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Abstract: Crop production is one of the major interactions between humans and the natural envi-
ronment, in the process, carbon is translocated cyclically inside the ecosystem. Data assimilation
algorithm has advantages in mechanism and robustness in yield estimation, however, the compu-
tational efficiency is still a major obstacle for widespread application. To address the issue, a novel
hybrid method based on the combination of the Crop Biomass Algorithm of Wheat (CBA-Wheat) to
the Simple Algorithm For Yield (SAFY) model and the transfer learning method was proposed in
this paper, which enables winter wheat yield estimation with acceptable accuracy and calculation
efficiency. The transfer learning techniques learn the knowledge from the SAFY model and then
use the knowledge to predict wheat yield. The main results showed that: (1) The comparison using
CBA-Wheat between measured AGB and predicted AGB all reveal a good correlation with R2 of
0.83 and RMSE of 1.91 t ha−1, respectively; (2) The performance of yield prediction was as follows:
transfer learning method (R2 of 0.64, RMSE of 1.05 t ha−1) and data assimilation (R2 of 0.64, RMSE
of 1.01 t ha−1). At the farm scale, the two yield estimation models are still similar in performance
with RMSE of 1.33 t ha−1 for data assimilation and 1.13 t ha−1 for transfer learning; (3) The time
consumption of transfer learning with complete simulation data set is significantly lower than that of
the other two yield estimation tests. The number of pixels to be simulated was about 16,000, and the
computational efficiency of the data assimilation algorithm and transfer learning without complete
simulation datasets. The transfer learning model shows great potential in improving the efficiency of
production estimation.

Keywords: yield; satellite remote sensing; crop growth model; SAFY; transfer learning; aboveground
dry biomass

1. Introduction

Crop yield is of great importance to food security and directly relates to the eco-
nomic benefits of farmers [1]. It is therefore an imperative task for robust large-scale yield
estimation in agricultural research and application [2].

With the advantages of non-destructive, high throughput and spatially continuous
observation, remote sensing (RS) is a popular method for monitoring bio-physical parame-
ters [3–6]. Over the past decades, the application of RS information obtained by optical and
radar sensors on the terrestrial, aerial and satellite platforms in estimating crop production
have considerably increased, including empirical, semi-empirical and mechanism models.
Compared with traditional image processing tools, the Google Earth Engine (GEE) platform
facilitates RS data acquisition, RS image processing, and analysis [7]. The GEE platform
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provides favorable conditions for crop yield prediction, crop growth monitoring and crop
classification on a large regional scale [8–10]. For simplicity and computational efficiency,
the majority of studies on crop yield prediction have been applied for crop yield estimation
using vegetation indices (VIs) [11]. Some of the vegetation indices, i.e., the Normalized
Difference Vegetation Index (NDVI) [12], the Enhanced Vegetation Index (EVI) [13] and the
Optimized soil-adjusted vegetation indices (OSAVI) [14], are based on the Red-NIR isolines
of the electromagnetic spectrum, prompted by the motivation to predict bio-physical pa-
rameters using bands available from different remote sensing platforms. With the future
application of RS data in agriculture, multi-band VI, multi-calculation form and radar VIs
are constructed [15]. The simplest method to estimate crop yield is to find the statistical
relationships between only VIs and crop yield at specific phenological stages or multiple
phenological stages, which could express acceptable crop yield estimation accuracy and
performance under specific regions and years. The booting stage and flowering stage are
often considered be the most suitable period to predict crop yield using optical remote
sensing data [6,16]. Poor Spatial-temporal extrapolation without recalibration and reval-
idation confines the further application of these methods. The yield formation process
is affected by many factors, such as soil, meteorology and genes [17–19]. Typically, this
is now done by using different methods, e.g., hierarchical linear model [6] and machine
learning methods [5,20], to fuse RS data with information related to crop growth. By
integrating hyperspectral data and meteorological data, Li et al. [6] developed hierarchical
linear modeling (HLM) to solve the interannual expandable problem of the wheat yield
prediction model. To better explain the response of crop yield to changes in sub-seasonal en-
vironmental factors across the entire growing season, many machine learning methods and
phenological information were considered for yield estimation models [5,21,22]. Despite
the excellent performance of a semi-empirical, a well-trained model depends on limited
mechanisms of crop growth that still have defects in expressing the process of crop yield
formation, and their generality for multiple regions has not been thoroughly validated.

The process-oriented crop growth model (CGM) is a verified tool to simulate crop
development and crop yield formulation at a farm scale with detailed input data, e.g.,
crop varieties, agronomic management practices, soil, and climate factors [22–24]. As
a bridge between CGMs and RS data, data assimilation technology combined with the
advantages of RS data and CGMs has been recognized as a reliable way to improve crop
yield simulations over a large area. Crop growth variables are selected for assimilation to
adjust the CGM simulation and thus obtain updated crop yield predictions. Among all
the variables available for assimilation, leaf area index, aboveground dry biomass, canopy
cover and soil moisture have been popularly elected in the assimilation system [25–28].
Aboveground dry biomass (AGB) is strongly related to crop yield, consequently, statistical
regression, machine learning method and radiation transfer model have all been used to
monitor AGB. Active and passive RS often has the ability to better predict AGB at low
coverage, but all face the difficulty of saturation at high biomass [29]. Multi-source input
variables are used in AGB prediction models, including optical VIs and SAR indicators,
optical VIs and imagery textures, and optical VIs and phenological information [30–32].
Therefore, an in-depth study on agronomic parameters prediction using RS data is of great
significance to further enhance crop yield prediction performance in the data assimilation
system. In general, the estimation of agronomic parameters using the combination of multi-
source data is more effective than that of only single-source data [33]. Different CGMs differ
in their structure, parameterization and complexity, and may obtain different results even
if the same observation data is applied [22–24]. Therefore, the data assimilation combined
only one crop growth model, a yield estimation assimilation system using CGMs have
also been constructed and achieved acceptable performance [34,35]. Although crop yield
estimation using data assimilation has made great progress, problems remained. Primarily,
for the periods of state variables extraction, they were not well represented, previously
used state variables cannot represent the environmental factors resulting in the lack of
universality in crop yield estimation under different environments and conditions. Second,
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for the assimilation algorithms, the computational intensity was always a problem that
could not be ignored when estimating production in a large area. Summarizing the existing
issues above, the existing problem should be using sufficient data which can be mined from
simulation results of CGMs and RS data to complete the estimation of crop pre-harvest
yield with less calculation.

Recently, machine learning methods have been used to learn abstract features from
high-spatial-resolution RS images for yield estimation [20]. Despite the excellent perfor-
mance of machine learning methods, a trained network depends on the large number
of labeled samples that are difficult and expensive to collect in agricultural applications.
Therefore, an economical approach such as transfer learning techniques would be desirable
for crop yield prediction for different environmental conditions. To date, there has been
limited work done to construct transfer learning techniques to improve local crop yield
predictions. Therefore, the major objectives were as follows in this study: (1) to explore
dynamic patterns of aboveground dry biomass (AGB) observations and simulated crop
yield to present a transfer learning yield inversion model; (2) to examine the performance
and transferability analysis of transfer learning yield inversion model cross-year yield esti-
mation; (3) test the computational efficiency and accuracy of the data assimilation system
and the proposed method.

2. Materials and Methods
2.1. Study Location and Field Data Collection

Field experiments (40.17◦N, 116.43◦E) were conducted in 2017~2018 and 2018~2019
at National Precision Agriculture Research Center near Beijing, China (see Figure 1). The
historical experiments involve different cultivars, nitrogen management and growing
seasons [32]. Two experiments (Calibration sets), 2017–2018 (Exp. 1) and 2018–2019 (Exp. 2)
were designed as completely randomized designs with cultivars (Jingdong 18 and Lunxuan
167) and four nitrogen levels (N1: 0 kg N ha−1; N2: 90 kg N ha−1; N3: 180 kg N ha−1, and
N4: 270 kg N ha−1). There were 32 plots per growing season, with 128 biomass samples
(32 plots × 4 periods) and 32 yields collected annually, see Li et al. [32] for details. At each
sampling site, Zadok’s growth stage [36] was investigated. Additionally, a yield survey
was performed inside the farm in 2018 and 2019, 32 and 71 yield samples were randomly
collected respectively for verification of the yield estimation model (Figure 1b).
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Figure 1. Experimental farm location for field observations: (a) test site; (b) validation set area; (c)
calibration set area. Orange area in Figure 1a represent the Changping district.

2.2. Data Collection
2.2.1. Satellite Imagery Data Acquisition and Preprocessing

Planet satellite (www.planet.com, accessed on 1 September 2022) is an emerging
remote sensing satellite in 2018~2019, with high frequency, good image quality and high

www.planet.com


Remote Sens. 2022, 14, 5474 4 of 17

data coverage efficiency. There are more than 170 satellites in the Planet’s small satellite
constellation. Hundreds of satellites independently photograph the world every day, which
can achieve daily global coverage. The Planet satellite imagery parameters are shown in
Table 1. The images used in this paper are 3B-level data products after sensor calibration,
radiometric calibration, orthorectification and atmospheric correction. The detailed process
of satellite data processing is shown in Bai et al. [37].

Table 1. Planet satellite remote sensing data parameters.

Bands Wavelength (nm) Spatial Resolution (m)

Blue 455–515 3
Green 500–590 3
Red 560–670 3
NIR 780–860 3

A commonly used vegetation index from literature, the enhanced vegetation index 2
(EVI2) [38], was used to predict AGB in this study. The formula is as follows:

EVI2 = 2.5× (NIR− R)/(NIR + 2.4× R + 1) (1)

where 2.5, 2.4 and 1 are the adjustment factors to reduce the impact of soil, atmosphere and
saturation on the prediction of agricultural parameters. NIR represents the reflectance of
the near-infrared band and R represents the reflectance of the red band.

2.2.2. Meteorological Data

The meteorological data from the ERA5 dataset (ECMWF, http://www.ecmwf.int,
accessed on 1 September 2022) was used in this study, including daily minimum tempera-
tures (Tmin), maximum temperatures (Tmax) and solar radiation, were acquired with a
resolution of 0.125◦ for the experimental site. The daily meteorological data in this study
are shown in Figure 2.
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2.2.3. Field Measured AGB

In each growth period, the wheat tillers number per unit area was investigated in each
experimental plot. Destructive sampling of 20 randomly selected tillers were taken to a
laboratory and 20 tillers samples in each sampling point were then oven-dried to a constant
weight. The wheat AGB (t ha−1) was calculated as follows:

AGB =
W× T
S×A

× 10−2 (2)

where S represents the number of tillers in the destructive samples, W represents the weight
(g) of the destructive samples, A represents the sampled area (m2), and T represents the
total number of counted tillers in the sampled area (1 m2 in this study). The 10−2 represent
the coefficient transformed from g m−1 to t ha−1.

2.2.4. Winter Wheat Yield Observations

A 1 m2 area of the winter wheat was destructive sampled to measure the harvested
yield. Each sample point was in the center area of the experimental plot to avoid edge
effects. The harvested grain had a 14% moisture content was threshed, air dried, and
weighed on an electronic balance.

2.3. Data Analysis

In this study, one transfer learning method for yield prediction based on the Simple
Algorithm For Yield (SAFY) model (see Section 2.3.1) [39], and the deep neural network
(DNN) [40] method was constructed. Data assimilation using Shuffled complex evolution
with PCA (SP-UCI) [41,42] by integrating the remote sensed AGB and SAFY model was
tested in comparison to the capacity of the constructed model (transfer learning method).
A detailed flowchart for the yield estimation method is presented in Figure 3.
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Figure 3. The flowchart of transfer learning method (a) and data assimilation (b) for winter wheat.
SAFY, CBA_Wheat, DNN, SPU-CI, AGB and EVI2 represent the simple algorithm for yield model,
crop biomass algorithm for wheat, the deep neural network, the Shuffled complex evolution with
PCA, aboveground dry biomass and the enhanced vegetation index 2, respectively.

2.3.1. Principle of SAFY Model

SAFY, a simple crop growth model, is used for simulating AGB on a daily step and
is easy to integrate RS data for estimating AGB and crop yield [3,43,44]. During the AGB
increased period, daily AGB production is based on light-use efficiency (LUE) theory,
depending on effective LUE (ELUE), photosynthetically active radiation absorbed by crop



Remote Sens. 2022, 14, 5474 6 of 17

canopy (APAR), daily average temperature (Ta) and temperature-stress-function (FT) [40].
Which uses the following equation:

∆AGB = ELUE× FT(Ta)×APAR (3)

APAR = ε1 × εc × Rg (4)

where, ε1, εc and Rg represent light-interception efficiency, climatic efficiency and daily
incoming global variation. Where, ε1 depends on light-interception coefficient (k) and
green leaf area index (GLAI) based on Beer’s law:

ε1 = 1− e−k×GLAI (5)

The daily maximum and minimum temperature directly affect the daily AGB accu-
mulation rate, which is accounted for by Ta in the SAFY model determined by minimal
temperature (Tmin), maximal temperature (Tmax), and optical temperature (Topt) for
growth. Which uses the following equation:

FT(Ta) =


1−

[
Topt−Ta

Topt−Tmin

]2
, if Tmin < Ta < Topt

1−
[

Ta−Topt
Tmax−Topt

]2
, if Topt < Ta < Tmax

0, if Ta< Tmin or Ta >Tmax

(6)

The dynamics of GLAI can be split into two phenological phases, leaf extent expansion
and leaf disappearance during crop senescence, which is determined by the sum of temper-
ature (STT) after crop emergence. In the leaf expansion stage, both AGB and GLAI are in
the growth stage, a portion of the daily accumulated AGB by allocation to leaf function
(Pl) was partitioned to dry leaf biomass, and then the increase of daily dry leaf biomass is
converted in increase of daily leaf area (∆GAI+) based on specific leaf area (SLA). If Pl > 0,
∆GAI+ leads to:

∆GAI+ = ∆AGB ∗ Pl ∗ SLA (7)

Pl = 1− Pla∗ePlb∗SMT (8)

where Pla and Plb represent two partition-to-leaf parameters and SMT represents temper-
ature accumulation. When the SMT reached the given threshold STT, the leaves start to
senesce at a constant rate (Rs). If SMT > STT, it leads to:

∆GAI− = GLAI×
(
∑ Ta− STT

)
/Rs (9)

During the grain filling phase, the crop yield is proportional to the maximal AGB,
with a constant harvest index (HI) partitioned to grains. It leads to:

Yield = HI×AGBmax (10)

Parameters of the SAFY model such as GLAI and ELUE in the model indirectly
characterize the simulated yield differences caused by other agro-environmental stress.
The description and range of parameters of the SAFY model are as follows (see Table 2):



Remote Sens. 2022, 14, 5474 7 of 17

Table 2. Parameter descriptions in the SAFY model.

Parameter Abbreviation Unit Value References

Fixed

Climatic efficiency εc - 0.48 Duchemin et al. [39]
Light-interception coefficient ε1 - 0.5 Duchemin et al. [39]

The optimal temperature Topt ◦C 21 Wang et al. [45]
Minimum temperatur Tmin ◦C 0 Wang et al. [45]
Maximum temperatur Tmax ◦C 37 Wang et al. [45]

Specific leaf area SLA m2/g 0.022 Claverie et al. [46]
Initial aboveground biomass AGB0 g/m2 4.5 Calibrated

Leaf Partitioning Coefficient a Pla - 0.16 Calibrated
Leaf Partitioning Coefficient b Plb - 1.4 Calibrated

Senesce rate Rs ◦C/d 10.8 Calibrated

Calibrated
Day of emergence D0 d 0–15 This study

Sum of temperature STT ◦C 1200–1600 This study
Effective Light Use Efficiency ELUE g/MJ 1.3–2.5 This study

2.3.2. Predicted AGB from Planet Imageries Using the CBA-Wheat Model

Most existing AGB monitoring models perform well only at a specific growth stage at a
single location, with poor transfer during different growing stages during the season [28,43].
AGB is an important feature of the SAFY model, and excellent AGB estimation is of great
significance for transfer learning to learn the characteristics of the SAFY model for yield
estimation. The newly developed crop biomass algorithm for wheat (CBA-Wheat) [28] was
chosen to predict winter AGB over the growing season, with a two-level piecewise model,
such as:

AGB = α× EVI2 + β (11)

α = 1.27ep1×ZS (12)

β = p2× ZS− p3 (13)

whereα andβ represent the CBA-Wheat coefficients, ZS represent Zadok’s growth stage [37].
p1, p2 and p3 are the CBA-Wheat models constructed based on Li et al. [32]. Although
this paper uses the same sets of ground data as Li et al. [32], considering the differences
between the Planet satellite and ground hyperspectral data, the coefficients are fine-tuned.

2.3.3. Transfer Learning Method

The general framework of the transfer learning method (see Figure 3a) in this study
is to summarize a crop growth model (SAFY) to use the information in the simulated
labeled AGB-yield datasets to estimate the wheat yield and improve the efficiency of yield
estimation. The transferability of features extracted by deep neural networks has been
demonstrated and applied to natural language processing, computer vision and other
fields [47–49]. This study then chose root mean squared error (RMSE) and loss value to
evaluate the model accuracy. The implementation steps of the transfer learning method are
as follows:

(I). SAFY parameter sets construction: 200,000 sets of parameter combinations of SAFY
were generated based on Monte Carlo (MC) algorithm.

(II). Construction of possible AGB datasets and yield datasets based on the SAFY model:
The parameter set constructed in step I was input into the SAFY model to obtain the
possible AGB datasets and yield datasets. The time efficiency test of transfer learning
is divided into two types with or without simulated data sets: no simulated datasets
and with simulated datasets.

(III). Train DNN model: A four-layer fully-connected network is constructed to train
simulated AGB-yield from the SAFY model. The model was pre-trained using the
AGB datasets and yield datasets simulated in step II, and fine-tuned by the measured
data using transfer learning.
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(IV). Forecast yield based on transfer learning method: The AGB predicted from the CBA-
Wheat model is utilized as the input layer of the trained DNN to predict winter wheat
yield.

2.3.4. Data Assimilation

In this section, the Shuffled complex evolution with PCA (SP-UCI) algorithm is im-
proved based on the SCE-UA algorithm and combines compound evolutionary algo-
rithm, simplex algorithm and polynomial resampling. SP-UCI not only maintains the
searchability of particle swarm in the whole parameter space but also efficiently realizes
high-dimensional parameter optimization [41,50], and it is useful and effective global op-
timization. By using the SP-UCI algorithm, three sensitive parameters such as D0, ELUE
and STT were optimized, and then the dynamic growth simulation was performed for the
entire growth period of winter wheat using the SAFY model. The implementation steps of
the data assimilation method (Figure 3b) are as follows:

(I). AGB predicted model construction: the AGB prediction results based on the CBA-
Wheat model are chosen as the state variable to estimate the yield in the assimilation
system.

(II). Run SAFY: SAFY model is run based on initialized model parameters and meteoro-
logical data.

(III). Cost function calculation: The cost function is built on the basis of the relationship
between the measured AGB and the model simulated AGB.

RMSE =

√
1
n

n

∑
i=1

(Yi − Yi′)2 (14)

where, n, Yi
′, Yi, and p are the number of samples, predicted AGB value, measured AGB

value, and the number of independent variables, respectively.

(I). Determine iteration termination conditions: When the objective function cannot
be improved by 0.01% or the cost function is calculated more than 10,000 times to
terminate the cycle.

(II). Test the error between the model measured yield and the simulated yield.

3. Results
3.1. Validation of AGB Retrieved from CBA-Wheat Model and SAFY Model

Figure 4a shows that the trend of simulated AGB could reflect almost field-measured
AGB in all nitrogen treatments. Four phases including the jointing phase, booting phase,
flowering phase and filling phase were picked out. The distribution of AGB in the mea-
sured dataset, possible datasets, CBA-Wheat and parameters data assimilation dataset
were illustrated in Figure 4b from jointing phase to filling phase, which demonstrates the
broad coverage of the possible datasets. Moreover, the shapes of the four kinds of AGB
datasets were similar. In this paper, the range and mean value of measured AGB were
0.46~19.50 t ha−1 and 6.96 t ha−1, respectively. The AGB ranges from the possible datasets
of the jointing phase, booting phase, anthesis phase and filling phase were 0.10~7.72 t ha−1,
2.13~12.79 t ha−1, 3.20~19.11 t ha−1 and 5.24~26.36 t ha−1, respectively. The range of these
values included the AGB values of other data sets in the corresponding period, indicat-
ing that the datasets input the transfer learning model include all possible situations of
field production.
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3.2. AGB Distribution for Different Datasets in Different Stages

The predicted AGB values were compared to 384 destructive measured AGB during
four growth phases. The comparison between the measured AGB and the predicted AGB
using CBA-Wheat (Figure 5) reveals a good correlation with R2 of 0.83 and RMSE of
1.91 t ha−1. CBA-Wheat and data assimilation have similar AGB estimation accuracy at
different growth stages, which provides a solid foundation for the transfer learning method
to replace the crop growth model for yield estimation.
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3.3. Winter Wheat Yield Prediction

The simulated dataset with 60,000 samples covering the yield with 0.06~2.49 t ha−1

generated from the SAFY model was used to validate the effectiveness in yield inversions.
The RMSE and loss value of the simulated dataset versus epochs are shown in Figure 6.
When the training Epoch was more than 52, RMSE and loss value was less than 1.44 t ha−1

and 0.03, respectively. Meanwhile, the values converged to stable as the training epochs
increased. Figure 7 demonstrates the high consistency between the measured and the
predicted yield derived from the data assimilation and transfer learning method. The
wheat yield prediction performance was as follows: transfer learning method (Figure 7a:
R2 of 0.64, RMSE of 1.05 t ha−1) and data assimilation (Figure 7b: R2 of 0.64, RMSE of
1.01 t ha−1).
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To compare the computational efficiency of the transfer learning method and data
assimilation algorithm, three supplementary experiments are designed (Figure 8).The time
consumption of transfer learning with complete simulation datasets was significantly lower
than that of the other two yield estimation tests. When the number of pixels was about
16,000, the calculation efficiency of the data assimilation system was the same. When the
number of pixels is more than 16,000, the transfer learning without complete simulation
datasets had better computational efficiency compared with data assimilation system.
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3.4. Farm-Land Verification of Transfer Learning Method

The SAFY and transfer learning method were verified on the farmland. The results
of estimating yield with the data assimilation and transfer learning method are shown
in Figure 9. At the farm scale, the two yield estimation models were still similar in
performance for data assimilation (RMSE of 1.33 t ha−1 and R2 of 0.46) and for transfer
learning (RMSE of 1.13 t ha−1 and R2 of 0.47). The farm-scale yield results (Figure 10)
were consistent with the actual farm production. The above-mentioned results illustrated
that, the transfer learning technique had good performance in calibration datasets and
validation datasets. The transfer learning method, i.e., the DNN model, could exploit full
merit of the prior knowledge extracted from the crop growth model to reach favorable
yield predicting performance. Moreover, the generalization of the transfer learning method
could also provide a potential insight for timely monitoring of wheat growth in the field.
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4. Discussion

Previous studies have attempted to predict yield using optical remote sensing technol-
ogy [5,20,21]. The present study proposed a novel methodology for crop yield estimation
based on satellite imagery. The advantages and limitations of the transfer learning method
would be discussed from three aspects: the advantage of applying CBA-Wheat to predict
AGB, the comparison between the transfer learning method and data assimilation and
potential extension and limitation.

4.1. Advantage of Applying CBA-Wheat to Predict AGB

The AGB level at different growth stages has an obvious impact on the increase or
decrease of harvest yield because crop yield is part of AGB. Different relationships of
AGB-EVI2 at various growing phases have previously been reported in Roth., [51] and
Li et al., [32], hence this was a widespread problem. On the one hand, the difference in
organic matter accumulation rate and vegetation spectral response with the growth period
resulted in different AGB changes corresponding to the change of unit vegetation index in
different growth periods [32,52]. On the other hand, the limited canopy information that
can be detected by the optical vegetation index limits the application of AGB estimation
in multiple growth periods [53,54]. To eliminate the phenomenon of appeal, plant height,
phenological information, vertical distribution and multi-angle optical information have
been used in the modified AGB unified model of the multi-growth period. CBA-Wheat is a
model aiming at the fact that VI cannot be directly used for AGB estimation in different
growth periods. Compared with the method of integrating other information with the
vegetation index, CBA-Wheat is simple, efficient and accurate, and can meet the accuracy
of transfer learning. In this paper, EVI2 is used to estimate biomass and yield. EVI2 has
the advantages of sensitivity and anti-saturation at a high biomass level, and the band of
EVI2 is included in the existing satellite data [38]. However, EVI2 is built based on optical
satellites and is vulnerable to clouds, rain and other meteorological factors. When using
the model in a larger area, it is necessary to consider the fusion of multi-source data (such
as combining active remote sensing data, etc.).

4.2. Comparison between Transfer Learning Method and Data Assimilation

Previous studies demonstrated the capacity of using data assimilation to improve crop
productivity estimation for a large area [3,40,45]. In this research, instead of many complex
crop growth models such as the Decision Support System of Agrotechnology Transfer
modeling system (DSSAT), the Agricultural Production Systems sIMulator (APSIM), we
chose only one mechanically simpler model (SAFY model) [40,55,56]. The reason for
using the SAFY model is its advantages of requiring fewer detailed inputs, and capable of
producing similar outputs compared with the complex models [57,58]. With optimization of
tuning cultivar parameters, the SAFY model was able to predict the yield interannually, with
a high R2 of 0.64 to measured yield (Figure 7). The main reason for limiting its application
can be attributed to low computational efficiency. Although the statistical method is highly
efficient, it is not considered in this paper due to poor mechanism. The DNN network was
trained on the AGB and yield generated from SAFY, then transferred to the field winter
wheat yield prediction tasks. The proposed method has relatively simple architecture than
data assimilation system. The yield prediction accuracies reached satisfactory results in
the validation under various circumstances, including different locations and across years.
The accuracy of the transfer model proposed in this study is similar to that of the data
assimilation algorithm in yield prediction. Crop growth models are built according to the
crop growth and development principles, this fact makes it possible to use SAFY simulated
data as a base knowledge for winter wheat yield prediction [48]. However, the crop
growth model is generality used to simulate crop growth and development under normal
climate and management conditions, without considering extreme climatic conditions and
pests [40,55,56]. Therefore, learning more crop growth models with different structures
will help to predict yield and other parameters under different growth conditions. On the
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premise that the simulation data set has been trained well, the computational efficiency of
transfer learning with simulated datasets was much higher than that of a data assimilation
algorithm (Figure 8). It can be explained that the transfer learning method can express more
efficient results with fewer parameters [40]. At the image pixel number is about 16,000, the
time-consuming of the data assimilation algorithm and transfer learning without complete
simulation datasets is the same. Building usable simulation data sets is the most time-
consuming step in transfer learning without complete simulation datasets. The turning
point of computing efficiency will be different in different computer equipment and running
software. Figure 10 showed higher yield was observed in the area close to the edge of the
fields. On the one hand, the pixel at the edge of the field is a mixed pixel of grass and
wheat, which may overestimate the yield; on the other hand, the wheat growing at the edge
of the field had abundant in light, temperature and other environmental conditions, so it
has a high organic matter accumulation. The remote sensing images used in this paper are
mainly optical data, whose data quality is affected by clouds and rain, and then affects the
yield prediction of the farm [23]. In the future, it is necessary to use multi-source data for
large-scale regional yield estimation.

4.3. Potential Extension and Limitation

The results provided reliable evidence that crop yield could be predicted using the
newly proposed transfer learning method with good accuracy and expansibility similar to
data assimilation. Some potential extensions can be considered although more development
is still needed. Massive simulation data based on the crop growth model is an important
foundation of the hybrid method and provide representative information for later yield
estimation. This study has only focused on winter wheat yield, other output parameters
prediction of other crop growth models for different crops such as LAI, plant nitrogen
concentration and crop quality, can be applied to enhance the estimation performance.
The proposed hybrid method could enhance the use of simulation data generated by
crop growth models, which would reduce the difficulty of manual sampling and data
acquisition in the application of yield production in large regions. If the constructed
sample set is poorly representative, the prediction performance of the migration model
is still poor [59]. It worth highlighting that high-quality dataset is necessary, in order to
apply transfer learning technology in practical agriculture and reach high yield estimation
accuracy. Therefore, it is strongly required to formulate more scientific and standardized
field sampling standards and establish a representative database, which will have a far-
reaching impact on the development of yield prediction. Yield estimation from a farm was
used to verify the effectiveness of this method. Although the transfer learning method
was verified in different N management conditions, the verification of other treatments or
other crop species was incomplete. Future research remains indispensable to evaluate the
feasibility of such a method, for the extension when upscaling to different ecological areas.
Whether a set of simulation datasets can be shared for transfer learning under different
production conditions also needs to be further studied.

5. Conclusions

In this paper, to effectively utilize the satellite data to predict wheat yield, a transfer
learning strategy was proposed, which included CBA-Wheat algorithm and the transfer
learning method with SAFY simulation dataset and satellite-based observations. The
method was fully analyzed, validated against field observations and compared with the
data assimilation method, with the main conclusions as follows: (1) the comparison between
measured AGB and predicted AGB using CBA-Wheat all reveal a good correlation with R2

and RMSE of 0.83 and 1.91 t ha−1, respectively. (2) the performance of yield prediction was
as follows: transfer learning method (R2 of 0.64, RMSE of 1.05 t ha−1) and data assimilation
(R2 of 0.64, RMSE of 1.01 t ha−1). At the farm scale, the two yield estimation models are
still similar in performance with RMSE of 1.33 t ha−1 for data assimilation and 1.13 t ha−1

for transfer and learning. (3) The time consumption of transfer learning with complete
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simulation data set is significantly lower than that of the other two yield estimation tests.
While the number of pixels to be simulated is about 16,000, the computational efficiency of
the data assimilation algorithm and transfer learning without complete simulation datasets.
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