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Abstract: Computational intelligence techniques have been widely used for automatic building
detection from high-resolution remote sensing imagery and especially the methods based on neural
networks. However, existing methods do not pay attention to the value of high-frequency and
low-frequency information in the frequency domain for feature extraction of buildings in remote
sensing images. To overcome these limitations, this paper proposes a frequency spectrum intensity
attention network (FSIANet) with an encoder–decoder structure for automatic building detection.
The proposed FSIANet mainly involves two innovations. One, a novel and plug-and-play frequency
spectrum intensity attention (FSIA) mechanism is devised to enhance feature representation by evalu-
ating the informative abundance of the feature maps. The FSIA is deployed after each convolutional
block in the proposed FSIANet. Two, an atrous frequency spectrum attention pyramid (AFSAP) is
constructed by introducing FSIA in widely used atrous spatial pyramid pooling. The AFSAP is able
to select the features with high response to building semantic features at each scale and weaken the
features with low response, thus enhancing the feature representation of buildings. The proposed
FSIANet is evaluated on two large public datasets (East Asia and Inria Aerial Image Dataset), which
demonstrates that the proposed method can achieve the state-of-the-art performance in terms of
F1-score and intersection-over-union.

Keywords: computational intelligence; building detection; attention mechanism; remote sensing
image

1. Introduction

With the development of satellite, aviation, and unmanned aerial vehicle (UAV)
technology, huge amounts of high-resolution (HR) remote sensing images have been
captured in a constant stream [1–3]. These HR remote sensing images have been applied
to land cover classification [4–6], change detection [7–9], target recognition [10,11], and
image restoration and registration [12,13], for example. This brings opportunities for us
to observe fine objects such as buildings, roads, vehicles, etc. Among them, buildings
are one of the most important targets in the surface coverage of remote sensing images.
Therefore, building detection or extraction has become a hot topic of study, as it plays a
crucial role in digital city construction and management [11,14,15] and sustainable urban
development [16,17], among other applications.

Although building detection has made some progress in recent years, the widespread
use of HR remote sensing images from different sensors has brought new challenges to this
task [18,19]. These challenges include mainly the following:

(a) A large number of fine ground targets can be depicted by very-high-resolution aerial
imagery, e.g., trees, roads, vehicles, and swimming pools, etc. However, these targets
often easily interfere with the identification of buildings due to their similar features
(e.g., spectrum, shape, size, structure, etc.).
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(b) In urban areas, tall buildings often have severe geometric distortions caused by
fixed sensor imaging angles. This may lead to accurate building detection becoming
challenging.

(c) With the rapid development of urbanization, many cities and rural areas are inter-
spersed with tall buildings and short buildings. Tall buildings often exhibit large
shadows when imaged by the sun. This phenomenon may not only make it difficult
to accurately detect tall buildings themselves, but may also obscure other features
(especially short buildings), thus limiting the effective detection of buildings.

Recently, deep-learning-based building detection techniques have been introduced to
alleviate these challenges to some extent [20]. State-of-the-art (SOTA) methods are able to
improve the performance of building detection through a variety of techniques, including
the introduction of multi-scale modules [21,22], edge information [23,24], and attention
mechanisms [25,26]. For instance, Ji et al. proposed a Siamese U-Net (SiU-Net) for building
extraction, which can enhance multi-scale feature extraction by adding a branch with a
small resolution downsampled input image [19]. In [27], a named Building Residual Refine
Network (BRRNet) was designed to achieve accurate and complete building extraction.
This network is composed of a prediction module and a residual refinement module. In
the prediction module, an atrous convolution is employed to capture multi-scale global
features. The residual refinement module can refine the initial result of the prediction
module, thereby obtaining a more accurate and complete building detection. Yang et al.
promoted an edge-aware network, which consists of image segmentation networks and
edge perception networks [28]. The network combines the network with edge-aware loss
to achieve better performance.

These previous networks have achieved good detection results. Some methods ef-
fectively enhance the feature characterization ability of the network by some attention
or multi-scale operations, thus improving the detection effect. Some recent approaches
propose the introduction of edge information (edge module or edge loss supervision) to
help building recognition. However, there are still some limitations to overcome. First, su-
pervised learning strategies by introducing edge loss directly outside the network structure
can lead to difficult convergence and less stable results. Second, the combination of roughly
applied edge information and convolutional networks is both difficult to be well embedded
in the neural network and prone to introduce some interference information from other
ground target edges. Finally, edge information tends to represent only high-frequency infor-
mation of buildings, whereas low-frequency information is equally important in pixel-level
prediction tasks. Therefore, enhancing both high-frequency and low-frequency information
can further improve the building feature characterization ability.

To address the aforementioned issues, our solutions are motivated by the following
two aspects. On the one hand, Zheng et al. proposed a high frequency attention Siamese
network for building change detection [29]. The study has verified that the introduction of
high frequency information can enhance the network’s ability to sense buildings. However,
introducing frequency domain information directly in the building detection task can easily
introduce interference information from other features, thus limiting the building feature
extraction. For this reason, inspired by this approach, we perform feature enhancement
by introducing the attention module of the global feature map with frequency domain
information. In particular, the average frequency spectral intensity of an image can express
the amount of high frequency information contained in the image as a whole. This can effec-
tively evaluate the features that are more conducive to building extraction. Therefore, the
introduction of average frequency spectral intensity will be beneficial to building detection
tasks. In this case, building detection performance may be further improved when both
high-frequency and low-frequency information are considered in the network. On the other
hand, atrous spatial pyramid pooling (ASPP) is often used to capture multi-scale features
in remote sensing image understanding [30,31]. However, different building features can
be obtained by using atrous convolution with different atrous rates. In this context, it
would enhance the building feature representation if the features with high response to
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the building semantic features at each scale are emphasized while the features with low
response are weakened. According to these motivations, we propose a frequency spectrum
intensity attention network (FSIANet) for building detection. The major contributions of
this paper include the following three aspects:

(1) This paper proposes a novel computational intelligence approach for automatic build-
ing detection, named FSIANet. In the proposed FSIANet, we devised a plug-and-play
FSIA without the requirement of learnable parameters. The FSIA mechanism based
on frequency–domain information can effectively evaluate the informative abundance
of the feature maps and enhance feature representation by emphasizing more infor-
mative feature maps. To this end, The FSIANet can significantly improve the building
detection performance.

(2) An atrous frequency spectrum attention pyramid (AFSAP) is devised in the proposed
FSIANet. It is able to mine multi-scale features. At the same time, by introducing
FSIA in ASPP, it can emphasize the features with high response to building semantic
features at each scale and weaken the features with low response, which will enhance
the building feature representation.

(3) The experimental results on two large public datasets (Inria [18] and East Asia [19])
have demonstrated that the proposed FSIANet can achieve a more effective building
detection compared to other classical and SOTA approaches.

The remainder of this article is arranged as follows. Section 2 reviews the relevant
literature. Methodology and experiments are presented in Sections 3 and 4. Finally,
Section 6 concludes this article.

2. Related Work

In the past decade, building detection and roof extraction has been a hot research
topic in the field of remote sensing. In the early stage, some handcrafted building features
are used to implement building detection and extraction, such as pixel shape index [32],
morphological profiles [33], etc. For example, Huang et al. combined the information
of the morphological building index and the morphological shadow index for building
extraction. Other morphological building index-based methods are available in [34–36]; Bi
et al. proposed a multi-scale filtering building index to reduce the noise of building map
in [21]. Although relying on these early hand-made building features can extract buildings
from HR impacts, these methods are still poor in terms of accuracy and completeness of
building detection and extraction.

With the rapid development of deep learning technology, deep learning has been
extensively extended to the field of remote sensing. So far, deep-learning-based building
detection approaches have become the most advanced technology. In the early stage,
researchers treated the building detection task as an image segmentation task. Therefore,
semantic segmentation networks widely used in computer vision can be directly applied
to achieve building detection tasks, such as fully convolutional network (FCN) [37], U-
Net [38], SegNet [39], etc. The introduction of these deep-learning-based methods leads to a
significant improvement in the performance of building detection and extraction compared
to hand-crafted feature methods. Nonetheless, with the unprecedented increase in the
spatial resolution of images, researchers still found some new challenges, that is, buildings
with large or small scales are difficult to accurately identify due to the local receptive fields
of convolutional neural networks (CNN).

To overcome the above limitation, many multi-scale CNN have further promoted
computer vision [40]. For instance, Zhao et al. designed a pyramid scene parsing network
(PSPNet) for semantic segmentation [41]. In the PSPNet [41], a pyramid pooling module
is used to capture global features, thereby improving the multi-scale feature extraction
capability of the network. In [42], an atrous spatial pyramid pooling (ASPP) is devised to
effectively enlarge the receptive field of the network, thereby improving the multi-scale
feature representation ability of the network. These multi-scale CNN in computer vision
have also been developed in the field of remote sensing [43,44]. Wang et al. promoted a
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novel FCN for dense semantic labeling [45]. This network can effectively mine multi-scale
features by combining the advantages of both encoder-decoder and ASPP. Yu et al. applied
an end-to-end segmentation network for pixel-level building detection, which combines
the ASPP and skip connections generative adversarial segmentation network to aggregate
multi-scale contextual information [31]. Similar research also includes [46–48].

In recent years, attention mechanisms have been widely used in deep learning [9,49–51],
especially computer vision. Attention mechanisms commonly used in computer vision
and remote sensing image processing can be divided into two major categories according
to the function of the attention mechanism [52,53]: channel attention and spatial atten-
tion. Channel attention aims to enhance the feature representation ability of the network
by selecting important feature channels [54–56]. Spatial attention is able to generate an
attention mask in the spatial domain and employ it to emphasize the most task-relevant
spatial regions [57,58]. In addition to multi-scale CNN, driven by the attention mechanism,
it is another effective technique to improve the performance of building detection. For
instance, spatial and channel attention mechanisms are simultaneously used to emphasize
spatial regions and feature channels with high semantic responses to buildings, thereby
improving the capability of the building feature extraction [59]. In [60], a pyramid at-
tention network (PANet) is promoted to achieve pixel-level semantic segmentation; an
encoder-decoder network based on attention-gate and ASPP (AGPNet) is proposed for
building detection from UAV images [25]; Guo et al. [61] devised a scene-driven multi-
task parallel attention network to overcome the large intraclass variance of buildings in
different scenes; other attention-based methods are available in [62,63]. Recently, many
experts have designed some novel networks dedicated to automatic building detection and
extraction. Transformer-based methods are the latest and most compelling new network
structures. Wang et al. promoted a vision transformer network for building extraction [44].
A transformer-based multi-scale feature learning network was proposed in [64]. In addition,
a new deep architecture, named Res2-Unet, was proposed for building detection [65]. This
architecture is an end-to-end structure, which can exploit multi-scale learning at a granular
level to extend the receptive field. These methods further advance the development of
building detection.

In summary, although some progress has been made in previous work, there are still
certain limitations that need to be further addressed. In particular, there is a lack of research
on the role of frequency–domain information in building detection tasks. For one thing,
the combination of roughly applied edge information and convolutional networks is both
difficult to be well embedded in the neural network and prone to introduce some inter-
ference information from other ground target edges. For another thing, edge information
tends to represent only high-frequency information of buildings, whereas low-frequency
information is equally important in pixel-level prediction tasks.

3. Methodology

In this section, the detailed information of the proposed method will be given. First, a
brief overview of the proposed FSIANet and the overall procedure will be illustrated in
Section 3.1. Second, Section 3.2 will explain the proposed frequency spectrum intensity
attention (FSIA) mechanism in detail. Finally, the atrous frequency spectrum attention
pyramid (AFSAP) will be demonstrated in Section 3.3.

3.1. Overview of FSIANet

In Figure 1, the framework and overall inference process are illustrated. As shown in
the figure, the raw HR remote sensing data are first input into the input layer of FSIANet.
Subsequently, the initially extracted feature maps will be input into the down-sample layers
followed by FSIA. With the network going deeper, the size of feature maps will be smaller,
which contain the semantic and location information of land cover depicted on the input
HR images. Then the deepest features will be improved by the proposed AFSAP. At the
next stage, the previously extracted feature maps will be gradually gathered and processed
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by the up-sample layers with FSIA. Introducing previous features can significantly improve
the performance of similar networks, which was demonstrated in [38]. During this stage,
the spatial and semantic information of different levels will be integrated and fused to
annotate building-like land cover at the output layer.

C
O

N
C

A
T

C
O

N
C

A
T

C
O

N
C

A
T

C
O

N
C

A
TInput 

Image

Predicted 

Output

Input Layer: 
Conv 3×3 
BatchNorm 
ReLU

Down-Sample 

Layer:

Conv 3×3 
BatchNorm 
ReLU MaxPool 

2×2

Frequency 

Spectrum 

Intensity 

Attention

(FSIA)

Up-Sample 

Layer:

Conv 3×3 
BatchNorm 
ReLU

Up-Sample 2×2

Output Layer: 
Conv 1×1 
Sigmoid

Feature Maps
A

F
S

A
P

Figure 1. The brief procedure of the proposed FSIANet. The AFSAP indicates the proposed atrous
frequency spectrum attention pyramid.

3.2. Frequency Spectrum Intensity Attention

Because attention mechanisms can bring potential performance improvement for
deep-learning-based methods, they have been successfully utilized in many remote sensing
tasks. However, most of the existing attention modules can reach a satisfying performance
only after long-period training with networks. In addition, introducing frequency domain
information, which can benefit the performance [29], is usually neglected in most network-
based remote sensing methods. According to these facts, a new parameterless frequency-
aware attention mechanism can be potential beneficial for deep-learning-based methods.
To avoid these conventional problems, a novel attention mechanism, FSIA, is proposed for
a better representation of building-like objects in our FSIANet. It aims for better feature
representation without extra parameters waiting to be trained. As shown in Figure 2, the
FSIA relies on frequency domain information to evaluate the importance of each extracted
feature map and thereby enhance them accordingly. Based on the previous description, its
mathematical representation can be demonstrated as follows:

First, let FI ∈ RC×H×W be the input features, in which C, H, and W represent the chan-
nel, height, and width sizes, respectively. The frequency spectrum of FI , FS ∈ RC×H×W ,
can be denoted as:

FS = DCT
(

FI
)

(1)
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where DCT(·) is the channel-wise discrete cosine transformation, which acquires the
frequency domain information. Then the global frequency information vector VS ∈ RC×1×1

can be obtained by:
VS = GAP

(
FS
)

(2)

where GAP(·) denotes the global average pooling. The global frequency spectrum intensity
of each channel can be quantified through this way. To significantly enhance the informative
feature maps, a channel-wise Softmax function is applied as follows:

VA = So f tmax
(

VS
)

(3)

where So f tmax(·) indicates the Softmax function, whereas VA ∈ RC×1×1 represents the
channel-wise attention score. Given the attention weight VA, the final output of FSIA,
FO ∈ RC×H×W , can be given as:

FO = FI ⊗VA ⊕ FI (4)

in which
⊗

and
⊕

demonstrate a channel-wise multiplication and a pixel-wise addition,
respectively. In conclusion, FSIA tries to achieve a better feature representation in a unique
parameterless pipeline, which is introduced in the frequency information. It is exploited
numerous times in the proposed method, as it can be applied to features of any spatial size.

DCT Softmax

Input Features
Output Features

GAP

[C,H,W] [C,H,W]

[C,1,1] [C,1,1]

[C,H,W]

DCT: Discrete Cosine Transformation

GAP: Global Average Pooling

Channel-wise 

Multiplication 

Pixel-wise 

Addition 

Figure 2. The procedure of FSIA.

3.3. Atrous Frequency Spectrum Attention Pyramid

Except for the accurate semantic recognition of buildings, acquiring precise geograph-
ical locations and scales is also significant for fine building annotation in HR images.
According to existing related work, multi-scale feature pyramids can help deep-learning-
based methods better recognize land cover objects of various scales. In our work, we also
propose an attention-based feature pyramid, AFSAP, to obtain better building annotation
when dealing with multi-scale objects. Inspired by ASPP, atrous convolution with different
dilation rates and global average pooling are utilized in AFSAP to obtain the features with
different reception fields. Based on these features, proposed FSIA is employed to acquire
finer feature representation, which is able to acquire higher performance improvement
compared to bare ASPP. The detailed demonstration of AFSAP is shown in Figure 3. Its
detailed process can be represented as the following equations:
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Let FD ∈ RC×H×W be the deepest features of FSIANet. Then the features with different
reception fields FRF

i ∈ R256×H×W{i = 1, 2, 3, 4, 5} can be obtained as follows:

FRF
1 = Conv1

1×1

(
FD
)

(5)

FRF
2 = AsConv1

3×3

(
FD
)

(6)

FRF
3 = AsConv2

3×3

(
FD
)

(7)

FRF
4 = AsConv3

3×3

(
FD
)

(8)

FRF
5 = interpolation

(
Conv2

1×1

(
GAP

(
FD
)))

(9)

where Conv1
1×1(·) and Conv2

1×1(·) indicate the convolutional layers with the kernel size of
1× 1, which are followed by batch normalization (BN) and ReLU function. In addition,
AsConv1

3×3(·), AsConv2
3×3(·), and AsConv3

3×3(·) represent 3× 3 atrous convolution with
dilation rates of 6, 12, and 18, respectively. These atrous convolutional layers are also
followed by BN and ReLU. The expression interpolation(·) is the bilinear interpolation that
reverts feature size to H ×W. At the next stage, these extracted features FRF

i are distilled
by FSIA and gathered in channel dimension as follows:

ḞRF
i = FSIA

(
FRF

i

)
(10)

F̃RF = Concat
(

ḞRF
1 , ḞRF

2 , ḞRF
3 , ḞRF

4 , ḞRF
5

)
(11)

With F̃RF acquired, the output of AFSAP can be represented as:

F̃D = Conv3
1×1

(
F̃RF

)
(12)

where Conv3
1×1(·) is a convolutional layer with the kernel size of 1× 1, which is used to

integrate and refine the collected features.

Concat

1×1 
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1×1 
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Figure 3. The procedure of AFSAP.
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As a summary for AFSAP, the proposed feature pyramid can acquire better recognition
for various buildings with the help of multi-scale reception fields provided by atrous
convolutions. The proposed FSIA can facilitate and improve the feature extraction and
representation of AFSAP, which gives AFSAP the ability to outperform ASPP.

4. Experimental Results and Analysis

In this section, we first briefly introduce three benchmark datasets and measure-
ment indicators required for all experiments. The implementation details of the proposed
FSIANet are also given. Subsequently, we will show the experimental results compared
with other excellent peers. The ablation experiments of our proposed FSIANet are also
analyzed in depth.

4.1. Dataset Descriptions and Evaluation Metrics

In this paper, two commonly used building detection datasets, East Asia Dataset [19]
and Inria Aerial Image Dataset [18], are employed in the experiments to fairly validate
the effectiveness of all methods. The detailed information of these datasets is presented
in Table 1. Furthermore, some examples of these two datasets are shown in Figure 4. It is
worth noting that we have processed both benchmark datasets accordingly on the basis of
the original datasets.

(a)

(b)

Figure 4. Some examples of two benchmark datasets. (a) East Asia Dataset. (b) Inria Aerial Image
Dataset. The first row in each subplot is the aerial image tile, and the second row is the ground truth.
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Table 1. The detailed information of the two building detection datasets.

Dataset East Asia Dataset Inria Aerial Image Dataset

Year 2019 2017

Coverage 550 km2 810 km2

Size 512 × 512 pixels 5000 × 5000 pixels

Spatial Resolution 2.7 m 0.3 m

East Asia Dataset [19] is a sub-dataset of the WHU Building Dataset, which consists
of six neighboring satellite images in East Asia. The vector building map was completely
hand-drawn in ArcGIS software and contained a total of 34,085 buildings. Specifically,
3153 and 903 aerial image tiles are selected as training and test sets, respectively. This East
Asia Dataset is primarily used to evaluate and develop the generalization ability of deep
learning models to different data sources but with similar architectural styles in the same
geographic area. Therefore, this is recognized as one of the most challenging building
extraction datasets.

We perform all the experiments with a total of 180 aerial image tiles covering an area
of 405 km2 for the Inria Aerial Image Dataset [18]. It contains a total of five sub-datasets,
namely Austin, Chicago, Kitsap, Tyrol, and Vienna, each of which consists of 36 aerial
image tiles. We take the first 25 aerial image tiles and the remaining 11 aerial image tiles in
each sub-dataset as a training set and a testing set, respectively. Consistent with [19,66],
we crop all the aerial images to a size of 512× 512 pixels. Therefore, the training and test
sets in each sub-dataset consist of 2025 and 891 aerial images, respectively. The Inria Aerial
Image Dataset was collected at different times and places. It is a very challenging task
to accurately extract buildings with huge differences in architectural style, structure, and
distribution in each place.

In terms of evaluation metrics, four commonly used building extraction indicators,
namely Precision, Recall, F1-Score, and Intersection over Union(IoU), are employed for
pixel-based evaluation to measure the performance of all methods. By convention, TP and
TN represent the number of true positive and true negative pixels, respectively; FP and
FN denote the number of false positive and false negative pixels, respectively. Based on
this, Precision refers to the percentage of area that is predicted to be correct for buildings,
which is defined as follows:

Precision(P) =
TP

TP + FP
. (13)

The value Recall represents the proportion of positive examples in the building ground
truths that is predicted to be correct, which can be calculated as follows:

Recall(R) =
TP

TP + FN
. (14)

The F1-Score, a comprehensive indicator, is the harmonic mean of precision and recall,
so it can be obtained as follows:

F1-Score(F1) =
2× R× P

R + P
. (15)

The IoU, also a comprehensive evaluation indicator, represents the ratio of the inter-
section area over the union area between the ground truths and the building predictions,
which can be obtained as follows:

IoU =
TP

TP + FN + FP
. (16)
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4.2. Implementation Details

In order to ensure the fairness of the comparison, we reproduce all peers and conduct
all the experiments under the following execution conditions. It is worth noting that none
of the deep learning models adopt strategies such as data augmentation or pre-training
that can improve the performance of building extraction. This can ensure that the above
interference is eliminated to the greatest extent, and the reason for the improvement
is attributed to the proposed modules or strategies. Specifically, we implemented the
experiments on a NVIDIA GTX 3090 based on the Pytorch framework in CUDA 11.6. In
terms of parameter setting, we employed the Adam optimizer and the multistep learning
rate delay, where the initial learning rate is set to 0.0001. In Adam, the coefficients used
to calculate the moving average of the gradient and its square are set to 0.9 and 0.999,
respectively. In addition, the batch size is set to 4.

4.3. Comparison with Other Methods
4.3.1. Comparative Algorithms

To demonstrate the effectiveness of our proposed method, seven outstanding peers
are selected as comparative methods, and their detailed introductions are as follows:

(1) FCN8s [37] (2015): This work includes three classic convolutional neural network
characteristics, i.e., a fully convolutional network that discards the fully connected
layer to adapt to the input of any size image; deconvolution layers that increase the
size of the data enable it to output refined results; and a skip-level structure that
combines results from different depth layers while ensuring robustness and accuracy.

(2) U-Net [38] (2015): The proposed U-Net is an earlier model that applies convolutional
neural networks to image semantic segmentation, which is built on the basis of
FCN8s [37]. U-Net includes contracting paths to extract image features or context and
expanding paths for accurate segmentation.

(3) PSPNet [41] (2017): PSPNet mainly extracts multi-scale information through pyramid
pooling, which can better extract global context information and utilize both local and
global information to make scene recognition more reliable.

(4) PANet [60] (2018): PANet proposed a pyramid attention network to exploit the in-
fluence of global contextual information in semantic segmentation, combining an
attention mechanism and a spatial pyramid to extract precise pixel-annotated dense
features instead of using complex diffuse convolution and hand-designed decoder
networks.

(5) SiU-Net [19] (2019): The East Asia Dataset was released in [19]. In addition, SiU-Net is
designed with a Siamese fully convolutional network, in which two branches of the
network share weights, and the original image and its downsampled counterpart are
taken as inputs.

(6) BRRNet [27] (2020): The prediction module and residual refinement module are the
main innovations of BRRNet. The prediction module obtains a larger receptive field by
introducing atrous convolutions with different dilation rates. The residual refinement
module takes the output of the prediction module as input.

(7) AGPNet [25] (2021): This is a SOTA ResNet50-based network, which combines grid-
based attention gate and ASPP for building detection. This method is similar to ours
and is valuable for comparing methods.

(8) Res2-Unet [65] (2022): Res2-Unet employed granular-level multi-scale learning to
expand the receptive field size of each bottleneck layer, focusing on pixels in the
border region of complex backgrounds.

4.3.2. Results on the East Asia Dataset

Table 2 shows the quantitative experimental results of Precision, Recall, F1-Score, and
IoU on the East Asia Dataset. Similar to the results on the Inria Aerial Image Dataset,
FSIANet does not perform as well as other comparison algorithms on Precision, but
achieves the best results on Recall. In fact, the two are contradictory in some cases. For ex-
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ample, in the extreme case where there are only a very small number of buildings, we only
predict one result and it is accurate, then the Precision is 100%, but the Recall is very low,
and vice versa. Therefore, two composite indicators, F1-Score and IoU, should be given pri-
ority consideration. It can be concluded from Table 2 that FSIANet outperforms the SOTA
algorithm (i.e., BRRNet) by 1.88% and 2.69% on F1-Score and IoU, respectively. Similarly,
compared with AGPNet [25], the proposed FSIANet achieves 1.2% and 1.72% improvement
on F1 and IoU. The improvement of FSIANet on building detection is mainly attributed
to the FSIA mechanism based on frequency domain information, which can effectively
evaluate the information abundance of feature maps and enhance feature representation by
emphasizing more informative feature maps.

Table 2. Quantitative results on Precision, Recall, F1-Score, and IoU (in %) of different methods on
the East Asia Dataset. The best results are shown in bold.

Methods Precision Recall F1-Score IoU

FCN8s [37] 87.30 70.32 77.90 63.79

U-Net [38] 88.41 71.22 78.89 65.14

PSPNet [41] 83.66 69.97 76.20 61.56

PANet [60] 87.69 64.09 74.05 58.80

SiU-Net [19] 89.09 69.76 78.25 64.27

BRRNet [27] 83.06 78.11 80.51 67.37

AGPNet [25] 86.37 76.59 81.19 68.34

Res2-Unet [65] 84.07 69.14 75.88 61.14

FSIANet (Ours) 84.11 80.75 82.39 70.06

We also provide some visualization results in the East Asia Dataset to further illustrate
the effectiveness of our proposed FSIANet. The related visualization comparisons are
shown in Figure 5. In the case shown in Figure 5, the buildings in the yellow boxes are not
obvious, and there are trees, shadows, and other disturbances around. Algorithms such
as FCN8s and PANet have difficulty extracting the approximate building outlines. This is
largely because they focus too much on local information and are sensitive to parameters,
and their attention mechanisms lack the connection between global information. Res2-Unet,
PSPNet, and BRRNet also have certain missed detections. Compared with other methods,
the buildings extracted by FSIANet are more accurate and clear on the whole.
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Figure 5. The visualization results of the proposed FSIANet and other comparison methods on the
East Asia Dataset.

4.3.3. Results on the Inria Aerial Image Dataset

The experimental results of the four indicators on the Inria Aerial Image Dataset are
shown in Table 3. In terms of Precision, the proposed FSIANet has less obvious advantages
compared with other algorithms. However, due to the extreme imbalance of positive and
negative samples in many aerial images in the Inria Aerial Image Dataset, the proportion
of buildings in some scenes is very low. Therefore, higher accuracy does not mean that
the performance of the algorithm for extracting buildings is better. As such, the excellent
performance of FSIANet on Recall is also not convincing. Based on this, we have to
focus on the performance of the methods on two comprehensive indicators, i.e., F1-Score
and IoU. On these two metrics, FSIANet achieves the best experimental results, with an
overall improvement of 0.45% in F1-Score and 0.71% in IoU compared to the existing SOTA
methods. Specifically, the improvement of FSIANet is most obvious in the Kitsap and
Tyrol regions. It is worth noting that there is a huge gap in the distribution of aerial image
buildings in these two regions, with both dense and sparse building scenes. It can be
explained that the proposed FSIANet has strong generalization performance to apply in
various complex scenarios.

In addition to the experimental results of the quantitative analysis, we also present
some representative visualizations of the Inria Aerial Image Dataset. Figure 6 shows the
results of binary prediction visualizations of our FSIANet and seven other comparison
methods in the Austin, Chicago, Kitsap, Tyrol, and Vienna regions. As in the aerial
image example shown in Figure 6, the Inria dataset has some images with very low
proportions of buildings. For illustration purposes, we mark the more visible regions
with yellow rectangles. It can be concluded from Figure 6 that our proposed FSIANet
method outperforms other methods overall, especially in recognizing edge, tiny, and
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shadow buildings. Furthermore, we can conclude from the examples of moderately dense
buildings in Austin and Vienna that FSIANet performs well in the connection of multiple
complex buildings. This is because the porous spectral attention pyramid is capable of
mining multi-scale features, which can emphasize features with high response to building
semantic features at each scale, and weakening features with low response will enhance
the representation of building features.

Table 3. Quantitative results on Precision, Recall, F1-Score, and IoU (in %) of different methods on
the Inria Aerial Image Dataset. The best results are shown in bold.

Metrics Methods Austin Chicago Kitsap Tyrol Vienna Average

Precision

FCN8s [37] 88.28 81.37 85.21 88.25 89.81 86.64
U-Net [38] 89.92 87.61 84.03 87.62 89.65 87.77
PSPNet [41] 84.58 80.57 81.01 85.57 87.47 83.84
PANet [60] 87.72 77.13 80.68 86.26 84.89 83.34
SiU-Net [19] 90.94 81.39 84.42 87.67 89.02 86.69
BRRNet [27] 89.30 87.20 80.09 83.13 88.04 85.55
AGPNet [25] 91.72 86.37 85.91 90.30 91.45 89.15
Res2-Unet [65] 86.86 79.20 77.74 85.61 86.06 83.09
FSIANet (Ours) 90.04 86.25 83.23 85.80 89.59 86.98

Recall

FCN8s [37] 87.32 79.29 70.41 80.89 83.39 80.26
U-Net [38] 87.03 73.49 73.16 83.37 85.33 80.48
PSPNet [41] 74.33 75.19 69.73 79.99 81.99 76.25
PANet [60] 74.26 66.19 65.50 75.23 79.39 72.11
SiU-Net [19] 86.39 78.27 73.55 82.27 84.60 81.02
BRRNet [27] 89.07 75.78 77.57 85.85 85.44 82.74
AGPNet [25] 86.81 78.69 76.24 82.71 85.11 81.91
Res2-Unet [65] 84.70 78.06 72.40 83.09 84.90 80.63
FSIANet (Ours) 90.30 78.75 79.39 88.35 87.01 84.76

F1-Score

FCN8s [37] 87.80 80.47 77.11 84.40 86.48 83.25
U-Net [38] 88.45 79.94 78.22 85.44 87.43 83.90
PSPNet [41] 79.12 77.79 74.95 82.69 84.64 79.84
PANet [60] 80.43 71.24 72.30 80.37 82.04 77.28
SiU-Net [19] 88.61 79.81 78.61 84.89 86.75 83.73
BRRNet [27] 89.19 81.09 79.20 84.47 86.72 84.13
AGPNet [25] 89.20 82.35 80.79 86.34 88.17 85.37
Res2-Unet [65] 85.77 78.63 74.97 84.33 85.48 81.84
FSIANet (Ours) 90.17 82.33 81.26 87.06 88.28 85.82

IoU

FCN8s [37] 78.25 67.32 62.74 73.02 76.18 71.50
U-Net [38] 79.30 66.58 64.23 74.58 77.67 72.47
PSPNet [41] 65.46 63.65 59.94 70.48 73.37 66.58
PANet [60] 67.24 55.33 56.62 67.18 69.55 63.18
SiU-Net [19] 79.54 66.39 64.76 73.74 76.61 72.21
BRRNet [27] 80.48 68.19 65.57 73.11 76.58 72.79
AGPNet [25] 80.50 69.99 67.77 75.96 78.84 74.61
Res2-Unet [65] 75.09 64.78 59.96 72.90 74.64 69.47
FSIANet (Ours) 82.10 69.97 68.44 77.08 79.02 75.32
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Figure 6. The visualization results of the proposed FSIANet and other comparison methods on the
Inria Aerial Image Dataset.
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4.4. Ablation Study

To further illustrate the effectiveness of our proposed innovations, ablation experi-
ments on the East Asia Dataset are presented in Table 4. Specifically, the introduction of the
FSIA shows much improvement in various indicators compared with only the backbone
network. The FSIA module does not require learnable parameters, and the FSIA mechanism
based on frequency domain information can effectively evaluate the informative abundance
of feature maps and enhance feature representation by emphasizing more informative fea-
ture maps. After adding the ASPP, the performance of the network is not significantly
improved or even slightly decreased. Therefore, our designed AFSAP in the network is
able to mine multi-scale features, which can emphasize features with high response to
building semantic features at each scale, while weakening features with low response can
enhance the representation of building features.

In addition, we also implemented McNemar’s test to further obviously verify the
superiority of our method. Here, McNemar’s test can be computed by Formula (17):

z =

∣∣Nij − Nji
∣∣√

Nij + Nji
(17)

where Nij denotes the number of pixels that were correctly detected in method i but falsely
detected in method j. For McNemar’s test, |z| > 1.96 indicates a significant performance
gap between the two methods [67]. McNemar’s test of the ablation study on the East Asia
Dataset is listed in Table 5. McNemar’s test results present that the proposed method has a
significant performance advantage after introducing FSIA and AFSAP.

Table 4. Ablation results on Precision, Recall, F1-Score, and IoU (in %) of our proposed FSIANet on
the East Asia Dataset. The best results are shown in bold.

Methods Precision Recall F1-Score IoU

backbone 83.52 79.04 81.22 68.38
backbone+FSIA 84.27 79.29 81.71 69.07
backbone+FSIA+ASPP 85.39 78.62 81.86 69.30
backbone+FSIA+AFSAP (Full) 84.11 80.75 82.39 70.06

Table 5. McNemar’s test of the ablation study over the proposed FSIANet on the East Asia Dataset.

FSIANet vs. Backbone vs. Backbone+FSIA vs. Backbone+FSIA+ASPP

z value 154.26 80.27 28.58

Furthermore, to illustrate the rationale for the FSIANet design, the feature maps and
discrete cosine transformation (DCT) results on the East Asia Dataset are shown in Figure 7.
Here, we define an average frequency spectrum intensity (AFSI), which is the average of the
frequency spectral values (computed by DCT) of a feature map. For AFSI, a higher value
of AFSI means that building semantic and spatial information is more closely connected.
Figure 7 mainly illustrates the visualization of the DCT in three channels of the feature map
obtained from FSIANet. For example, in Figure 7(1-1–1-3), the more information the feature
map carries, the bigger the corresponding AFSI is. This intuitively illustrates that FSIA can
emphasize features with high response to building semantic features at each scale, and
weakening features with low response will enhance the representation of building features.



Remote Sens. 2022, 14, 5457 16 of 20

DCT ResultsFeature MapsDCT ResultsFeature Maps

Ground TruthInput ImageGround TruthInput Image

(2-1)

(2-2)

(2-3)

(1-1)

(1) (2)

(1-2)

(1-3)

AFSI: 0.0518

AFSI: 0.0638

AFSI: 0.0481

AFSI: 0.0911

AFSI: 0.0705

AFSI: 0.0999

Figure 7. The feature maps and DCT results on the East Asia Dataset. Image (1): ((1-1)–(1-3)) represent
different feature maps and their corresponding DCT results, respectively; image (2): ((2-1)–(2-3))
denote different feature maps and their corresponding DCT results, respectively.

5. Discussion

From the extensive experiments conducted above, it can be concluded that the pro-
posed FSIA mechanism and AFSAP module can efficiently improve the performance of
building extraction. In this section, these contributions are further discussed.

In FSIA, we utilize DCT to evaluate how informative a feature is, and reweight the
features accordingly. Since its benefit has been confirmed in building extraction, it may
potentially improve the performance of CNN-based methods over similar tasks such as
change detection and road extraction, even more computer vision tasks. Considering that
FSIA has no supervised parameters, it can be used in any CNN-based method without
training. However, there are still several disadvantages to this distinctive attention mech-
anism. The most notable of them is that DCT can be time-consuming when processing
feature maps with large spatial sizes. This problem can be further overcome in future work
with a lightweight transformation.

6. Conclusions

In this work, efforts have been made to better tackle automatic building detection
tasks in HR remote sensing data by proposing some computational-intelligence-based
techniques. Namely, a classic encoder-decoder-like end-to-end deep convolutional neural
network, FSIANet, with two newly proposed modules, FSIA and AFSAP, is exploited.
The FSIA is able to mine useful information from the frequency spectrum of extracted
features, thus improving the global feature representation of FSIANet. Notably, it does
not need to be trained to acquire reliable ability, which is different from most of the other
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attention mechanisms. In addition, the ASPP-inspired feature pyramid, AFSAP, is utilized
to promote the detection of building-like objects. Compared to ASPP, the AFSAP can
achieve more pronounced performance improvement with the help of FSIA. As a result,
the proposed FSIANet has successfully outperformed several newly proposed cutting-edge
deep-learning-based methods in two widely used large-scale HR remote sensing building
detection datasets. For future work, more efforts can be made to expand the usage of
frequency–domain-based analysis in the deep-learning-based methods, which have the
potential to facilitate finer annotation of buildings in complicated scenes.

Author Contributions: Conceptualization, D.F.; methodology, D.F.; validation, H.C.; investigation,
L.Z.; writing—original draft preparation, D.F.; writing—review and editing, H.C. and L.Z. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under Grant 62102314, in part by the Natural Science Basic Research Plan in Shaanxi Province of
China under Grants 2021JQ-721, 2021JQ-708, and 2022JQ-635, and in part by the Special Scientific
Research Projects of Shaanxi Provincial Department of Education 20JK0918.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations

AFSAP Atrous Frequency Spectrum Attention Pyramid

ASPP Atrous Spatial Pyramid Pooling

BRRNet Building Residual Refine Network
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