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Abstract: Accurate information on forest distribution is an essential basis for the protection of
forest resources. Recent advances in remote sensing and machine learning have contributed to the
monitoring of forest-cover distribution cost-effectively, but reliable methods for rapid forest-cover
mapping over mountainous areas are still lacking. In addition, the forest landscape pattern has
proven to be closely related to the functioning of forest ecosystems, yet few studies have explicitly
measured the forest landscape pattern or revealed its driving forces in mountainous areas. To address
these challenges, we developed a framework for forest-cover mapping with multi-source remote
sensing data (Sentinel-1, Sentinel-2) and an automated ensemble learning method. We also designed
a scheme for forest landscape pattern evaluation and driver attribution based on landscape metrics
and random forest regression. Results in the Qilian Mountains showed that the proposed framework
and scheme could accurately depict the distribution and pattern of forest cover. The overall accuracy
of the obtained level-1 and level-2 forest-cover maps reached 95.49% and 78.05%, respectively. The
multi-classifier comparison revealed that for forest classification, the ensemble learning method
outperformed base classifiers such as LightGBM, random forests, CatBoost, XGBoost, and neural
networks. Integrating multi-dimensional features, including spectral, phenological, topographic, and
geographic information, helped distinguish forest cover. Compared with other land-cover products,
our mapping results demonstrated high quality and rich spatial details. Furthermore, we found
that forest patches in the Qilian Mountains were concentrated in the eastern regions with low-to-
medium elevations and shady aspects. We also identified that climate was the critical environmental
determent of the forest landscape pattern in the Qilian Mountains. Overall, the proposed framework
and scheme have strong application potential for characterizing forest cover and landscape patterns.
The mapping and evaluation results can further support forest resource management, ecological
assessment, and regional sustainable development.

Keywords: remote sensing; forest mapping; automatic ensemble learning; landscape pattern analysis;
natural resource management

1. Introduction

Forests, as the largest biological resource bank on Earth, cover 31% of the global land
surface and are essential for ecosystem service conservation and ecological protection [1].
Forests play a vital role in adjusting regional climate, conserving soil and water, increas-
ing carbon storage, and maintaining biodiversity [2]. However, forests are increasingly
threatened by factors such as climate change, fires, and fragmentation, and have undergone
significant changes over the past few decades [3,4]. Timely and accurate information on
forest cover is urgently needed to provide a direct means of monitoring forest changes
and support for sustainable natural resource management, carbon-cycle research, and
Earth-system modeling [5–7].
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In recent years, remote sensing technology has become an important and effective tool
for detecting forest extent, types, and changes. Compared with ground survey data, remote
sensing data are easier to acquire and process and allows for a higher frequency. Based on
remote sensing data, several forest-cover and -type products over large areas have been
developed, such as the Global Forest Cover 2000 30-m-resolution map [1], European Forest
Type 2015 20-m-resolution map [8], and Copernicus High Resolution Layers Forest 2018
10-m-resolution maps [9]. However, these products are often not up-to-date, due to the
lack of input data and large realization time. At the same time, the full suitability of these
products is often limited, as forest classification is particularly challenging in mountainous
areas with complex topography.

Because of its fine spatial resolution, short revisit cycle, and rich bands, Sentinel satel-
lite imagery is expected to contribute to rapid, large-scale forest information extraction [10].
Many studies have used Sentinel-2 time series to classify forest cover, forest type, tree
species, etc., and achieved high accuracies. For example, Hemmerling et al. [11] found
that the use of dense Sentinel-2 time series was critical for improved tree-species mapping
in temperate forests. Hamrouni et al. [12] developed a Sentinel-2 poplar-detection index
that provided an operational approach for monitoring the poplar resource over large areas.
However, due to shadows and frequent cloud cover, the use of Sentinel-2 imagery is often
limited in mountainous areas. In contrast, Sentinel-1 radar imagery is promising in this
regard, considering its independence from weather conditions and daytime, for instance,
with Sentinel-1’s temporal features of backscattering, Yu et al. [13] mapped forests over
mountainous areas in northeast China, and Dostálová et al. [14] carried out Europe-wide
forest classification. Recently, some other studies have analyzed the synergy of optical and
radar data in forest classification through the combined use of Sentinel-1 and Sentinel-2
data. For example, De Luca et al. [15] integrated Sentinel-1 and Sentinel-2 time series to
classify Portuguese forest cover, Mngadi et al. [16] examined the effectiveness of Sentinel-1
and Sentinel-2 imagery for commercial forest-species mapping in South Africa, and Ghor-
banian et al. [17] used Sentinel-1 and Sentinel-2 time-series data to classify the mangrove
ecosystem in Iran. Generally, Sentinel-1 data can complement the capability of Sentinel-2
data by contributing data acquired in the long-wavelength microwave domain [18].

Due to their excellent performance and high efficiency, machine learning algorithms are
increasingly used for forest-cover classification. Compared to traditional human-computer
interaction, machine learning algorithms make it possible to map forests more consistently
and efficiently at large spatial scales [19]. Commonly used machine learning algorithms
include support vector machines, random forests, etc. For example, Zhang et al. [19]
used a support vector machine to classify the presence/absence of wooden canopies
from Sentinel-1 and Sentinel-2 data for the entire African Sahel. Pulella et al. [20] lever-
aged a random forests classifier and Sentinel-1 backscatter/coherence to map the Amazon
rainforest. However, shallow machine learning algorithms require handcrafted feature
extraction. Deep learning algorithms can learn directly from the input data to the target
prediction and have recently been adopted to facilitate forest classification. For instance,
Waser et al. [18] applied UNET to map the dominant leaf type in Switzerland with com-
bined Sentinel-1 and Sentinel-2 data. Chen et al. [21] constructed a CBAM-P-Net model
for forest-species classification using airborne hyperspectral images. D’Amico et al. [22]
proposed a method for automatically mapping poplar plantations with a fully connected
neural network and Sentinel-2 images. However, deep learning algorithms need large anno-
tated sample sets for training, which causes a considerable barrier in their use. Meanwhile,
deep learning algorithms are more appropriate for very high spatial resolution remote
sensing images [23]. Additionally, ensemble learning has also received extensive attention
as a practical approach [24]. For instance, Grabska et al. [25] used Sentinel-2 imagery to
evaluate the usefulness of the ensemble approach for forest-stand species mapping in the
Polish Carpathians. Nonetheless, the performance of ensemble learning in forest-cover
classification remains poorly understood.
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Advances in remote sensing forest-mapping methods have also promoted the devel-
opment of research on forest landscape patterns and fragmentation processes. ‘Forest land-
scape pattern’ refers to the spatial characteristics of forest distribution in a specific area [26],
while forest fragmentation is one of the manifestations of forest landscape changes [27].
Forest landscape pattern is closely related to the functioning of forest ecosystems. Forest
landscape patterns and fragmentation processes have been proven to impact the overall
pattern, material, and energy flow of forest ecosystems, including vegetation structure,
biodiversity and stability, habitat connectivity and edge effects, and carbon-sequestration
effects [28]. Recently, the monitoring, evaluation, and attribution of forest landscape
patterns and fragmentation processes have become research hotspots. For example,
Potapov et al. [29] revealed that the global intact forest landscape extent had been re-
duced by 7.2% since 2000. Taubert et al. [30] found that tropical forest fragmentation was
close to the critical point of percolation after identifying approximately 130 million forest
fragments. Fischer et al. [31] predicted that by 2100, 50% of tropical forest area would be at
the forest edge, causing additional carbon emissions of up to 500 million MT carbon per
year. However, these studies on the forest landscape pattern were mainly carried out with
30-m forest-cover data. As an important part of the land surface, mountainous areas hold a
complex ecological environment and host rich and diverse species, which makes them core
areas for global biodiversity protection [32]. Mountainous areas are also critical habitats for
most natural forests and thus are ideal for studying the response and adaptation of forest
landscapes to global environmental changes.

The Qilian Mountains are situated in the temperate-arid and semi-arid region of
northwest China. Due to human activities and climate change, the forest coverage in the
Qilian Mountains is declining, and the ecosystem functions continue to weaken [33]. These
problems have seriously affected the stability of the forest ecosystem and limited regional
sustainable development [34]. Consequently, understanding the spatial distribution of
forests in the area is crucial. To address the above challenges, we developed a framework
for forest-cover mapping with multi-source remote sensing data (Sentinel-1, Sentinel-2)
and an automatic ensemble learning approach. We designed a scheme for forest landscape
pattern evaluation with landscape metrics and random forest regression. Taking the
Qilian Mountains as an example, we carried out experimental validation and application
demonstration. The study results can support forest management and assessment. The
specific goals of this study are to: (1) verify the efficiency and robustness of ensemble
learning in forest-cover classification; (2) derive a forest-cover map at a 10-m spatial
resolution in 2021; (3) measure the spatial characteristics of the forest landscape pattern,
and (4) investigate the environmental determents of the forest landscape pattern.

2. Materials and Methods

The framework for forest mapping and analysis is shown in Figure 1. It includes
data pre-processing, feature construction, sample collection, classification, post-processing,
accuracy assessment, data intercomparison, and landscape pattern analysis. Details for
each step will be provided in the following sections.

2.1. Study Area

The Qilian Mountains are located in the center of Eurasia and on the northeastern
margin of the Qinghai-Tibet Plateau (94◦40′–103◦34′E, 36◦12′–40◦22′N) (Figure 2), with a
total area of 114,538 km2. The elevation ranges from 1671 m to 5738 m, and the terrain is high
in the mountainous area and low in the plain. The Qilian Mountains are typical temperate
continental and plateau climates [35]. The temperature and precipitation conditions in the
Qilian Mountains vary significantly with the topography. The mean annual temperature
is about 0.47 ◦C, and the mean annual precipitation is 36-576 mm. The main land-cover
classes include forest, grassland, and shrubland.
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2.2. Data Sources

The detailed data used in this study are summarized in Table 1.

Table 1. The detailed information of data used in this study.

Category Data Source Spatial Resolution Time

SAR Sentinel-1 GRD 10 m 2021
MSI Sentinel-2 Level-2 SR 10-20 m 2021

Google Earth images Google Earth images <1 m (highest) 2020–2021 (most)
Topography SRTM DEM 30 m 2000

Land cover

FROM-GLC10 10 m 2017
ESA10 10 m 2020
ESRI10 10 m 2020

Globeland30 30 m 2020
ESACCI 300 m 2020
MLCT 500 m 2016

Climate WorldClim ~1 km 1970–2000
Human disturbance gHM ~1 km 2016
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2.2.1. Sentinel Imagery

The Sentinel-1 and Sentinel-2 data in 2021 were used as the main data source for forest
classification. The two types of Sentinel data were acquired from the Google Earth Engine
(GEE) platform and processed. The Sentinel-1 Synthetic Aperture Radar (SAR) imagery
used contains one single co-polarization band of vertical transmit/vertical receive (VV)
and one dual-band cross-polarization band of vertical transmit/horizontal receive (VH).
Each Sentinel-1 Ground Range Detected (GRD) scene was pre-processed with the Sentinel-1
Toolbox using steps including thermal noise removal, radiometric calibration, and terrain
correction. As for the Sentinel-2 multi-spectral imagery (MSI), the Level-2A orthorectified
atmospherically corrected Surface Reflectance (SR) was computed with sen2cor. We first
filtered the whole-year archive with the percentage of cloudy pixels less than 20%. The
quality assessment (QA) band, QA60 bitmask, was then adopted to mask clouds. The 10-m
bands, including blue, green, red, and near-infrared (NIR), and the 20-m bands, including
red edge and shortwave infrared (SWIR), were used for further analysis. Overall, we
leveraged 641 Sentinel-1 images and 902 Sentinel-2 images in this study (Tables S1 and S2).

2.2.2. Google Earth Images

Google Earth images were used as reference data for sample collection. This dataset
is a seamless mosaic product of multiple satellite images. It covers historical images at
multiple collection dates and zoom levels. Its highest spatial resolution can reach <1 m.
We can distinguish samples more accurately with detailed information from a very high
spatial resolution Google Earth image.

2.2.3. Elevation Data

The 30-m void-filled Shuttle Radar Topography Mission (SRTM) digital elevation
model (DEM) data [36] on GEE was used to aid forest classification, sample interpretation,
and landscape pattern analysis. It can reflect topographic features which are crucial to the
subsequent analysis. The acquisition time of National Aeronautics and Space Administra-
tion (NASA) SRTM DEM data is 2000, and we suppose the terrain has been relatively stable
over the years.

2.2.4. Land-Cover Products

Some other publicly available land-cover products that reflect relatively recent forest
status were used for intercomparison with our forest mapping result. The products include
the Finer Resolution Observation and Monitoring of Global Land Cover 10-m product
(FROM-GLC10) in 2017 [37], the European Space Agency (ESA) 10-m WorldCover product
in 2020 (ESA10) [38], the Esri 10-m Land Cover map in 2020 (ESRI10) [39], global 30-m
land-cover product in 2020 (Globeland30) [40], the European Space Agency Climate Change
Initiative (ESACCI) 300-m land-cover product in 2020 [41], and the MODIS 500-m Land
Cover Type (MLCT) product in 2016 [42].

2.2.5. Climate and Human Disturbance Data

The climate and human disturbance data were used to analyze potential environmental
drivers of the forest landscape pattern. The climate data, WorldClim data [43], consist of
~1-km spatial resolution monthly climate data for global land areas aggregated across a
temporal range of 1970–2000. It was created by spatially interpolating weather-station
data using the thin-plate splines method. The human disturbance data, Global Human
Modification (gHM) of Terrestrial Systems data [44], provide a cumulative measure of
human modification of terrestrial land. It was produced based on modeling the physical
extent of 13 anthropogenic stressors and their estimated impacts using ~1-km spatially
explicit global datasets with the median year of 2016.
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2.3. Forest-Cover Mapping
2.3.1. Feature Construction

We constructed features to distinguish forest cover as listed in Table 2. In addition to
the original band from Sentinel data, we calculated four widely-used indexes, including
normalized difference vegetation index (NDVI) [45], enhanced vegetation index (EVI) [46],
modified normalized difference water index (MNDWI) [47], and normalized difference
built-up index (NDBI) [48]. The 0, 10, 25, 50, 75, 90 and 100th percentiles of each band and
index were calculated to represent simplified time-series information [49]. For Sentinel-1
SAR imagery, the mean values of VV and VH polarizations were also calculated to reflect
the height information. For Sentinel-2 MSI, we further used the maximum NDVI values
to derive the greenest spectral composite. Other auxiliary features include geographic
features (latitude and longitude) and a topographic feature (elevation).

Table 2. The explanatory table of the constructed features for forest classification.

Data source Band Description Feature

Sentinel-1 SAR
VV Single co-polarization, vertical

transmit/vertical receive
Mean values

and percentiles
(0, 10, 25, 50, 75,

90, and 100)
VH Dual-band cross-polarization, vertical

transmit/horizontal receive

Sentinel-2 MSI

B2 Blue

Greenest
composite
values and

percentiles (0,
10, 25, 50, 75, 90,

and 100)

B3 Green
B4 Red
B5 Red Edge 1
B6 Red Edge 2
B7 Red Edge 3
B8 NIR

B8A Red Edge 4
B11 SWIR 1
B12 SWIR 2

NDVI (B8 − B4)/(B8 + B4)
EVI 2.5 × (B8 − B4)/(B8 + B4 × 6 − B2 × 7.5 + 1)

MNDWI (B3 − B11)/(B3 + B11)
NDBI (B11 − B8)/(B11 + B8)

SRTM DEM Elevation

Location
Longitude
Latitude

2.3.2. Classification System

A two-level forest classification system was used in this study to reduce the impact
of other land-cover types on forest classification. The level-1 classes were divided into
forest and non-forest. Following the International Geosphere-Biosphere Project (IGBP)
classification system [50], the forest was further divided into four level-2 classes: deciduous
broadleaf forest, evergreen needleleaf forest, deciduous needleleaf forest, and mixed forest.
Specifically, ‘forest’ referred to land with a tree canopy cover of more than 60 percent, and
trees were defined as vegetation taller than 2 m in height.

2.3.3. Sample Collection

The sample points were randomly generated in an equal-area (300-km2) hexagonal
grid. The study area was split into 487 hexagons (Figure 3). In each hexagon, 5 sample
points were first generated randomly. We then supplemented 10 random sample points
into each hexagon that contained forest samples to increase the number of forest samples.
Google Earth images, Sentinel images, and SRTM DEM data were used for sample in-
terpretation. Following the scheme in [51], the samples were double-checked to ensure
quality. A total of 3765 samples with high reliability were collected within the study area,
of which 669 samples were interpreted as forest and 3096 samples as non-forest. The forest
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sample points were further expanded considering the balance of forest classes. Finally, we
collected 207 deciduous broadleaf forest samples, 630 evergreen needleleaf forest samples,
99 deciduous needleleaf forest samples, and 162 mixed forest samples.
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2.3.4. Classification and Post-Processing

We trained the classifiers using the automated machine learning (AutoML) strategy.
The AutoGluon tool [52] was applied to automate classifier selection, hyperparameter
tuning, and classifier ensembling. The base classifiers include k-nearest neighbors, Light
Gradient Boosting Machine (LightGBM), random forests, extremely randomized trees,
CatBoost, XGBoost, and neural networks. These classifiers were trained utilizing bagging
and multi-layer stack ensembling to improve classification accuracy. The number of folds
used for bagging was 5. The indicator for classifier training performance was overall
accuracy. The parameter ‘presets’ was set to ‘best_quality’ to get the most accurate overall
classifier. The other parameters of base classifiers were initialized with default values and
optimized. Specifically, in the k-nearest neighbors, the weight was set to distance. For
LightGBM, the number of iterations was 10,000, the learning rate was 0.05, and the boosting
type was set to the traditional Gradient Boosting Decision Tree. In random forests and
extremely randomized trees, the number of trees was 300, and the criterion was set to
gini. For CatBoost and XGBoost, the number of iterations was 10,000, and the learning
rate was 0.05. In neural networks, the epoch was set to 30, the batch size was 256, and the
base and target learning rates were 0.01 and 0.1, respectively. Classification results were
then post-processed using spatial mode filtering with a 3 × 3 kernel to reduce the salt and
pepper noises.

2.3.5. Accuracy Assessment and Data Intercomparison

The collected samples were randomly split into two parts, where 70% were for train-
ing, and the remaining 30% were for testing. Accuracy assessment indicators include
overall accuracy, kappa coefficient [53], user’s accuracy, producer’s accuracy, F1 score,
and weighted F1 score. According to the testing accuracy and running time, different
classifiers were evaluated. Based on the mean decrease in the testing accuracy, the feature’s
importance to the classifier was quantified. We removed features with negative importance
in the final classifier to reduce redundancy and improve performance. To better reflect the
classification quality, we intercompared our mapping result with other land-cover products,
including FROM-GLC10, ESA10, ESRI10, Globeland30, ESACCI, and MLCT. To facilitate
the comparison, we remapped these products to forest/non-forest maps referring to the
class relationships in [24,49].
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2.4. Landscape Pattern Analysis

To characterize the forest distribution and fragmentation pattern, we calculated several
typical landscape metrics based on our forest-mapping results in Fragstats [54], including
the percentage of landscape (Occupancy), patch density (PD), edge density (ED), mean
patch size (MPS), mean Euclidean nearest neighbor distance (ENN), clumpiness index
(Clumpy), percentage of like adjacencies (PLADJ) and patch-cohesion index (Cohesion).
Considering the similarity of landscape metrics, we calculated the Pearson correlation
coefficient between every two metrics. We retained those with better performance for
highly correlated metrics in the subsequent regression analysis. The left metrics included
Occupancy, MPS, and Cohesion (Table 3). Occupancy represents the percentage of the
landscape comprised of forest, which measures landscape composition. MPS is the mean
forest patch size in the landscape, a simple measure of the extent of forest fragmentation.
Cohesion increases when forest patches are more clumped or aggregated in distribution,
measuring the physical connectedness of the forest. The analysis was conducted within a
1 km × 1 km grid.

Table 3. The landscape metrics for forest pattern analysis.

Landscape Metric Description Note

Percentage of landscape (Occupancy) Occupancy = ∑n
i=1 ai/A (100) n = number of forest patches

ai = area of forest patch i (km2)
A = total landscape area (km2)

pi = perimeter of forest patch i (km)

Mean patch size (MPS) MPS = ∑n
i=1 ai/n (100) (ha)

Patch cohesion index (Cohesion) Cohesion =
(

1− ∑n
i=1 pi

∑n
i=1 pi

√
ai

)
/
(

1− 1√
A

)
(100)

We used random forest regression to investigate the relationships between forest land-
scape metrics and environmental variables. The random forest method has the flexibility to
handle complex, high-dimensional interactions, which allows it to discover relationships
that are hidden in traditional parametric analysis and are unlikely to be proposed a priori
by a non-omniscient observer [55]. We developed a random forest regression model for
each landscape metric with environmental factors (Table 4), including climate, topography,
and human disturbance factors, as independent variables. The number of trees was set
to 500. The climate factors consist of mean annual temperature (MAT) and mean annual
precipitation (MAP) derived from WorldClim data. The topography factors were calculated
with SRTM DEM data, represented by slope, cosine of aspect (aspectCos), and relief. The
aspectCos variable decreases when the aspect is near the south direction, and the relief
variable indicates the degree of terrain relief within the local range. The human disturbance
factor, humanModification, represents the proportion of landscape modified by anthro-
pogenic stressors and impacts. The relative importance of each environmental variable
was reflected with the Gini importance indicator. Furthermore, the marginal responses of
the forest landscape metrics to important environmental variables were illustrated using
partial dependence plots. Besides this, the performance (R2) of random forest regression
models was evaluated with the out-of-bag data.

Table 4. The environmental variables for forest landscape pattern analysis.

Factor Variable Description Data Source

Climate
MAT Mean annual temperature (◦C)

WorldClimMAP Mean annual precipitation (mm)

Topography
slope (◦)

SRTM DEMaspectCos aspectCos = cosine(aspect)

relief

relief = Emax − Emin (m), where Emax
and Emin are maximum, minimum

values of elevation within a 3 × 3 range,
respectively.

Human disturbance humanModification The indicator of human modification gHM
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3. Results
3.1. Optimal Classifier and Feature for Forest Classification

The comparison result of classifiers (Table 5) showed that the multi-layer stack en-
sembling strategy did help improve the performance in forest classification. In general,
the ensemble learning classifier outperformed base classifiers such as random forest and
CatBoost. For instance, the ensemble learning classifier achieved a 5.62% gain in the overall
accuracy over the k-nearest neighbors base classifier. Meanwhile, the classifiers at the
high stack level generally yielded higher accuracies than those at the low stack level. For
example, the overall accuracy was improved from 91.73% to 95.20% when we increased
the extremely randomized trees base classifier from the first stack level to the second stack
level. However, there was an exception where the overall accuracy of the ensemble learning
classifier in the second stack level (94.97%) was slightly lower than that of the XGBoost
base classifier in the first stack level (95.08%). Regarding efficiency, the neural network
base classifier consumed the longest marginal training time (2585 s) and prediction time
(32 s), whereas it yielded a relatively lower accuracy than other base classifiers such as
LightGBM and XGBoost. Overall, the multi-layer stack ensembling classifier achieved
the best accuracy in terms of overall accuracy (95.44%), kappa coefficient (0.8366), and
weighted F1 score (95.35%). Therefore, we chose the ensemble learning classifier as the
optimal classifier for subsequent analysis.

Table 5. Comparison of classifiers in terms of level-1 forest classification accuracies and running time *.

Classifier Overall
Accuracy Kappa Weighted F1 Training Time

(s)
Prediction
Time (s) Stack Level

WeightedEnsemble_L3 95.44% 0.8366 95.35% 3.1285 0.0023 3
LightGBM_BAG_L2 95.35% 0.8342 95.23% 97.7112 1.5135 2

ExtraTreesGini_BAG_L2 95.20% 0.8327 95.19% 1.0046 0.1096 2
XGBoost_BAG_L2 95.15% 0.8321 95.07% 271.8431 6.8048 2

RandomForestGini_BAG_L2 95.11% 0.8315 95.07% 6.1541 0.1130 2
NeuralNetFastAI_BAG_L2 95.08% 0.8302 95.11% 2584.8642 31.8396 2

XGBoost_BAG_L1 95.08% 0.8300 95.06% 568.8886 8.6990 1
CatBoost_BAG_L2 95.03% 0.8295 95.01% 178.3345 0.4817 2

WeightedEnsemble_L2 94.97% 0.8288 94.66% 3.8371 0.0058 2
LightGBM_BAG_L1 94.87% 0.8271 94.57% 205.4603 3.7624 1
CatBoost_BAG_L1 94.66% 0.8240 94.41% 456.5169 0.5143 1

NeuralNetFastAI_BAG_L1 93.94% 0.8184 93.75% 2731.8908 29.8472 1
RandomForestGini_BAG_L1 92.46% 0.7906 92.42% 6.5490 0.2591 1

ExtraTreesGini_BAG_L1 91.73% 0.7807 91.26% 1.0625 0.1114 1
KNeighborsDist_BAG_L1 89.82% 0.7445 89.36% 0.0992 5.3558 1

* WeightedEnsemble, LightGBM_BAG, ExtraTreesGini_BAG, XGBoost_BAG, RandomForestGini_BAG, Neural-
NetFastAI_BAG, CatBoost_BAG, and KNeighborsDist_BAG represent ensemble learning, LightGBM, extremely
randomized trees, XGBoost, random forests, neural networks, CatBoost, and k-nearest neighbors, respectively.
The suffixes L3, L2, and L1 refer to stack levels.

According to the feature importance (Figure 4), a total of 29 multi-dimensional features
were applied in the final classifier, illustrating the usefulness of integrating multi-source
information. Elevation and longitude were the leading features for forest classification,
implying that the vertical and longitudinal zonality of forest distribution was crucial.
Among spectral bands, the importance of red edge (B5, B6, B8A), red (B4), and NIR (B8)
bands was relatively high, indicating that forests could be differentiated most in these
corresponding spectral ranges. Meanwhile, EVI was the most effective spectral index
for forest classification compared with other indexes such as NDVI. Besides, VV and VH
polarizations also made significant contributions to forest classification. It makes sense that
the SAR data help distinguish forests since they are sensitive to the geometric characteristics
of the ground objects. Moreover, percentile features occupied 25 out of all the 29 features,
confirming that multi-temporal information was essential in forest identification.
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3.2. Reliability of Forest Mapping Result

The obtained forest-mapping result across Qilian Mountains (Figure 5) was validated
using test samples. The confusion matrices were calculated to evaluate accuracies. As
reported in Table 6, the overall accuracy, kappa coefficient, and weighted F1 score of the
level-1 forest/non-forest map reached 95.49%, 0.8384, and 95.38%, respectively, which
proved the effectiveness of the overall mapping framework. The producer’s accuracy of the
forest class was 81.59%, while the user’s accuracy of the forest class was 92.13%, indicating
that the area of forests may be slightly underestimated. The accuracy for the non-forest
class was relatively high, where both the producer’s accuracy and user’s accuracy were
over 96%. In terms of the level-2 forest-cover-mapping result (Table 7), the overall accuracy,
kappa coefficient, and weighted F1 score reached 78.05%, 0.6593, and 78.81%, respectively,
further confirming the reliability of the proposed forest-mapping framework. Specifically,
the F1 scores of deciduous broadleaf, evergreen needleleaf, deciduous needleleaf, and
mixed forest class were 71.76%, 85.30%, 65.67%, and 70.27%, respectively. Among them,
the identification of evergreen needleleaf forest was better than other forest classes, which
may be related to the lower distribution of other forest classes (Figure 5).

Table 6. The confusion matrix for our level-1 forest-cover map using the test samples.

Class Non-Forest Forest Producer’s Accuracy User’s Accuracy F1

Non-forest 915 14 98.49% 96.11% 97.29%
Forest 37 164 81.59% 92.13% 86.54%

Overall accuracy = 95.49% Kappa = 0.8384 Weighted F1 = 95.38%

Table 7. The confusion matrix for our level-2 forest-cover map using the test samples.

Class Deciduous
Broadleaf

Evergreen
Needleleaf

Deciduous
Needleleaf Mixed Forest Producer’s

Accuracy
User’s

Accuracy F1

Deciduous broadleaf 47 6 4 5 75.81% 68.12% 71.76%
Evergreen needleleaf 13 148 11 17 78.31% 93.67% 85.30%
Deciduous needleleaf 3 2 22 2 75.86% 57.89% 65.67%

Mixed forest 6 2 1 39 81.25% 61.90% 70.27%
Overall accuracy = 78.05% Kappa = 0.6593 Weighted F1 = 78.81%

Comparison results with other land-cover products further demonstrated the qual-
ity of our forest map. Quantitative accuracies with the test samples are listed in Table 8.
The overall accuracy of FROM-GLC10, ESA10, ESRI10, Globeland30, ESACCI, and MLCT
was 93.37%, 91.86%, 92.58%, 88.32%, 87.88%, and 83.45%, respectively. In contrast, ours
was 95.49%, 2.12–12.04% higher than these other products. With the kappa coefficient or
weighted F1 score as the indicator, the accuracy gap also existed or even expanded. Com-
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parison results in selected locations are visualized in Figure 6. Among all products, ESA10,
ESACCI, and MLCT could hardly identify the forest distribution, while GlobeLand30 and
ESRI10 provided relatively poor spatial details of the forest. FROM-GLC10 depicted a
forest pattern similar to our mapping result but slightly overestimated the forest areas. In
contrast, our mapping result was more reasonable and richer in detail. Although class
definitions, mapping methods, and data sources vary among products, our forest mapping
results showed the best visual correspondence with Google Earth images.
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Table 8. Comparison of our mapping result, FROM-GLC10, ESA10, ESRI10, GlobeLand30, ESACCI,
and MLCT in terms of accuracies.

Data Overall Accuracy Kappa Weighted F1

Ours 95.49% 0.8384 95.38%
FROM-GLC10 93.37% 0.7892 93.33%

ESA10 91.86% 0.7671 91.96%
ESRI10 92.58% 0.7649 92.51%

Globeland30 88.32% 0.5990 88.30%
ESACCI 87.88% 0.4519 85.52%
MLCT 83.45% 0.1150 77.15%
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3.3. Environmental Determents of Forest Landscape Pattern

The forest patch distribution in Qilian Mountains revealed certain selectivity and
preference regarding geographic and topographic habitats (Figure 7). It can be seen that the
forests were mainly concentrated in the eastern regions. Correspondingly, the forests were
rare and scattered in the western regions, covered mainly by short vegetation or permanent
snow. The forest landscape pattern was also closely related to the elevation gradient.
Occupancy, MPS, and Cohesion of forests reached peak values near 3000 m. As the elevation
increased or decreased, the forest landscape metrics gradually decreased. Generally, the
forests were most densely distributed in regions with low-to-medium elevations ranging
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from 2500 m to 3500 m. In addition, the distribution of forests showed a preference for the
aspect. As illustrated in Figure 7, when the north aspect with positive aspectCos values
was compared, the forest patches depicted a lower occupancy and higher fragmentation
degree (low MPS and Cohesion) in the south aspect with negative aspectCos values.
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The random forest regression models for the forest landscape pattern performed well
generally. The R2 of models for Occupancy, MPS, and Cohesion based on out-of-bag data
reached 0.91, 0.80, and 0.85, respectively. In terms of the relative importance of environmen-
tal factors (Figure 8), the three models of landscape metrics showed high consistency. The
top important variables were MAT and MAP, demonstrating that the climate factor was the
critical determent of the forest landscape pattern in the Qilian Mountains. Simultaneously,
the importance of MAT was higher than that of MAP, indicating a stronger influence from
the temperature conditions. The terrain relief made the third important contribution to
the forest landscape pattern, whereas other local scale topographic variables (slope and as-
pectCos) showed relatively limited influence in the models. Similarly, human disturbance,
represented by humanModification, did not reveal a prominent impact.

The marginal response curves of forest landscape metrics to the top three environmen-
tal variables were drawn in Figure 9. With MAT increasing, the forest landscape metrics
showed approximately three-stage responses. The MAT of −5 ◦C, acted as a threshold,
below which Occupancy, MPS, and Cohesion stayed as low as 6%, 0.8 ha, and 61%, re-
spectively, then forest landscape metrics grew almost linearly with increasing MAT until
another threshold value of about 1 ◦C, above which the three metrics declined from 30%,
5.2 ha, and 86%, respectively. The forest landscape metrics showed similar response curves
to MAP, with a fluctuant increase as MAP increased from 100 mm to 450 mm and a slight
decline as MAP reached over 450 mm. Moreover, the forest landscape metrics showed
roughly increasing responses to the terrain relief from 0 m to 500 m. When the terrain relief
was above 500 m, Occupancy, MPS, and Cohesion gradually stabilized at about 25%, 5 ha,
and 82%.
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(g) Cohesion to MAT; (h) Cohesion to MAP; (i) Cohesion to relief.
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4. Discussion

In this study, we proposed a forest classification framework based on an automated
ensemble learning approach. Compared with the human–computer interaction method,
machine learning algorithms showed good performance in terms of efficiency and ac-
curacy in forest classification research [56]. The AutoML strategy can further improve
classification efficiency by automating the classifier construction process. Specifically,
we applied an automated ensemble machine learning strategy in leveraging a group of
machine learning algorithms for forest classification. We also conducted multi-classifier
and multi-feature performance comparisons, providing potential guidance for model and
feature selection in forest-mapping practices. Experimental results demonstrated that en-
semble learning (multi-layer stack ensembling classifier) achieved satisfactory classification
accuracy, despite requiring more training time. Meanwhile, it highlights the trade-off be-
tween classification accuracy and computational cost in ensemble learning. For particular
research and application needs, the balance between the accuracy and cost can be further
achieved by adjusting parameters such as the target accuracy level and training time limit.
In addition, comparison results among multiple land-cover products showed that our forest
map was rich in detail and had higher accuracy. It further reflects the effectiveness and
potential of the adopted automated ensemble machine learning framework to improve the
forest mapping quality. Although deep learning algorithms with high-level representation
capability have outperformed shallow machine learning techniques in some recent forest
classification studies [18,22], we leveraged the latter in this study. On the one hand, the in-
terpretability of deep learning algorithms is challenging. On the other hand, deep learning
algorithms are more suitable for the information mining of very high-spatial-resolution
remote sensing images. In contrast, the automated ensemble machine learning approach
proved robust and cost-effective. Furthermore, the interpretability of variable importance
can provide insights into the optimal choice of features in forest mapping.

A scheme of forest landscape pattern evaluation based on forest mapping data was also
presented in this study. Unlike the data-acquisition method based on field surveys, remote
sensing provides an unprecedented perspective on forest cover and patterns, allowing
continuous maps to be constructed and spatiotemporal patterns of forest landscape to
be analyzed [30]. The high-precision forest map developed based on remote sensing
images can be a potential high-quality, low-cost data source for ecological and other
related research. Simultaneously, the scheme of forest landscape pattern analysis based
on the forest map can provide a reference for related research. Generally, the current use
and interpretation of landscape metrics are constrained by the challenges of choosing a
parsimonious suite of metrics for a particular application, given the plethora of existing
metrics [57–59]. In this study, by comparing the similarity and complementarity of multiple
landscape metrics, we obtained three metrics (including Occupancy, MPS, and Cohesion)
with relatively strong sensitivity and characterization capacity to reflect forest distribution
and landscape patterns. This can provide potential guidance for choosing metrics in other
related studies. In addition, based on the forest landscape pattern, we further analyzed
the driving effects of factors such as climate, topography, and human disturbance, which
can help to understand the environment and conditions suitable for continuous forest
distribution. The analysis results revealed that the forests in Qilian Mountains tend to be
distributed in a relatively warm and humid environment. Our findings emphasized the
critical role of the climatic factor in the forest landscape, which may carry implications for
the protection and sustainable management of forests in the context of climate change.

However, some limitations and difficulties are still expected to be explored in future
research. First, compared to the pixel-based method, the object-based method can aggregate
a group of pixels together as an object, facilitating integration to form stronger features and
information. In some land-cover classification studies, the object-based method improved
accuracy and reduced noise [60]. Forests are also suitable for identification as patches.
However, the parameter setting of the object segmentation method is a significant challenge.
In this study, we used the pixel-based method to maintain rich details in the forest-mapping
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results. In future research, object-based forest classification optimization in areas with
low local accuracies is worth attempting. Second, the obtained forest-cover map based on
single-year remote sensing images is insufficient to provide richer information. On the one
hand, future work should focus on classifying forest types or tree species with more classes
to obtain more detailed results [61]. On the other hand, dynamic forest data are urgently
needed to monitor forest status (such as forest degradation, loss, and restoration) and
understand forest responses to natural disturbance and extreme weather events [62]. Third,
the uncertainty in the results of forest landscape pattern analysis due to misclassification
and mixed pixels should be acknowledged. Although the automated ensemble learning
framework provided high-precision forest-mapping results, some classification errors still
exist, which may cause certain deviations in the distribution of forest patches. Meanwhile,
due to limitations in spatial resolution and spectral heterogeneity, mixed pixels may also
interfere with forest landscape analysis [63]. In addition, with Sentinel data of 10-m
spatial resolution, it is still difficult to capture small, highly fragmented forest patches.
To tackle the issue, the forest-mapping framework should be further improved, probably
using finer-spatial-resolution remote sensing images and a subpixel unmixing method in
future works.

5. Conclusions

Timely and accurate forest information is critical for many scientific applications, yet
forest-cover classification over mountainous areas remains challenging. In this study, lever-
aging multi-source remote sensing data (Sentinel-1, Sentinel-2) and automated ensemble
learning algorithms, we developed a robust and cost-effective framework for forest-cover
mapping. Based on this framework, we achieved high-precision and refined identification
of forest cover in the Qilian Mountains. The results showed that ensemble learning was
relatively robust and performed better than other base classifiers including k-nearest neigh-
bors, LightGBM, random forests, extremely randomized trees, CatBoost, XGBoost, and
neural networks. In addition to topographic and geographic information, the percentile
spectral reflectance and SAR features were essential in forest cover classification. The
overall accuracy of the level-1 and level-2 forest-cover maps produced reached 95.49% and
78.05%, respectively. Compared to other land-cover products, our mapping result was rich
in detail and had good quality. These results elucidated the robustness and reliability of the
developed framework in forest classification and demonstrated the potential and prospect
of applying the framework on larger scales.

In addition, the forest landscape and fragmentation process can impact the ecosystem
functions and services. However, few studies have explored the forest landscape pattern
or its driving factors in ecologically fragile mountainous areas. In this context, combined
with landscape metrics (Occupancy, MPS, and Cohesion) and the random forest regression
method, we also designed an evaluation scheme for the forest landscape pattern and its
influencing factors. Based on this scheme, we also found that the distribution of forest
patches in the Qilian Mountains revealed certain selectivity and preference regarding
geographic and topographical habitats. Forests were most densely distributed in the
eastern regions with low-to-medium elevations and shady aspects. The regression models
with climate, topography, and human disturbance factors explained 85–91% of the forest
landscape pattern. Among them, climate was the critical environmental determent in
the Qilian Mountains. Specifically, the top three environmental variables included MAT,
MAP, and terrain relief. These findings, along with the forest mapping result, can support
regional forest protection and ecological assessment, and provide implications for natural
resource management and ecological restoration.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs14215470/s1, Table S1: List of Sentinel-2 images used in this study,
Table S2: List of Sentinel-1 images used in this study.
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