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Abstract: The ocean chlorophyll-a (Chl-a) concentration is an important variable in the marine
environment, the abnormal distribution of which is closely related to the hazards of red tides. Thus,
the accurate prediction of its concentration in the East China Sea (ECS) is greatly important for
preventing water eutrophication and protecting the coastal ecological environment. Processed by
two different pre-processing methods, 10-year (2011–2020) satellite-observed chlorophyll-a data and
logarithmic data were used as the long short-term memory (LSTM) neural network training datasets
in this study. The 2021 data were used for comparison to prediction results. The past 15 days’ data
were used to predict the concentration of chlorophyll-a for the five following days. Results showed
that the predictions obtained by both pre-processing methods could simulate the seasonal distribution
of the Chl-a concentration in the ECS effectively. Moreover, the prediction performance of the model
driven by the original values was better in the medium- and low-concentration regions. However, in
the high-concentration region, the prediction of extreme concentrations by the two data-driven LSTM
models showed underestimation, considering that the prediction performance of the model driven by
the original values was better. Results of sensitivity experiments showed that the prediction accuracy
of the model decreased considerably when the backward prediction time step increased. In this study,
the neural network was driven only by chlorophyll-a, whose concentration in the ECS was forecasted,
and the effect of other relevant marine elements on Chl-a was not considered, which is the current
weakness of this study.

Keywords: LSTM; chlorophyll-a; East China Sea

1. Introduction

In marine ecosystems, marine phytoplankton chlorophyll-a (Chl-a) can effectively
reflect the biomass of marine primary producers and the photosynthetic carbon seques-
tration capacity of marine primary productivity [1–5], which are fundamental to marine
ecosystems. The prediction of the marine chlorophyll-a concentration and the analysis
of its spatial and temporal changes are not only useful for the study of marine primary
productivity, but also important for the study of carbon cycling in the ocean–atmosphere
system [6,7], red tide hazard monitoring [8–10], environmental monitoring [11], ocean
currents (such as upwelling and coastal currents) [12,13], as well as fishery management
and the estimation of aquaculture production [14].

The chlorophyll-a concentration is influenced by many factors, such as climatic fac-
tors, namely light, temperature, precipitation, and wind speed [15,16], and geographical
factors [17,18]. In addition, in the early period, a relative paucity of data relating to the
Chl-a concentration was observed, leading to a high level of uncertainty in its prediction.
The prediction methods could be broadly categorized into two methods. The first is the
statistical method, which was first proposed by Vollenweider [19], who used statistical
models to predict the issue of eutrophication. Kiyofuji et al. [20] developed a statistical
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spatiotemporal model to predict the distribution of chlorophyll-a in the Sea of Japan on the
basis of SeaWiFS data. Although the model was able to predict its distribution effectively
during summer and early autumn, this traditional statistical method could only solve
the average concentration of a particular element and could not simulate the effect of
relevant factors on chlorophyll-a. The second method is based on ecological dynamics,
the properties of water bodies, and establishing a theoretical analysis model to predict the
concentration of chlorophyll-a [21–23]. Using data collected monthly, Liu et al. [24] used
multivariate statistical methods to simulate the effects of multiple chemical variables on
chlorophyll-a in Lake Qilu. This method considers the interactions between elements in
nature and includes many parameters, thereby causing difficulty in accurate modeling or
parameterization due to the diversity of water quality variables in the ocean.

The research on remote sensing monitoring of chlorophyll-a and remote sensing
inversion has become increasingly sophisticated with the development of satellite remote
sensing technology. Moreover, a large amount of water quality data can be obtained as the
access to information becomes more diverse. A new trend in recent years has been the use of
machine learning methods for water quality variable prediction. Machine learning methods
can capture the characteristics of the input data to explore the potential relationships
between variables, and narrow the difference between predictions and observations by
updating the parameters in the model. The most widely used machine learning methods
at present include artificial neural networks (ANN, [25–29]), support vector machine
(SVM, [30–32]), decision tree (DT), random forest (RF, [32–35]), and regression, etc. Deep
learning (DL) is a special type of machine learning [36]. Zhang et al. [37] proposed a new
prediction approach for algal blooms on the basis of deep learning to represent and predict
highly dynamic and complex phenomena. Most current studies use independent deep
learning models for chlorophyll-a concentration prediction. Several deep learning models,
such as the recurrent neural network (RNN) and its variant, the long short-term memory
neural network (LSTM), are commonly used in time-series forecasting. Both approaches
have good performance in dealing with time-series information problems. Compared with
the traditional RNN, LSTM does not have the problem of gradient disappearance in the
process of training long-term sequences. Therefore, the LSTM model can effectively predict
the chlorophyll-a concentration [38–40]. Yossof et al. [41] used an LSTM model and a
convolutional neural network (CNN) model to predict harmful algal blooms on the western
coast of Sabah. The results show that the LSTM model outperforms the CNN model in
terms of prediction accuracy. Barzegar et al. [42] first built a coupled CNN–LSTM model to
predict water quality variables in Small Prespa Lake, Greece, and the results showed that
the hybrid CNN–LSTM model was better than the independent model in predicting the
chlorophyll-a concentration.

The Eastern China Sea (ECS) area is under the influence of the East Asian monsoon;
the chlorophyll-a concentration in the ECS has evident seasonal variation characteristics
and is influenced by land runoff, mainly from the Yangtze River [43–45]. The distribution
of it in the East China Sea is also influenced by the Kuroshio, with high-temperature and
high-salt seawater [46,47]. The Eastern China Sea area has a long coastline, of which
the Zhejiang coast is one of the famous upwelling areas in China, and it has important
fishing grounds, such as the Zhoushan and Yushan fishing grounds [48]. With the rapid
development of coastal cities in recent years, the frequency of red tides in the ECS has
increased substantially [14,49], not only polluting the marine environment of this region
but also severely damaging the fishery resources, leading to huge economic losses [50].
Therefore, accurate prediction of the chlorophyll-a concentration in this area is important
for the prevention of eutrophication and the protection of the offshore ecosystem.

Machine learning methods have been applied to research on forecasting ocean ele-
ments, such as storm surges [51], harmful algal blooms (HAB), and sea surface temperature
(SST) in the ECS. Xu et al. [52] used the SVM model to predict the occurrence of red tides in
Haizhou Bay in the ECS. Xiao et al. [53,54] used a combined LSTM–AdaBoost model and a
convolutional LSTM (ConvLSTM) model to predict the SST field in the ECS, respectively.
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The results showed that the LSTM–AdaBoost and ConvLSTM models have good promise
in accurately predicting the short- and medium-term SST fields.

At present, no research has used machine learning to predict the chlorophyll-a con-
centration in the East China Sea area. Thus, this study first uses the LSTM neural network
to predict the concentration in this region. The specific objectives of this research are
(1) comparing the effects of different processing methods for chlorophyll-a data on the
forecast result; and (2) evaluating the prediction results of the LSTM neural network in
the ECS on the basis of the previous step by using the optimal processing method for
chlorophyll-a data.

The rest of this paper is organized as follows, Section 2 describes the satellite data and
LSTM neural network used in this study, Section 3 presents the experimental results and
detailed discussion, and Section 4 draws the conclusions obtained from this study.

2. Materials and Methods
2.1. Materials

This study uses the ocean color data product (OCEANCOLOUR_GLO_BGC_L4_MY_009
_104) provided by the Copernicus Marine Environment Monitoring Service (CMEMS,
http://www.copernicus.eu/ (accessed on 11 July 2022)). This product integrates data from
SeaWiFS, MODIS-Aqua, MODIS-Terra, MERIS, VIIRS-SNPP, OLCI-S3A&S3B, and other
satellites. The time resolution is 1 day, the spatial resolution is 4 km × 4 km, and the time
span is from September 1997 to the present. The spatial range of chlorophyll-a data used in
our study is 22◦N–33◦N, 120◦E–131◦E, and the time range is from 2011 to 2021, of which
the data from 2011 to 2020 are used as the training dataset, and the chlorophyll-a data from
2021 are used as the test dataset.

2.2. Methods
2.2.1. LSTM Neural Network

LSTM was proposed by Hochreiter and Schmidhuber in 1997 [55] as a variant neural
network of RNN for long-time-series training. It can effectively solve the gradient disap-
pearance problem, which easily occurs in the training process of the traditional RNN. The
internal network structure of the LSTM unit is more complex than that of the traditional
RNN. The information in the current unit is processed by the input gate, forgetting gate,
and output gate, and then the historical unit information is selected to be either “forgotten”
or “remembered”.

The two most important states in the LSTM cell structure are the cell state c(t) and
the hidden state h(t). The cell state transmits information through different gates, thereby
enhancing the dependency among long-time-series information; the cell structure is shown
in Figure 1.

First, the function of the forget gate ft is to select which information needs to be
discarded in the current state of the cell. ft is calculated as follows:

ft = σ
(

W f hht−1 + W f xxt + b f

)
(1)

where σ(·) represents the sigmoid activation function, W f h and W f x represent the corre-
sponding weight parameters, xt represents the input at moment t, ht−1 represents the
hidden state of the cell at moment t− 1, and b f is the bias term.

Second, the function of the input gate it is to remember the candidate cell state
selectively, thereby updating the cell state at the current moment, and a new cell state C̃t is
generated by the following calculation formula:

it = σ(Wihht−1 + Wixxt + bi) (2)

C̃t = tanh(Wchht−1 + Wcxxt + bc) (3)

Ct = ft × Ct−1 + it × C̃t (4)

http://www.copernicus.eu/
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where σ(·) represents the sigmoid activation function; Wih, Wix, Wch, and Wcx represent the
corresponding weight parameters, xt represents the input at moment t, ht−1 represents the
hidden state of the cell at moment t− 1, C̃t represents the candidate state at the current
moment, and bi and bc are bias terms.
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Then, the output gate ot is used to determine the output component of the cell state
through the sigmoid function, whereas the cell state is processed through tanh and multi-
plied with the output gate ot to obtain the new hidden state ht; the calculation formula is
as follows:

σt = σ(Wohht−1 + Woxxt + bo) (5)

ht = ot × tanh(ct) (6)

where σ(·) represents the sigmoid activation function, Woh and Wox represent the corre-
sponding weight parameters, xt represents the input at moment t, and bo represents the
bias term.

2.2.2. Architecture of the LSTM Model for Chl-a Forecasts

In this study, a regional chlorophyll-a concentration prediction model is established
on the basis of the LSTM neural network, including an input layer, three LSTM layers, a
dropout layer, and a dense layer, as shown in Figure 2. Dropout is a method to control the
complexity of the model. In each training batch, a certain number of hidden nodes are set
to 0 to reduce the interaction between hidden nodes, thereby preventing the model from
overfitting [56,57]. During training, we use tanh as the activation function to generate the
output of hidden neurons. Adam optimization is a stochastic gradient descent method
based on the adaptive estimation of first- and second-order moments; compared with other
stochastic optimization algorithms, the Adam algorithm has more advantages in practical
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applications [58]. Therefore, in this study, we adopt the Adam optimization algorithm to
minimize the error between predicted and observed values.
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2.2.3. Data Pre-Processing

To investigate the effect of different input data on the prediction results of the LSTM
model, one group used the original data as input to the model, and the other group used
the logarithmic data as input to the LSTM model. Both groups used the data of the previous
15 days to predict the value of the next 5 days. Data from 2011 to 2020 were used to generate
the corresponding training and validation datasets, where the ratio of the data volume of
the training dataset to the validation dataset was 4:1. Data from 2021 were used as a test
dataset to make predictions for chlorophyll-a, which was excluded from the model training
to ensure relative independence between the training and test datasets. To explore the
influence of input length on the prediction results of the LSTM model, under the condition
that hyperparameters, such as the number of hidden layers, the neurons, and the learning
rate, do not change, the prediction length was controlled to 1 day, and the input length was
set to 7, 10, and 15 days, respectively. Similarly, to explore the influence of the prediction
length on the prediction results of the model when the other hyperparameters remain
unchanged, the input length was controlled to 15 days, and the prediction length was set
to 1, 3, and 5 days, respectively. The training dataset used in the training model needed
to be standardized. In the process of standardizing the data, we used the MinmaxScaler
function imported from the sklearn library to scale the data of the training dataset to (−1, 1)
to obtain the standardized training dataset.

2.2.4. Evaluation Functions

To compare the performance of the different methods further, the following indicators
were used in this study to evaluate model performance: root mean square error (RMSE),
standard deviation (STD), coefficient of determination (R2), and absolute error (AE). The
formulas are shown below.

RMSE =

√
1
n ∑n

t=1(Yt − yt)
2 (7)

S =

√
∑n

t=1(xt − x)2

n− 1
(8)
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R2 = 1− ∑n
t=1(Yt − yt)√

∑n
t=1
(
Yt −Y

)2
(9)

AE = |Yt − yt| (10)

where Y represents the satellite-observed value, Y represents the average of the satellite-
observed values, y represents the model-predicted value, and y represents the average of
the model-predicted chlorophyll-a values. x represents the value from satellite observations
or model forecasts, and x represents the average of the values from satellite observations
or model forecasts. Small RMSE and AE values indicate the high forecast accuracy of
the model. The closer the value of S to the STD of the observed values, the better the
prediction performance of the model. The closer the value of R2 to 1, the higher the fitness
between the predicted and observed values.

3. Results

The chlorophyll-a concentration in the East China Sea varies widely from nearshore to
offshore due to the influence of surface runoff. It also has substantial seasonal variations
due to environmental factors, such as monsoons and ocean currents. Therefore, this study
selected four points, marked as L1 (32.1◦N, 122.2◦E), L2 (28.0◦N, 123.4◦E), L3 (30.8◦N,
124.9◦E), and L4 (23.8◦N, 126.9◦E), as shown in Figure 3, to analyze the chlorophyll-a
concentration predicted by the LSTM model. L1 was selected because the annual mean of
the chlorophyll-a concentration at this location is higher, as well as the standard deviation
of the concentration. L2 and L3 were selected because these points are located in the
median area of the annual mean chlorophyll-a concentration; the coefficient of chlorophyll-
a variation is higher at L2. L4 was selected because the concentration in location L4 is lower
in the distant sea area.
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Figure 3. (a) Spatial distribution of annual mean Chl-a concentration from 2021 satellite observations
in ECS. (b) Spatial distribution of the standard deviation of the Chl-a concentration from 2021 satellite-
observed data in ECS. (c) Spatial distribution of the coefficient of variation in the Chl-a concentration
from 2021 satellite-observed data in ECS. L1, L2, L3, L4 are the four different points selected.

3.1. LSTM Prediction Results under Different Data Pre-Processing Methods

First, this study discussed the effect of chlorophyll-a data obtained from different
data pre-processing methods on the prediction performance of the LSTM model. Original
and logarithmic data of the past 15 days were used as the inputs to the neural network to
predict the chlorophyll-a concentration for the following one day.

Figure 4 shows the variation in concentration predicted by the LSTM model at different
locations and the real concentration observed by a satellite over time. The red line indicates
the data from satellite observations, the blue line is the concentration predicted when using
the original data as input to the neural network, and the green line is the concentration
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predicted when using the logarithmic data as input to the neural network. Figure 4a–d show
that both data processing methods can accurately predict the variations in the chlorophyll-a
concentration. In terms of the prediction of the extremum, when using logarithmic data
as input to the neural network, the predicted extremum of the concentration is smaller
than the satellite observations; when using original data as the input to the neural network,
the extremum of the concentration is better predicted in the regions with medium and
low concentrations (Figure 4b–d). In addition, both LSTM models can better predict
the concentration of chlorophyll-a at times when its value changes gently. In the region
with a higher concentration (Figure 4a), the predicted values of both models severely
underestimate the extremum of it in the two time periods when the concentrations reach
their peak (Figure 4a). Figure 4b shows that a similar underestimation occurs around
April 1 and during the chlorophyll-a peak at the end of October, when logarithmic data are
used as input to the neural network. According to Figure 4d, the predicted values obtained
when using logarithmic data as input to the model are underestimated most of the time.
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Figure 4. Chl-a data from satellite observations at different points and the results predicted by LSTM
models using two different data processing methods, where the red solid line shows the data from
satellite observations, the blue solid line shows the result data predicted using the original data
as the input to the neural network, and the green solid line shows the results predicted using the
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with satellite observations for each of the four points in 2021. The vertical coordinate is the Chl-a
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According to Figure 5, it can be seen that, most of the time, the error between the
observed and predicted value of the two LSTM models is small. However, the neural
network does not predict the concentrations well when transient and drastic changes in
concentrations occur. Moreover, the time points at which the errors are larger are mostly
concentrated at times when the concentrations undergo dramatic changes. It can be seen
from Figure 5d that when using logarithmic data as input data in the LSTM model, the
predicted values of chlorophyll-a are underestimated most of the time.
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coordinate is the number of days.



Remote Sens. 2022, 14, 5461 9 of 16

The chlorophyll-a distribution in the East China Sea area has substantial seasonal
variation. Figure 6 shows the seasonal distribution of the values from satellite observations
and the predicted values of the two LSTM models using the two different data processing
methods. The predicted results of both neural networks can accurately simulate the
seasonal variation, but the predicted values are lower than the observed values when using
logarithmic data as the input in the high-value nearshore region. The seasonal distribution
of the predicted values has better accuracy on the nearshore and offshore when the original
data are used as input. Figure 7 shows that when using the original data as the input,
the AE between the predicted values and the observed values is small. The inaccuracies
are mainly concentrated in the high- and medium-concentration regions; they are mostly
less than 0.5 mg/m3. When using the logarithmic data as input, the AE is relatively large,
especially in the high-value nearshore region and on the offshore, where the concentration
is low; the error between predicted and observed values is small.
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Figure 8 shows that the spatial distribution of RMSE for concentrations predicted
by the two different LSTM models has high agreement overall. Figure 8c shows that the
RMSE of the prediction results using the original data as input is larger in most high and
median regions of the nearshore compared with that using logarithmic data as input. In
this study, the RMSEs for the prediction results of the two models were divided by the
values of their average, and the spatial distribution of this result was drawn, as shown
in Figure 9. The predicted results using the original data are larger in most areas of the
median region compared with those using logarithmic data as input, whereas the opposite
is true in most areas of the low-value region in the distant ocean.

Figure 10 shows that, in terms of STD, the forecast results at three locations (i.e.,
high-value area (L1), medium-value area with a small coefficient of variation (L2), and
low-value area (L4)) have better prediction performance when using the original data as
input to the neural network, whereas the correlation coefficients between the observed
values and the predicted results of the two different models at the four positions do not
differ considerably. Although the correlation coefficient values between the observed
values and the predictions using the two different models are close in L1, their correlation
coefficient values are low (only 0.64); combined with R2 in Table 1, the LSTM model is
prone to errors when predicting the concentration of chlorophyll-a in high-value areas.
In L3, although the difference in the RMSE and correlation coefficients of the observed
values and the predictions of the two models is relatively small, the prediction performance
using the logarithmic data as input is better in terms of R2 in the medium area with a
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large coefficient of variation. The predictions of the two different LSTM models in the
four different locations, except L3, indicate that the neural network using the original
data as input has better prediction performance for the three other points based on R2.
Therefore, we use the original data as the input of the neural network for further work in
the subsequent sections.
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3.2. LSTM Prediction Results with Different Input and Output Lengths

Table 2 shows that the neural network has the best prediction performance when
forecasting 1 day at four different locations, after which the prediction performance of the
neural network decreases as the number of forecast days increases.

According to Table 3, in terms of RMSE and STD, the prediction performance of
the neural network in the region with a high concentration (L1) and that with a medium
concentration and low coefficient of variation (L2) was optimal when the input length was
15 days. In the medium-concentration area with a large coefficient of variation (L3) and the
low-concentration area (L4), the RMSE and STD were close when the input length was 15
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and 7 days. In addition, the prediction performance of the neural network with the input
length of 7 days was slightly better than that with the input length of 15 days. In terms of
correlation coefficient, the predicted results in the region of high concentration (L1) and
that in the region of medium concentration with a small coefficient of variation correlated
best with observations when the input length was 15 days. Moreover, in the region of
medium concentration with a large coefficient of variation (L3) and in the region of low
concentration (L4), the predictions correlated best with observations when the input length
was 7 days. In terms of R2, the high-concentration area (L1) and medium-concentration
area (L2, L3) had the optimal prediction performance when the input length was 15 days; by
contrast, in the low-concentration area (L4), the model had the best prediction performance
when the input length was 7 days.
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Table 1. Values of R2 for the four points. ori indicates results using the original data as input, log
indicates results using logarithmic data as input, and obs indicates the observed value.

L1 L2 L3 L4

R2 ori: 0.4133 ori: 0.6806 ori: 0.6732 ori: 0.6482

log: 0.3936 log: 0.66273 log: 0.7337 log: 0.5681
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Table 2. Values of RMSE, STD, COR, and R2 at the four points for different output lengths. Here, 1d
indicates the forecast results for one day backward, 3d indicates the forecast results for three days
backward, and 5d indicates the forecast results for five days backward.

L1 L2 L3 L4

RMSE
1d: 3.5012 1d: 0.8304 1d: 0.4779 1d: 0.0223
3d: 4.6445 3d: 1.2453 3d: 0.6867 3d: 0.0303
5d: 4.6475 5d: 1.4237 5d: 0.7653 5d: 0.0320

STD
1d: 2.9369 1d: 1.3581 1d: 0.8796 1d: 0.0324
3d: 1.6825 3d: 1.0272 3d: 0.7922 3d: 0.0312
5d: 1.2218 5d: 0.8789 5d: 0.7349 5d: 0.0300

COR
1d: 0.6431 1d: 0.8306 1d: 0.8368 1d: 0.8116
3d: 0.1495 3d: 0.5510 3d: 0.6755 3d: 0.6366
5d: 0.1051 5d: 0.3504 5d: 0.5661 5d: 0.5841

R2
1d: 0.4133 1d: 0.6806 1d: 0.6732 1d: 0.6482
3d: −0.0330 3d: 0.2820 3d: 0.3252 3d: 0.3553
5d: −0.0356 5d: 0.0619 5d: 0.1599 5d: 0.2802

Table 3. Values of RMSE, STD, COR, and R2 at four points for different input lengths. Here, 15d
indicates the results using data of the first 15 days to predict, 10d indicates the results using data of
the first 10 days, and 7d indicates the results using data of the first seven days.

L1 L2 L3 L4

RMSE
15d: 3.5012 15d: 0.8304 15d: 0.4799 15d: 0.0223
10d: 3.5972 10d: 0.8702 10d: 0.4845 10d: 0.0292
7d: 3.5265 7d: 0.8530 7d: 0.4796 7d: 0.0217

STD
15d: 2.9369 15d: 1.3581 15d: 0.8796 15d: 0.0324
10d: 3.2444 10d: 1.3997 10d: 0.9039 10d: 0.0263
7d: 3.0379 7d: 1.3791 7d: 0.8783 7d: 0.0369

COR
15d: 0.6431 15d: 0.8306 15d: 0.8368 15d: 0.8116
10d: 0.6235 10d: 0.8169 10d: 0.8591 10d: 0.8313
7d: 0.6372 7d: 0.8228 7d: 0.8613 7d: 0.8316

R2
15d: 0.4133 15d: 0.6806 15d: 0.6732 15d: 0.6482
10d: 0.3807 10d: 0.6492 10d: 0.6640 10d: 0.3955
7d: 0.4048 7d: 0.6629 7d: 0.6708 7d: 0.6663

4. Conclusions

The difference between nearshore and offshore chlorophyll-a concentrations can be
large, with high and low values of concentration often varying by several orders of mag-
nitude; thus, most of the relevant studies initially processed the concentration values
logarithmically. To explore whether different input data affect the prediction performance
of the LSTM neural network, this study uses two different data pre-processing methods,
using the data of the previous 15 days as input to the neural network and intelligently
estimating the concentration of the next 5 days. In the nearshore with a high concentration,
the predicted results of the neural network that is driven by original data are closer to the
actual satellite observational values, and the predicted results of the neural network that is
driven by logarithmic data are smaller than the observed values. The error is mainly in
the nearshore with high and median concentrations; the AE between the concentrations
predicted by original data and the observed values was small, i.e., less than 0.5 mg/m3,
in most areas. By contrast, the AE between the results predicted using the logarithmical
data and the observed values was larger, especially in some high-concentration regions
of the nearshore areas, where the AE was as high as 1 mg/m3. Analysis of the RMSE
and R2 of the prediction results from different LSTM models indicated that the prediction
performance of the model driven by the original data was improved in the region with
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a high concentration, the region with a medium concentration and a large coefficient of
variation, and the region with a low concentration. Moreover, the prediction performance
of the LSTM model driven by logarithmic data was improved in the region with a medium
concentration and low coefficient of variation. With all the factors considered, the prediction
results are improved when the original data are used as input to the LSTM model.

In addition, different inputs and forecast lengths affect the prediction performance of
the LSTM model. As the forecast length increases, the prediction accuracy of the neural
network decreases remarkably. The prediction accuracy starts to decrease by the third day
of forecasting downwards, and the best prediction accuracy is achieved at the forecast
length of 1 day. Increasing the input length can increase the prediction performance of the
neural network to a certain extent, and the optimal result is obtained when the input length
is 15 days in the high- and medium-concentration regions. Furthermore, the optimal result
is obtained at a 7-day input length in the low-concentration region.

5. Discussion

Previous studies on the prediction of chlorophyll-a concentrations used several meth-
ods, such as statistical models and ANNs. In this study, we established an intelligent
forecast model for chlorophyll-a in the East China Sea on the basis of the LSTM algorithm
and discussed its forecast performance. It is a novel prediction method and has achieved
good results. However, this study only used chlorophyll-a as the input to drive the neural
network, whereas, in the real ocean, many factors, such as temperature, precipitation, and
wind speed, may affect the concentration. Therefore, in future studies, we will attempt
to consider multiple variables to drive the LSTM neural network to improve the predic-
tion performance of the model for the prediction of the chlorophyll-a concentration in the
ECS further.
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