower limits within the same data series was considered [31].

Once the debugging process was completed, for the surface and satellite GHI data
series, two profiles were disaggregated: an hourly and a monthly profile for each series.
For the monthly profile, the data set was grouped according to time as a set of average
daily values.

2.3. Parametric and Non-Parametric Satellite GHI Validation

Based on the hourly and monthly GHI profiles, a linear regression model was gen-
erated, whose dependent variable corresponded to the satellite GHI estimates, and the
independent variable was represented by the surface GHI measurements. In this study, the
parametric validation of linearity, analysis of medians, normality of residuals, the variance
of the residuals, and identification of influential points [32] were verified in the model.
The purpose of the application of these parameters was to identify the major differences
between the two: surface and satellite GHI data were compared. Table 2 summarizes the
parameters used, the tests performed, the scores, and the P values. Some of the parameters
considered required only a graphical analysis to understand their behavior.

Table 2. Model assumptions considered.

Parameter Test, Graph Score p-Value

Linearity
Analysis of medians

Scatterplot, correlation R
Boxplot, graph

>0.5
-

-
-

Normality KS, histograms, Q-Q plot - >0.05
The variance of the residuals Breusch Pagan - >0.05

Influential point Leverage, Cook´s distance ≥1 -



Remote Sens. 2022, 14, 5496 8 of 27

For the non-parametric validation of the hourly and monthly GHI series, statistical
indicators of dispersion, such as the RMSE and MBE, were considered. The KS test, as a
non-parametric indicator of model fit, was used to evaluate whether both data series come
from the same distribution [33]. The expressions (3), (4) and (5) were used to calculate these
indicators:

RMSE =

√√√√√ 1
n ∑n

i=1

(
xmpi − xs f i

)
1
n ∑n

i=1 xs f i
2

2

× 100 (3)

where n represents the number of observations, xmpi refers to the predictions of the I-
sth model element, and xsf i to the values of the I-sth term obtained with the surface
measurements.

The indicator of the Root Mean Squared Error was set as a percentage for easier
interpretation. Likewise, for the Mean Bias Error, the equation in (4) was used:

MBE =

1
n ∑n

i=1

(
xmpi − xs f i

)
1
n ∑n

i=1 xs f i
× 100 (4)

On the other hand, the KS-test statistic is a test that considers how close the probability
of a distribution drawn from a sample is to the probability of the reference distribution,
which in this case are the surface measurements. The KS-test uses the distance D as an
indicator, see Equation (5).

D = |(xsf i) − Fa(xmpi)| (5)

where F(xsf i) is the i-th term cumulative distribution function for surface GHI measure-
ments and the function F(xmpi) represents the cumulative distribution function of the I-sth
term in the model predictions.

2.4. Site-Adaptation, Definition of Input Parameters

The parametric and non-parametric validation allowed the identification of the GHI
profile that cannot be used for simulation purposes because of its high variability. From the
identified GHI profile, the input variables to the model were defined. This work considered
the solar geometry and NREL variables, which were chosen based on common graphical
patterns of relationship with the surface GHI and with each other. The shape patterns that
followed a linear or exponential trend were the clear sky model GHI, cloud type, sky cover
and sky temperature. Table 3 details the definition of the predictors considered and the
response variable, in this case, defined as the satellite GHI fit.

Table 3. Model predictors considered.

Variable Parameter Source Type

GHI Surface GHI Meteorological station Input
α Solar elevation angle Solar geometry Input
ψ Azimuth Solar geometry Input
Kt Kt Solar geometry Input

CSG Clearsky GHI NREL database Input
Ct Cloud type NREL database Input
Sc Sky cover NREL database Input
St Sky temperature NREL database Input

GHISat Satellite GHI NREL database Output

For the solar geometry variables, the model based on the clearness index Kt described
in [34] was considered, which estimates the GHI from surface measurements, and is
expressed as:

where,

0 ≤ Kt ≤ 1 Kt =
G
Io

(6)
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where the variable I0 corresponds to the extraterrestrial radiation [35], which is given by:

Io = Ics εcosθz (7)

where the term Ics refers to the solar constant; for this case, a value of 1367 W m−2 was
assumed [36]; ε corresponds to the eccentricity of the Earth’s orbit; and θz represents the
zenith angle, which was calculated as the angle complementary to the solar altitude (α),
from the horizontal plane of the observer.

The eccentricity of the Earth’s orbit was calculated by:

ε = 1 + 0.033 cos(2πJd/365.24) (8)

the variable Jd corresponds to the day of the year, also called Julian day, where Jd ∈ [1, 365].
Finally, the solar elevation angle (α) was obtained from [37].

Correlation Analysis

With the selected input variables, a Pearson correlation diagram was performed.
Figure 3a shows the level of association of the variables for the hourly profile and Figure 3b
shows the level of association for the monthly profile. The level of association is represented
by the color and the diameter of the circumference; the darker the blue, the higher the
direct association, and the darker the red, the higher the inverse association. The greater the
diameter of the circumference, the stronger the correlation. The information presented in
both profiles made it possible to identify significant differences and to discard variables with
low or no correlation. Thus, the greatest correlated predictor variables were identified to
combine them in linear regressions that gave rise to heuristic models. The most appropriate
variables were selected based on the criteria described in Section 2.5.1.
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2.5. Satellite GHI Fit Model Generation

With the input variables defined, a cloudiness hypothesis was made for different sky
conditions, as a function of the clearness index Kt; unlike what is proposed in [38], the data
series was split into four intervals: clear sky model (CSI), semi-clear sky (SCSI), cloudy sky
(DS), and all-sky conditions (AS). These intervals were derived from the analysis of the
density distribution and the empirical criteria of the authors of this paper, where values of
Kt > 0.7 were proposed for the first CSI section. For the second section, values between
0.5 < Kt < 0.7 were set for SCSI, and values of Kt < 0.5 were used in the DS model. Finally,
for AS, Kt was used within its full range of information. Figure 4 shows the distribution
of the Kt index for the hourly GHI profile. Furthermore, each Kt stretch was separated
into two data sets: training data and test data. The training data were randomly generated
and corresponded to 80% of the total stretch, while the test data corresponded to the
remaining 20%.
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2.5.1. Application of Linear, Non-Linear Regressions and Machine Learning

Once the best correlating variables and the Kt sections were segmented into training
and test data, different combinations of predictors were tested. The computer tool used
allowed the generation of several heuristic models to obtain the correction of the GHI
satellite model. Linear, non-linear and polynomial regressions were applied. The selection
criteria for the heuristic regression models were the F-statistic and the adjusted R2. The
F-statistic is a test that indicates the overall significance of the model. Models with a p-value
< 0.05 were considered valid. The adjusted R2 indicates the degree to which the predictor
or independent variables explain the dependent variable, in this case, the satellite GHI.
Adjusted R−2 > 0.5 was set for the model to be valid.

The application of statistical learning [39] using the machine learning algorithms
“Best Subset Selection” and “Forward Stepwise Selection” [27] was selected to generate
linear regression models. Unlike common linear models that use least squares regression,
both algorithms have been used due to the following criteria: (a) number of predictors
found, (b) cross-validation, which finds the optimal combination of predictors and avoids
model overfitting, and (c) computing efficiency. The “Best Subset Selection” algorithm was
selected to search for a model that uses an optimal number of predictor variables, without
generating overfitting, and setting the model, with the highest adjusted R2 as the iteration
parameter. “Best Subset Selection” evaluates all possible models that can be generated by
combining n predictor variables to select the best one. The sequential basis is as follows:
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1. A null model M0 with no predictors is generated.
2. Then, M1 models containing only one predictor are generated and the best one is

selected.
3. The previous process is repeated for models containing two variables and so on until

the n predictor variables are completed.
4. From among all the models (M0,M1,M2, . . . Mn), the best one is selected through cross

validation, which for this study will be the adjusted R2.

Likewise, the “Forward Stepwise Selection” algorithm used the iteration of the com-
binations of each of the predictor variables to choose the most efficient one, based on
cross-validation, it also considered the highest adjusted R2. The main difference with the
“Best Subset Selection” algorithm is its higher computational efficiency. The process of
searching for the best model from a null model M0 with no predictors is the same. Then,
a predictor is introduced and the best M1 is selected from the training errors. The same
process is repeated by increasing the number of predictors until the model Mn is reached.
The best model is chosen this time from the last model generated, built from Mn−1. Al-
though the Forward Step Selection algorithm does not evaluate all possible combinations;
its computational cost is lower.

2.6. Selection and Evaluation of the Optimal Model

The regression models generated with the training data (80%) was contrasted against
the test data (20%); therefore, the evaluation involved the comparison between the training
RMSE and MBE errors versus the test RMSE and MBE errors. The expressions for calculat-
ing these errors are defined above in Section 2.3 (3) and (4). Models with a high adjusted
R2, low training RMSE, and lower predictors were considered suitable. The selection of
the final optimal model, in addition to achieving the parameters defined above, was valid
for any sky condition, and considered the entire Kt amplitude. The application of the
correction model was performed verifying the increase in R2 with respect to the initial
satellite GHI estimates of the profile that did not comply with the validation process.

3. Results
3.1. Verification

One year of GHI data was retrieved from the weather station. The data were aggre-
gated into hourly profiles corresponding to the year 2015. Data for nighttime hours were
deleted. Filtering applied detected outliers that were recovered by linear interpolation and
which correspond to 6% of the total data. Thus, 30 values were not able to be interpolated
due to the presence of 3 gaps in 10 different days. With this procedure, 4350 high-quality
data were obtained. Analogous to the previous process, NREL outliers were identified
and recovered by linear interpolation. No gaps were found in this data set. The physically
possible NREL data were corrected, observing the relationship between the GHI and its
components, as a result of the addition of the direct radiation plus the diffuse radiation.
Then, 657 values were identified as not complying with the quality labels. Using the
necessary interpolations within the same data set, 4350 quality data were obtained. Finally,
hourly and monthly profiles were prepared before validation.

3.2. Validation

The parametric analysis of linearity for surface GHI versus satellite GHI is shown in
the scatterplots. Figure 5 shows the hourly profile and Figure 6 the monthly profile. For
the monthly profile, the data set was aggregated as monthly average daily data, which
did not consider nighttime hours. It can be seen that in both Figures 5 and 6, there is a
linear correlation. In the case of Figure 5, the highest data density was in the order of
125 W m−2, with a coefficient of determination R2 of 0.607. In the case of Figure 6, the
highest data concentration was around 350 W m−2, where the coefficient of determination
R2 increased to 0.905, indicating that the monthly aggregations presented a better fit to
the linear model compared to the hourly profile. The correlation output parameters of the



Remote Sens. 2022, 14, 5496 12 of 27

hourly profile were y = 1.02x + 93.63 and the output parameters of the monthly profile
were y = 1.2x + 35.2.
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It was also possible to assess linearity through a point plot between the predictions
of the GHI model versus the residuals. Figure 7 shows that while the volume of data in
Figure 7a is larger, it is more difficult to distinguish any pattern or orderly behavior of the
distributions in the hourly profile. Figure 7b shows a random distribution above and below
the neutral value and so the existence of linearity in the hourly profile is verified.
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GHI, respectively. The median value was 300 W m−2 for the surface and 400 W m−2 for the 
satellite. The value for the third quartile corresponded to a value of 450 W m−2 for the 
surface and 600 W m−2 for the satellite. Finally, the upper whisker reached 825 W m−2 for 
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Figure 7. Scatterplots of normality test for hourly vs. monthly GHI profiles. Plot (a) represents the
distribution of the predicted values versus residuals for the hourly profile. (b) shows the predicted
values versus residuals for the monthly profile.

The parametric analysis of the medians in the boxplot of Figure 8 shows the differences
in the hourly GHI profiles between surface and satellite data. The minimum values
represented in the lower whiskers presented slight differences, due to the filtering of the
series, in the order of 50 W m−2. The first quartile of the boxplot from the bottom whisker
to the box reached values between 180 W m−2 and 200 W m−2 for the surface and satellite
GHI, respectively. The median value was 300 W m−2 for the surface and 400 W m−2 for
the satellite. The value for the third quartile corresponded to a value of 450 W m−2 for the
surface and 600 W m−2 for the satellite. Finally, the upper whisker reached 825 W m−2 for
the surface with normal presence of outliers and 1030 W m−2 for the satellite data. It can
be noted that the satellite GHI overestimates the surface GHI for the Ecuadorian coastal
regions, in agreement with the results obtained in [24].
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Figure 9 presents the annual analysis between surface GHI measurements compared to
satellite GHI estimation. In the case of surface GHI, there was a greater variation throughout
the year, with medians between 250 W m−2 and 375 W m−2. In the case of satellite radiation,
the medians vary in the range of 300 W m−2 to 400 W m−2. The outlier values did not
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exceed 950 W m−2 and 1100 W m−2 for surface and satellite GHI, respectively. Throughout
the year, the irradiance measured from the surface as well as the irradiance estimated by
the satellite presented a homogeneous behavior because the data were obtained from the
equatorial zone. It can be seen that month by month, the behavior of the satellite GHI
continued to be overestimated.
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Figure 10 presents the monthly GHI profile between surface measurements and satel-
lite data. For the surface GHI, the variation in the medians was in the order of 340 W m−2

to 400 W m−2. For the satellite GHI, the variation in the medians was in the order of
420 W m−2 to 500 W m−2. In both GHI profiles, the absence of higher outliers can be
observed due to the aggregation of the data.
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For the normality analysis, Figure 11 presents the comparison of the hourly profile
distributions for the surface GHI data with the GHI data obtained from satellite images.
In both cases, the distributions presented asymmetry in their fitting curves, and did not
correspond to a normal distribution since the mean and median are not at the neutral point.
However, with a deeper analysis, it is possible to identify the temporal sectors, and then
perform a segmentation that contributes to the elimination of clusters, which causes the
shape of the distribution to deviate from the normal shape. This process is called Quantile
Mapping (QM). Although, this technique is out of the scope of this study.
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Figure 11. Histogram of frequency for hourly GHI profile. (a) Shows the irradiance distribution for
the surface measurements. (b) Shows how the irradiance of the satellite estimates is distributed.

Figure 12 shows the comparison of the distributions of the model residuals for hourly
and monthly GHI profiles. Figure 12a represents a leptokurtic kurtosis, while the monthly
distribution in Figure 12b evidences a right skewed distribution. Therefore, a normal
distribution in the residuals can be interpreted as suggesting the presence of a lower
number of outliers, which is in agreement with the debugging process of both data series
performed previously.
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Figure 12. Histogram of residuals frequency for hourly vs. monthly GHI profiles. (a) Shows the
irradiance distribution for the hourly profile. (b) Shows how the irradiance is distributed for the
monthly profile.

In [40], different types of normality tests, which are performed as a function of the
number of observations, and which evaluate the nature of the information are established.
The KS-test was chosen to determine the normality of the surface and satellite GHI distri-
butions because both the hourly and monthly profiles represent more than 50 observations
in each dataset. The tests performed considered a null hypothesis of normality H0 which
is accepted if the p-value is greater than 0.05. For the hourly surface and satellite profiles,
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the p-value was <2.2 × 10−16 for both cases. The KS-test for the monthly profiles showed a
p-value of 0.02 for the surface data and a p-value of 0.003 for the satellite data.

Figure 13 represents the quantile–quantile plot of the comparison between the hourly
analysis Figure 13a and the monthly analysis Figure 13b. The x-axis represents the theoreti-
cal survival probability of the data and the y-axis the empirical or sample probability of the
GHI data. The monthly profile of the blue points follows a normal distribution represented
by the red solid line, due to the smaller amount of aggregated data. Using this graphical
method, it is possible to determine whether the GHI data distribution is normal, in the case
where the blue points coincide with the red line. However, the values were misaligned
from the reference line, mainly at the extremes of both graphs, suggesting the presence of
tails in the distribution.
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Figure 13. Normal Q-Q Plot, comparison between hourly vs. monthly GHI profiles in [W m−2].
(a) Shows the probability of survival of the GHI data for the hourly profile, while (b) represents the
probability of survival of GHI for the monthly profile.

Another assumption corresponds to the homogeneity of variance of the residuals,
which was evaluated by applying the Breusch Pagan test. The null hypothesis, Ho, rec-
ognizes the existence of homoscedasticity, being true if the p-value is less than 5%. In the
case of the GHI hourly profile, the p-value was <2.22 × 10−16. On the other hand, in the
test carried out on the monthly GHI profile, a p-value of 0.87 was obtained. Figure 14a
shows the hourly GHI model profile and Figure 14b the monthly GHI profile. The red line
of the latter shows a more linear trend, where homoscedasticity is proved, corroborating
the result of the Breusch Pagan test.
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In the influential point analysis, the surface or satellite GHI data with large differences
in values (outliers) have a significant influence in the generation of a model. The leverage
effect affects the coefficients of the linear equation leading to prediction errors. For this
reason, it is necessary to identify the influential values of hourly and monthly GHI profiles.
In this study, Cook’s distance is considered an indicator of influence, being greater than
1 for those values that represent an effect on the model. Figures 15 and 16 represent
the observations with Cook’s distance, both for the hourly and monthly GHI profiles,
respectively. The number labels in Figure 15a,b indicate the position of the most influential
GHI data; however, it can be seen that on the scales, none of these values exceed 1, thus
demonstrating the correct data-filtering methodology was applied. In Figure 16a,b, none of
the points exceeded Cook’s geometric limit, which is just visible in the lower left corner.
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Figure 16. Cook’s distance of residuals versus leverage between hourly vs. monthly GHI pro-
files. (a) Shows the Cook’s distance for the hourly profile. (b) Shows the Cook’s distance for the
monthly profile.



Remote Sens. 2022, 14, 5496 18 of 27

The parametric analysis reveals that some of the tests cannot be used to validate the
hourly profile, because of the nature of the data and the greater variation in the hourly
satellite GHI profiles, attributed to the high cloudiness of the Ecuadorian coast. The non-
parametric analysis summarized in Table 4 represents the results obtained from the GHI
data series for the hourly and monthly profiles. While the coefficient of determination
R2 for the monthly profile increases with respect to the hourly profile, the model errors
RMSE and MBE also increase slightly, which, being positive, indicate an overestimation
for the satellite estimations. However, considering for the KS-test a null hypothesis Ho,
which contemplated normality between both data series, with a significance of 0.05, only
the monthly profile complied with this parameter.

Table 4. Non-parametric validation for hourly and monthly irradiance profiles.

Model R2 RMSE
%

MBE
%

KS-test
p-Value

Hourly 0.607 26.79 31.17 <0.0000001
Monthly 0.905 29.93 31.40 0.142

3.3. Site-Adaptation and Cloudiness Model

The results of the parametric and non-parametric validation identified the hourly
GHI profile as not valid for its application in simulation, because of its high temporal
variation. The site-adaptation was considered the split of the hourly profile into different
sections, corresponding to clear, semi-clear, and cloudy skies. It was found that for the CSI
model, there are only 1.29% of observations in cloud-free conditions. For the SCSI scenario,
18% and, for the DS model, 80.7%. This corroborates that the average cloudiness on the
Ecuadorian coast is above 80%, which may generate important estimation errors when
using satellite images.

The site-adaptation has given rise to the generation of different models, which range
from the empirical to the heuristic, considering the correlation parameters, and which
depend on the Kt section evaluated. Several combinations of predictor variables were
generated. The models with the index 1 correspond to all types of sky, and integrate the
eight variables selected. Models from index 2 to 5 belong to heuristic combinations based
on the best correlation. Index 6 uses second- and third-order non-linear models. Finally,
index 7 and 8 models use statistical learning. As a result, 31 models were obtained for
all sky conditions. Table 5 summarizes the parameters considered in the different models
obtained. The F-statistic denoted the validity of each one. Low RMSE values indicated
a good model fit. For the MBE, positive values denoted an overestimation of the model
while negative values indicated an underestimation of the model. For both RMSE and
MBE, random test samples were considered. A total of 31 models were generated. CSI
models had the highest adjusted R2. The best performers were the CSI 1, CSI 7 and CSI 8.
CSI 1 used all predictors, and CSI 7 and CSI 8 employed statistical learning. The lowest
performing models were CSI 4 and CSI 5. The best SCSI models were the SCSI 7, SCSI
8, SCSI 1 and SCSI 3, while the lowest performers were the SCSI 4 and SCSI 5. Note that
the SCSI 7 and SCSI 8 models in this case share the same equation and the same statistical
indicators. The DS 1, DS 7 and DS 8 models were the best performers, while the DS 4 and
DS 5 were the low performers. The best AS models were AS 1, AS 7 and AS 3 and the worst
performers were AS 4 and AS 5.

It is noticeable that non-linear models are not necessarily the most accurate. Addition-
ally, it can be noted that if a model has a higher adjusted R2, this does not mean that its
model errors and biases are lower. A greater number of predictors in a model denotes lower
errors because each will try to contribute to the response variable to predict its performance.
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Table 5. Summary of generated models for all sky conditions.

Model Equation R2 Adjust F Statistic P Value
RMSE
Testing

%

MBE
Testing

%

CSI 1
220.535 − 1.415GHI + 41.068α + 27.06ψ −
88.395Kt + 2.048CSG − 12.768Ct − 0.326Sc

+ 0.289St
0.889 38.88 9.21 × 10−14 32.45 9.16

CSI 2 235.119 − 1.251GHI − 114.444α −
158.174Kt + 2.105 CSG

0.884 73.21 3.18 × 10−16 32.25 10.74

CSI 3 148.71 − 1.022GHI + 1.727CSG − 13.641Ct 0.899 113.2 <2.2 × 10−16 30.1 10.13
CSI 4 480.79 + 734.07α − 678.06Kt 0.881 141.2 <2.2 × 10−16 38.65 14.3
CSI 5 516.66 + 741.42α + 19.24ψ - 767.38Kt 0.88 94.06 <2.2 × 10−16 38.55 13.32
CSI 6 380.28 + 1661.56α − 159.48α2 − 223.77α3 0.896 110.7 <2.2 × 10−16 32.12 10.06

CSI 7 139.243 − 1.469GHI + 28.40ψ + 2.143CSG
− 12.825Ct 0.901 87.41 <2.2 × 10−16 31.13 9.69

CSI 8 68.351 + 0.809CSG − 16.205Ct 0.894 161.2 <2.2 × 10−16 26.8 8.25

SCSI 1
57.413 + 0.419GHI + 275.76α − 1.298ψ −
20.17Kt + 0.218CSG − 27.118Ct − 0.107Sc

− 1.575St
0.824 309.9 <2.2 × 10−16 20.3 −0.448

SCSI 2 −104.617 + 0.397GHI + 229.291α +
127.25Kt + 0.294CSG

0.775 455.5 <2.2 × 10−16 23.87 −3.04

SCSI 3 27.481 + 0.346GHI + 0.611CSG − 27.249Ct 0.823 817 <2.2 × 10−16 19.56 −0.454
SCSI 4 −295.74 + 682.32α + 516.36Kt 0.766 863.2 <2.2 × 10−16 25.8 −2.861
SCSI 5 −297.125 + 678.274α − 2.981ψ + 528.261Kt 0.765 574.9 <2.2 × 10−16 25.78 −2.868
SCSI 6 550.397 + 5584.196α − 655.037α2 0.767 867.6 <2.2 × 10−16 23.96 −2.508

SCSI 7 23.474 + 0.386GHI + 275.9010α + 0.243CSG
− 27.452Ct 0.825 623.4 <2.2 × 10−16 20.33 −0.448

SCSI 8 23.474 + 0.386GHI + 275.9010α + 0.243CSG
− 27.452Ct 0.825 623.4 <2.2 × 10−16 20.33 −0.448

DS 1
157.89 + 1.302GHI − 85.187α − 0.839ψ −

369.4Kt + 0.175CSG − 19.147Ct + 0.098Sc −
0.7955St

0.631 504.1 <2.2 × 10−16 37.72 −0.131

DS 2 96.677+1.34.GHI − 75.772α − 332.604Kt +
0.128CSG

0.604 900 <2.2 × 10−16 39.65 0.057

DS 3 65.088 + 0.939GHI + 0.187CSG − 19.02Ct 0.627 1322 <2.2 × 10−16 37.7 −0.178
DS 4 −173.757 + 362.933α + 911.806Kt 0.548 1430 <2.2 × 10−16 41.12 −0.373
DS 5 −178.696 + 358.44α − 8.763ψ + 944.08Kt 0.552 967.9 <2.2 × 10−16 40.94 −0.12
DS 6 386.561 + 8448.735GHI − 476.519GHI2 0.589 1692 <2.2 × 10−16 40.82 0.275

DS 7 155.66 + 1.31GHI − 87.78α + 2.143Kt −
12.825Ct 0.631 806.7 <2.2 × 10−16 37.76 −0.149

DS 8 199.445 + 1.471GHI − 538.095Kt −
19.135Ct 0.63 1339 <2.2 × 10−16 37.76 −0.194

AS 1
142.8 + 0.991GHI + 43.85α - 2.76ψ −

268.629Kt + 0.121CSG − 23.007Ct + 0.013Sc
− 0.276St

0.697 840.3 <2.2 × 10−16 34.45 −0.527

AS 2 81.165 + 1.087GHI + 31.408α − 277.566Kt +
0.087CSG

0.662 1435 <2.2 × 10−16 35.54 −0.105

AS 3 52.665 + 0.715GHI + 0.3CSG − 23.127Ct 0.692 2195 <2.2 × 10−16 34.77 −0.515
AS 4 −185.903 + 452.876α + 664.281Kt 0.586 2073 <2.2 × 10−16 39.23 0.088
AS 5 −189.315 + 446.845α − 9.407ψ − 694.068Kt 0.59 1401 <2.2 × 10−16 39.15 0.243
AS 6 416.734 + 10468.523GHI − 1332.329GHI2 0.621 2398 <2.2 × 10−16 37.56 −0.283

AS 7 137.629 + 0.986GHI − 2.755ψ − 264.258Kt
+ 0.18CSG − 23.062Ct 0.697 1345 <2.2 × 10−16 34.46 −0.511

AS 8 168.98 + 1.236GHI − 487.002Kt 0.659 2825 <2.2 × 10−16 35.56 −0.511

Figure 17 shows the results of the application of the “Best Subset Selection” algorithm,
showing the number of variables as a function of the adjusted R2 for each of the Kt sections.
Note that it is not necessary to use the highest number of predictors to obtain the highest
coefficient of determination which allowed some flexibility in the model in terms of the
number of independent variables to used. For all models, the increase in adjusted R2 was
significant from the use of two predictors onwards. The CSI models achieved the highest
adjusted R2, followed by the SCSI models, the AS models and finally the DS models. A
higher cloudiness index of the model denoted a lower adjusted R2.
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40% for the AS, CSI and DS models, except the SCSI model, which remains similar to the 
training model. The error variances of the training data compared to the test data suggest 
a good response for all models, except for the CSI, which has a larger deviation for data 
that contain new observations which the model was not able to learn. 

Figure 17. Best subset selection algorithm of number of variables for all Kt sections. The number of
variables versus the adjusted R2 is shown in: (a) for the clear sky model CSI, (b) for the semi-clear
sky model SCSI, (c) cloudy sky model DSI and (d) all sky conditions model AS.

Figures 18 and 19 present the results of the model RMSE errors and MBE bias errors
of test samples for each sky type, including AS, which uses the entire Kt range. Figure 18,
represented by the testing RMSE model errors, increases in ranges from 25% to just over
40% for the AS, CSI and DS models, except the SCSI model, which remains similar to the
training model. The error variances of the training data compared to the test data suggest a
good response for all models, except for the CSI, which has a larger deviation for data that
contain new observations which the model was not able to learn.
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with the training errors is below 2%. When applying the AS 7 model, a new fit dataset for 
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determination R2 increased from 0.607 to 0.876 for the hourly GHI profile. Figure 20 shows 
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Figure 18. RMSE for testing models.

Figure 19 details each of the testing models generated, with their MBE bias errors.
This indicator warns of the overestimation or underestimation of the model concerning
the dependent variable. The training MBE errors can be considered negligible. It can be
seen in image 19 that the test errors mostly underestimate the model, ranging from about
0% to 3%, except for the CSI models, which show a significant increase in overestimation,
varying from 8% to 14%.
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3.4. Selection and Evaluation of the Optimal Cloudiness Model

The AS 7 model was selected as suitable, because it explains all sky conditions. It uses
five predictor variables, and although it does not have the lowest test RMSE; the difference
with the training errors is below 2%. When applying the AS 7 model, a new fit dataset for
the GHI data is generated, which replaces the original satellite data (site-adaptation). The
final dataset generated was compared to the surface measurements, and the coefficient of
determination R2 increased from 0.607 to 0.876 for the hourly GHI profile. Figure 20 shows
the dispersion reduction after site-adaptation process.

Remote Sens. 2022, 14, 5496 24 of 28 
 

 

 
Figure 20. Correlation between Surface GHI and best model selected for all sky. 

4. Discussion 
The WMO methodology applied for the debugging of the surface and satellite data 

series was necessary for quality assurance. The process of verification and subsequent fil-
tering of GHI data (satellite and surface) represents the cornerstone for site validation and 
adaptation. Removing night hours, identifying extremely rare, physically possible values 
for filtering and filling gaps with interpolation methods allow reliable handling of GHI 
data sets. Missing this procedure may cause modeling biases. The results of the verifica-
tion and debugging stage show the small amount of outliers and the absence of influential 
points.  

High variability of solar radiation in short temporal resolution profiles makes it dif-
ficult to use satellite estimates for simulation purposes. The literature suggests that before 
using solar radiation information from remote sensing, it is necessary to validate it, espe-
cially in high-cloud-cover areas. The satellite GHI validation methods are generally per-
formed by non-parametric statistical indicators. However, graphical analysis enables the 
comparison of the hourly and monthly profiles defined after validation, showing greater 
variability for the hourly profiles. In this process, clusters could be identified for the ap-
plication of site adaptation techniques such as quantile mapping.  

The results of parametric tests between hourly and monthly profiles allow quantify-
ing the main differences in both profiles. The validation allows to identify by means of 
statistical parameters whether the GHI profile coming from satellites can be employed 
reliably in energy production simulation. In that sense, the parametric graph analysis 
shows insignificant differences in the monthly profiles. The tests performed reflect the 
fulfillment of all parameters except for normality, which is consistent due to its temporal 
variability and atmospheric attenuation. This result leads to performing a non-parametric 
analysis.  
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4. Discussion

The WMO methodology applied for the debugging of the surface and satellite data
series was necessary for quality assurance. The process of verification and subsequent
filtering of GHI data (satellite and surface) represents the cornerstone for site validation
and adaptation. Removing night hours, identifying extremely rare, physically possible
values for filtering and filling gaps with interpolation methods allow reliable handling
of GHI data sets. Missing this procedure may cause modeling biases. The results of the
verification and debugging stage show the small amount of outliers and the absence of
influential points.

High variability of solar radiation in short temporal resolution profiles makes it
difficult to use satellite estimates for simulation purposes. The literature suggests that
before using solar radiation information from remote sensing, it is necessary to validate it,
especially in high-cloud-cover areas. The satellite GHI validation methods are generally
performed by non-parametric statistical indicators. However, graphical analysis enables the
comparison of the hourly and monthly profiles defined after validation, showing greater
variability for the hourly profiles. In this process, clusters could be identified for the
application of site adaptation techniques such as quantile mapping.
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The results of parametric tests between hourly and monthly profiles allow quantifying
the main differences in both profiles. The validation allows to identify by means of statistical
parameters whether the GHI profile coming from satellites can be employed reliably
in energy production simulation. In that sense, the parametric graph analysis shows
insignificant differences in the monthly profiles. The tests performed reflect the fulfillment
of all parameters except for normality, which is consistent due to its temporal variability
and atmospheric attenuation. This result leads to performing a non-parametric analysis.

The dispersion statistical indicators RMSE and MBE applied in the non-parametric
analysis show the overestimation of the satellite GHI. The KS-test proves that the hourly
profile could not be reliably used for energy production simulation purposes. These results
are in agreement with the findings in [25] and also in parametric graphic analysis. The
identification of the profile that does not comply with the validation allows initiating the
process of site-adaptation.

The 31 models generated for site-adaptation employ techniques ranging from heuristic
to the application of statistical learning using machine learning algorithms. The input
variables use solar geometry variables, GHI surface measurements and satellite-collected
parameters. The models developed could be used for any type of sky. The cloudiness
hypothesis based on the clearness index shows that for clear sky models there is a higher
adjusted R2 and lower dispersion as expected. Site-adaptation through the AS7 model
significantly improves the adjusted R2.

The results in [18] show a better performance of the GHI from CAMS for clear-sky
models, with an MBE < 1% and RMSE < 5%. In this study, the clear-sky models CSI
presented an MBE < 15%; however, the all-sky models AS and cloudy-sky models DS
presented an MBE < 1%, whereas the lower RMSE was found in the SCSI models with an
RMSE < 26%. Although the research findings [16] are given on daily and weekly profiles,
the models based on machine learning are notably higher than those based on linear
regressions and QM. R2 values of 0.91 and 0.88 are obtained for daily and weekly profiles,
respectively. In agreement with these results, this paper presents improved performance
with the machine learning algorithms Best Subset Selection and Forward Stepwise Selection,
raising the R2 of the satellite estimates of NREL to 0.876 for hourly profiles. Several studies
have shown the improvement in satellite data using different site-adaptation methodologies.
However, climatic zones with annual cloudiness above 80% have not been evaluated. In
that sense, the present work highlights the complexity of creating a generic model that
responds to high cloud cover areas.

Future research could add surface measurements of direct and diffuse irradiance to the
model to increase its predictive capability. Additionally, the site-adaptation methodology
used could generate models for the assessment of photosynthetically active radiation (PAR),
which is necessary to find suitable locations of biomass potential. Further work could also
focus on developing site-adaptation techniques based on genetic algorithms and artificial
intelligence. As well as testing the behavior of the model in different geographies with high
cloud cover, one could add more variables to analyze the model performance. Finally, this
study may be able to generate new physical models based on regional adaptation using
probabilistic methods.

5. Conclusions

An innovative site-adaptation technique capable of improving the GHI from the
NREL database for high-cloud-cover areas was developed. Surface measurements, solar
geometry and data from the NREL database were used. The verification, parametric and
non-parametric validation processes identified the satellite GHI hourly profile as invalid
because of its high temporal variability. With the identified profile and the best correlation
input variables, the profile was segmented according to the clearness index Kt, which
considers different sky conditions. The use of statistical learning has indicated the AS
7 model as the most suitable, by evaluating it with the lowest RMSE and MBE test and
training statistics, considering the highest adjusted R2.
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The debugging process allowed the surface and satellite GHI data series to be com-
pared, eliminating outliers. This effect is evidenced in the results in Section 3.2 with the
absence of influential points.

• The validation of the satellite GHI from the NREL database considered a parametric
and non-parametric analysis. The parametric linearity analysis showed a linear trend
for the hourly and monthly GHI profiles considered. The hourly profile had a lower
R2 compared to the R2 of the monthly profile.

• A comparison of medians between the surface GHI data series versus the satellite GHI
data series showed an overestimation of the solar resource in the satellite GHI.

• The parametric normality tests showed that the hourly and monthly profiles evaluated
did not satisfy the defined parameters; therefore, a non-parametric validation analysis
was necessary.

• The parametric variance of the residuals test revealed that only the monthly profile
complied with homoscedasticity.

• Parametric tests for influential points revealed in both the hourly and monthly GHI
profiles the absence of outliers or anomalous values that could have an impact on the
prediction model.

• Non-parametric and dispersion statistics analysis identified the hourly profile as
inapplicable for simulation purposes. From the hourly profile, the site-adaptation
process was performed.

In locations with high cloud cover, the use of satellite images for solar resource as-
sessment represents a challenge to obtain fine-resolution profiles. In response to this,
a site-adaptation methodology was applied. Through linear, non-linear and statistical
learning regressions, 31 empirical models were generated for different sky types of the
Ecuadorian coast. These models were based on the calculation of solar geometric character-
istics and information from remote sensing variables available in the NREL database.

The application of the models represents a relevant contribution, not only for areas of
high cloud cover but also for more favorable conditions for remote sensing.

Models that use machine learning applying the “Forward Stepwise Selection” algo-
rithm denote a higher adjusted R2 than the other models, but not necessarily a lower RMSE
test error.

The AS 7 all-sky model was selected due to its higher adjusted R2 of 0.697 and its
testing RMSE of 34.46%, a gap of 1.78% with respect to training RMSE errors. The final
model was evaluated against surface measurements, increasing the adjusted R2 from 0.607
to 0.876, suggesting a better fit for the initially evaluated hourly GHI satellite profile.
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Abbreviations

AS All Sky
CAMS Copernicus Atmosphere Monitoring Service
CIM Cloud Index Method
COP26 Conference of the Parties
CSI Clear Sky
DNI Direct Normal Irradiance
DS Cloudy Sky
FARMS Fast All-sky Radiation Model for Solar applications
GHI Global Horizontal Irradiation [W m2]
GOES Geostationary Operational Environmental Satellites
GLMNET Elastic Net regression
INHAMI National Institute of Meteorology and Hydrology
KS-test Kolmogorov–Smirnov test
Kt Clearness Index
MARS Multivariate Adaptive Regression Splines
MBE Mean Bias Error
MOS Model Output Statistics
NREL National Renewable Energy Laboratory
NSRDB National Solar Radiation Database
ODR Orthogonal Distance Regression
PSM Physical Solar Model
RF Random Forests
RMSE Root Mean Square Error
SCSI Semi-Clear Sky
SDE Stochastic Differential Equation
SDR Symphonie Data Retriever
SVR Support Vector Regression
UNEMI State University of Milagro
WMO World Meteorological Organization
WRF Weather and Research Forecasting
XGBoost Extreme Gradient Boosting Machines
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