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Abstract: Lake surface water temperature (LSWT) is a key parameter in understanding the variability
of lake thermal conditions and evaporation. The MODIS-derived LSWT is widely used as a reference
for lake model validations and process studies in data-scarce regions. In this study, the accuracy of
the MODIS LSWT was examined on the Tibetan Plateau (TP). In-situ subsurface temperatures were
collected at five large lakes. Although the observation period covers from summer to winter, only
the observations during the lake turnover period (from October to freeze-up), when the lakes are
well mixed, can be used as ground truth. The MODIS LSWT agrees well with the selected in-situ
data for the five large lakes, with root mean square error (RMSE) < 1 ◦C at nighttime and <2 ◦C in the
daytime, indicating a high accuracy of the MODIS LSWT data. Before the turnover period, the water
is thermally stratified and the surface water is warmer than the subsurface water, and thus the in-situ
subsurface water temperature data and the MODIS LSWT have different representativeness. In this
case, if the observations are used as a validation basis, the MODIS errors could be much magnified.
This in turn indicates the importance of period selection for the validation.

Keywords: Tibetan Plateau; MODIS; lake surface water temperature; lake turnover

1. Introduction

The contrasting properties between the lake and land surfaces (e.g., their surface
albedo, heat capacity and roughness length) can cause local air circulations that affect the
local climate [1–5]. In particular, lake surface evaporation after the onset of the dry and cold
season can increase greatly, causing heavy rainfall or snow downwind of large lakes at high
latitudes and high elevations [2,6,7]. Therefore, lake–atmosphere interactions are included
in the land surface schemes used in high-resolution weather/climate modeling [1,8–13].
The lake surface water temperature (LSWT) is a crucial parameter in calculating evaporation
and sensible heat flux at the lake–air interface [14–18]. In addition, LSWT is widely used in
lake biology and climate change studies [19,20]. However, in-situ LSWT data are often not
available in remote regions such as the Tibetan Plateau.

Instead of in-situ LSWT data, satellite remote sensing data, if proven reliable, can be
used as an alternative [10,11,21–23]. The Moderate Resolution Imaging Spectroradiome-
ter (MODIS) LSWT product has been broadly validated worldwide, showing acceptable
errors [24–28]. For the two largest Swedish lakes, the MODIS retrieval showed good agree-
ment with in-situ measurements at a depth of 0.5 m, with a root mean square error (RMSE)
of less than 0.50 ◦C [29]. At the Great Salt Lake, Utah, the MODIS-derived LSWT showed
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a cold bias (−1.5 ◦C) and an RMSE of 1.6 ◦C compared to the in-situ measurements at a
depth of 0.5 m [30]. A cold bias was also found at Lake Taihu, China, and the RMSE was
less than 1.8 ◦C when compared with field measurements at depths of 0.5 to 1 m [31]. These
validation studies do not pay attention to the representativeness of in-situ measurements,
which could be different for different lake thermal phases.

The Tibetan Plateau (TP) has more than 1400 inland lakes with areas greater than
1 km2, and the total area of TP lakes represents more than 50% of the inland water area
in China [32]. Most of the lakes have expanded since the mid-1990s; the expansion is
continuing [33,34] and represents one of the most outstanding environmental change
events [35]. To better understand the response of the lake water and energy budgets to
climate change on the data-scarce TP, the MODIS LSWT has been used to investigate the
lake warming trends [20,36–38] and to validate the simulated bulk temperature of the
mixed layer in lake modeling [22,39–42].

However, caution must be exercised regarding the accuracy of the MODIS LSWT when
it is used for lake process studies on the TP. Xiao et al. [43] showed that the daytime MODIS
LSWT had an RMSE of 1.5 ◦C at Lake Qinghai compared to the in-situ measurements at
a depth of 0.5 m, but the comparison was based only on a short period of lake thermal
stratification (July of 2010 and 2011). Zhang et al. [36] found that the nighttime MODIS
LSWT had an unexpected high RMSE (4.5 ◦C) in another large lake (Lake Nam Co) using
radiometric skin temperature collected near the lake shoreline, but the comparison period
contained the lake ice phase during which the difference between the two data sets was
large. These studies did not consider the impacts of lake stratification and attributed
the difference between the MODIS LSWT and in-situ data to retrieving errors. Recently,
Wan et al. [44] released a 15-year (2001–2015) time series of the daytime and nighttime
MODIS LSWT for TP lakes, but the accuracy of the MODIS LSWT was not evaluated
by the in-situ observations. Therefore, validation studies of the MODIS LSWT in the
region are limited and even questionable; specifically, they ignored the conditions under
which in-situ subsurface temperature data can be used to validate the satellite-retrieved
surface temperature.

A comprehensive evaluation of the MODIS LSWT data should take the TP’s unique
climate and environment into account. The solar radiation over the TP is very strong [45,46]
and the solar heat on the water surface may cause obvious thermal stratification. This phe-
nomenon should be accounted for carefully, otherwise it will lead to artificially magnified
errors in the MODIS LSWT. The goal of this study is to consider this phenomenon in the
MODIS LSWT evaluation process and to present criteria for validations and applications of
the MODIS LSWT over the TP.

In this study, buoy data at five lakes during the open-water period of a full year
were used to investigate the accuracy of the MODIS LSWT data during two periods (lake
stratification and turnover). The lakes and data sets (buoy data and the MODIS LSWT)
are introduced in Section 2, and the comparison method is described in Section 3. The
discrepancies between the MODIS LSWT and in-situ data are presented in Section 4, and
the reason for the substantial underestimates in the nighttime MODIS LSWT in summer is
discussed in Section 5. Finally, the results of this study are summarized in Section 6.

2. Study Area and Data Sets

The climate in the TP is dominated by the Asian monsoon during summer and early
autumn, and by westerlies during other seasons. The influence of the monsoon is most
prominent during July and August, and the monsoon season in this study refers to the
period during July and August. The climate in northwest TP is mainly influenced by
the westerlies throughout all seasons. Most lakes in the TP are located in the central and
western TP and are influenced by both the monsoon and the westerlies.
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2.1. Lake Locations

Subsurface water temperature data were collected for a full annual cycle at five large
lakes which are located in different climate regions of the TP (Figure 1 and Table 1). The
Lake Bangong Co (33.68◦N, 79.22◦E, 671 km2) on the arid western TP, is an endorheic and
dimictic lake. According to the meteorological data observed in 2013 at Ngari Station for
Desert Environment Observation and Research, CAS (about 10 km away from Bangong
Co), the mean annual air temperature is 1.2 ◦C with the lowest value of −26.1 ◦C in January,
the mean annual relative humidity is 33% and the annual precipitation is 125 mm. Lake
Zhari Namco (30.93◦N, 85.61◦E, 997 km2) is a salt semiarid lake on the southern TP, around
which the mean annual air temperature is 1.2 ◦C and the annual precipitation is 384 mm in
2017 [47]. Lake Dagze Co (31.89◦N, 87.52◦E, 295 km2) is a brackish lake on the central TP
and its salinity is 18 g/L [48]. Based on observation from Xianza Meteorological station 150
km away from the lake, the mean annual air temperature is 0.6 ◦C and annual precipitation
is 316 mm in 2012 [48]. Lake Nam Co (30.74◦N, 90.61◦E, 2021 km2) is a dimictic, deep lake,
and it is the third largest lake in the TP. The weather station on the northeastern shore
of Lake Nam Co (distance of about 1.5 km) shows that the mean annual air temperature
and relative humidity are −1.2 ◦C and 55%, and annual precipitation is 488 mm in 2013,
respectively [40]. Located in the central Himalayas, Lake Peiku Co (28.89◦N, 85.59◦E,
280 km2) is a deep alpine lake with a mean annual air temperature of 4.4 ◦C in 2015/2016
and an annual precipitation varying between 150 and 200 mm [49].
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Table 1. Geographical information and measurement information on the buoy stations for the five
lakes. The lake depths are at the buoy stations.

Lake Co-Ordinates Area
(km2)

Elevation
(m a.s.l)

Lake Depth
(m)

Measurement Depth
(m)

Motoring
Sensor

Acquisition
Period

Bangong Co 33.2–34.0◦N
78.4–80.0◦E 671 4241 36.6 5 HOBO

U22-001
1 Aug 2012–
31 Jul 2013

Zhari Namco 30.75–31.1◦N
85.3–85.9◦E 1000 4613 59.3 0.7 HOBO

U22-001
1 Aug 2016–
31 Jul 2017

Dagze Co 31.8–32.0◦N
87.4–87.7◦E 311 4450 37.3 4 HOBO

U22-001
1 Sep 2012–
31 Aug 2013

Nam Co 30.5–30.95◦N
90.2–91.05◦E 2024 4710 92.0 3 Hydrolab DS5 1 Aug 2012–

31 Jul 2013

Peiku Co 28.75–29.05◦N
85.45–85.7◦E 280 4590 42 0.5 HOBO

U22-001
1 Jun 2016–

31 May 2017

2.2. In-Situ Measurements of Lake Temperature

Table 1 provides the water temperature measurement information on the buoy stations.
Buoy data at Lake Nam Co were measured using a Hydrolab DS5 [50]. This probe has
an accuracy of ±0.1 ◦C between −5 ◦C and 50 ◦C, with a resolution of 0.01 ◦C. Water
temperatures in the other four lakes were recorded via a HOBO water temperature probe
V2/U22-001 (Onset Corp., Cape Cod, USA) [48], which has a temperature range of −10 ◦C
to 50 ◦C with an accuracy of ±0.2 ◦C and a resolution of 0.02 ◦C.

The measuring depths and intervals were set according to the following considerations
in addition to specific reasons for the individual lakes. In previous studies [29,30], the
subsurface temperatures were measured at depths shallower than 1 m. We measured
temperatures at depths deeper than 1 m in some lakes to avoid destruction by ice in winter
due to the lack of lake ice thickness information at the buoy sites. Specifically, subsurface
temperatures were measured at depths of 5 m, 0.7 m, 4 m, 3 m and 0.5 m at these five lakes
in the order shown in Table 1. The measured temperatures are able to represent the bulk
temperature of the mixed layer of the lakes [48,50]. In addition, there are considerable
diurnal variations in the lake surface temperature due to solar heating in the lakes’ stratified
period [20,26,51]. Minnett [52] recommended that validation should be conducted within
±2 h of the satellite overpass, as followed in previous studies [31,53,54]. Therefore, the
buoy data in this study were collected at intervals of 1 or 2 h, and then the average within
±1 h (2 h) of the satellite overpass was sub-sampled to enable comparison between the two
data sets.

According to the measurements, four of the five large lakes were completely frozen
between approximately December–early January and late April–May [55,56], while the
remaining one (Peiku Co) [49] was ice-free in the studied year. After the ice break-up,
the lake water temperature started to increase, and the lakes became thermally stratified.
The maximum water temperature occurred around late August–early September, then the
temperature started to decrease, but the lakes were still stratified. From October, the upper
mixed layer drastically deepened, and the lake turnover appeared before the ice cover. In
this study, the lake stratified period is referred to as the period from May to September,
while the lake turnover period is defined as the period from October to the freeze-up date.

2.3. MODIS Lake Surface Temperature

The MODIS level 3, 1 km nominal resolution at nadir, daily land surface tempera-
ture products (MO/YD11A1) were obtained through the NASA Level 1 and Atmosphere
Archive and Distribution System (https://ladsweb.nascom.nasa.gov/data/ (accessed on
20 August 2020)). The inland lake surface temperature contained in these products was
derived using thermal infrared (TIR) bands 31 and 32, and a generalized split-window
algorithm. LSWT was retrieved from both platforms (Terra and Aqua) at different times
on the same day. In both platforms, two instantaneous observations were collected every
day (Terra: approximately 10:30 and 22:30 local time, Aqua: approximately 13:30 and 01:30
local time). The MODIS LSWT data are pre-processed to account for atmospheric and
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surface emissivity effects. The cloud mask (MOD35) used for inland water provides a
surface temperature measurement when there is a 66% or greater confidence of clear-sky
conditions [57], otherwise no temperature measurement is produced. More details on this
product were provided by Savtchenko et al. [58] and Wan et al. [59].

Satellite-derived LSWT measurements represent the instantaneous water temperature
of the uppermost ∼10–20 µm deep molecular layer; this is known as the skin tempera-
ture [60,61]. However, thermometers are installed well below the lake surface and thus the
measured ones are usually the bulk temperature of the mixed layer. Differences between
the skin and bulk temperature are called skin effects [62–64]. As the lake thermal structure
shown in Wilson et al. [64] demonstrates, the skin temperature of the upper-most layer
whose thickness is less than 1 mm is controlled by heat and the momentum flux at the
lake–air interface; the bulk temperature, at just a few centimeters of depth, is warmer than
the skin temperature by several tenths of 1 ◦C due to solar heating [64,65]; for the depth of
no less than 1 m, the difference between bulk temperature and skin temperature can be
several degrees [27,53]. The skin effect can be impacted by solar radiation which varies
with latitude and altitude, and lake thermal phases for different thermal regimes in the
lake’s stratified and turnover periods [27,31,66]. On the Tibetan Plateau, the stronger solar
radiation in the daytime and intense longwave cooling at nighttime due to the thin air
might enlarge the skin effect.

3. Methods

The MODIS level 3 daily LSWTs derived from both Terra and Aqua platforms were
compared with the in-situ measurements. The MODIS LSWT at a specific lake was ob-
tained using the MODIS Reprojection Tool (MRT, https://lpdaac.usgs.gov/tools/modis_
reprojection_tool (accessed on 20 July 2019)), which involved three steps as follows.

The first step was to identify the lake water body using the MODIS land mask
product at 250 m resolution (http://www.landcover.org/data/watermask/(accessed on
15 July 2019)). The land mask image was then resampled to 0.01◦ spatial resolution to match
the resolution of the MODIS LSWT product, which was resampled to 0.01◦ using MRT.

The second step was data quality assurance to select LSWT data free of cloud contam-
ination and uses the quality flag stored in quality control (QC) scientific data sets. Only
pixels with quality flags designated as good quality and the average LSWT errors less than
or equal to 2 K were retained.

The third step was to obtain the spatially representative MODIS LSWT data. For each
lake water temperature station, a 3 × 3 pixel array centered on the monitoring station
was extracted from the MODIS LSWT data, and its average LSWT was calculated for
subsequent comparison with the in-situ data. Such spatial averaging is widely used for
removing spatial divergence [25,29,65–67].

The selected daily MODIS LSWT data sets from Aqua and Terra were compared
with the in-situ measurements at the five lakes. Given that the agreement between the
observation and the MODIS data may depend on lake thermal conditions, we evaluated
the daytime and nighttime MODIS LSWT in the lake stratified period and the lake turnover
period, respectively. The performance of the MODIS LSWT was assessed via mean differ-
ence (MD) and root mean square difference (RMSD) between the MODIS retrievals and
in-situ measurements. Finally, we investigated the impact of in-situ data from different
periods and times for the evaluation of the MODIS LSWT.

4. Results

The MODIS LSWT is the lake skin temperature, whereas the in-situ data represent
the bulk temperature of the mixed layer of the lakes. The MODIS LSWT was evaluated
for the open-water period of a full year. When lakes were frozen (usually from January to
April in large Tibetan lakes), the MODIS retrieved the ice surface temperature while the
in-situ data were obtained from the subsurface water layer, so they are not comparable.
Four lakes (Bangong Co, Zhari Namco, Dagze Co and Nam Co) had ice cover during the

https://lpdaac.usgs.gov/tools/modis_reprojection_tool
https://lpdaac.usgs.gov/tools/modis_reprojection_tool
http://www.landcover.org/data/watermask/(accessed
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study year, and the other one (Peiku Co) remained ice-free. The ice-covered period in the
four lakes can be identified with the MODIS LSWT consequent of most of the satellite data
being missing when the lake was ice-covered [68].

Figure 2 shows the comparisons between the four MODIS products (Terra and Aqua,
in daytime and nighttime) and the buoy data in the five large lakes, and Figure 3 shows the
error metrics of the evaluation. The open-water period consists of the lake stratified period
(from May to September) and the lake turnover period (from October to the freeze-up date).
As shown in Figures 2 and 3, the differences between the MODIS LSWT and in-situ data at
the five large lakes are quite variable during the two periods. They were analyzed in detail
in the following sub-sections.
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4.1. Results during the Lake Turnover Period

During the lake turnover period, the increased air–lake temperature gradient on
the TP combined with strong wind [69,70] results in a considerable energy release from
the lake to the overlying air, in terms of large latent and sensible heat fluxes as well as
longwave radiation [40,71]. The lake heat loss makes the lake surface water temperature
rapidly decrease, causing a sharp increase in the water density of the upper water layer,
which induces vertical water convection to a large extent and eventually develops into lake
turnover. As an example, Figure 4 shows that the temperature is uniform in this mixed
layer. The turnover greatly reduces the difference between the surface skin temperature
and the bulk water temperature, and, therefore, the subsurface temperature data can be
used to validate the MODIS LSWT.

As shown in Figures 2 and 3, the MODIS LSWT is consistent with the in-situ data
during this period for the five lakes, in terms of both magnitude and temporal variability.
The RMSD is less than <1 ◦C at night and <2 ◦C in the daytime, indicating a high accuracy
of the MODIS LSWT. The difference between the MODIS LSWT and in-situ data in Terra
is relatively larger than that in Aqua, in terms of both MD and RMSD. Among the four
MODIS LSWT data sets, retrieval at night from the Aqua sensor performed best in terms of
consistency with the bulk temperature.

While the turnover makes the vertical water mix, the difference between the skin and
bulk temperature remains. In general, the daytime MODIS LSWT is greater than the in-situ
values, while the nighttime MODIS LSWT shows negligible differences from the in-situ
data. The larger difference between the MODIS LSWT and the in-situ data may be due
to solar heating and should not be attributed to the errors in the MODIS LSWT, as solar
radiation on the TP is stronger than that along the same latitude [46,72]. To understand
this, we analyzed the difference in lake temperature between the daytime and nighttime.
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During this turnover period, there is strong longwave emission from the lake surface
while strong solar radiation is received by the lake surface. This may cause a cooling
of the surface layer at night but a warming in the daytime. This diurnal change in skin
temperature can be detected by the MODIS via the Aqua platform, as shown in Figure 5a.
However, the subsurface temperature of these deep lakes has a negligible response to the
diurnal thermal conditions (Figure 5b) because of their huge heat capacity and high level
of vertical mixing. The diurnal variation in subsurface temperature is less than that in skin
temperature. Therefore, the larger MD and RMSD of the MODIS LSWT in the daytime is
due to its greater representativeness in vertical differing than that of the in-situ data.
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Overall, the MODIS retrievals perform well during the lake turnover period for these
large lakes, and using the nighttime MODIS LSWT as the ground truth for the evaluation is
the most reliable.
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4.2. Results during the Lake Stratified Period

At night in the lake stratified period, the MODIS LSWT from both Aqua/Terra plat-
forms is slightly lower than the in-situ data due to the skin cooling effect of the lake, with
a negative MD of less than 1 ◦C (Figures 2 and 3). This phenomenon is seen in both
the turnover period and the stratified period. However, the RMSD in the lake stratified
period is clearly larger than that in the lake turnover period (Figure 3). According to
Figures 2 and 3, the MODIS Aqua has an RMSD that ranges between 0.9 ◦C and 2.0 ◦C and
the MODIS Terra has an RSMD range between 0.9 ◦C and 1.9 ◦C. This is associated with
the different water layer representativeness between the MODIS retrieval and the in-situ
data during the summer, as discussed below.

In the daytime of the lake stratified period, the RMSD may exceed 3 ◦C and is larger
than that at night, so our focus is the discrepancy between the MODIS retrievals and in-situ
measurement in the daytime. As shown in Figure 3a2,c2, the daytime MODIS LSWT from
both Aqua/Terra platforms is clearly higher than the in-situ data, as indicated by the
positive MD. There are two causes for the larger errors in the daytime.

The first is the strong solar radiation in the TP. The solar heating at midday reaches its
diurnal peak with a magnitude greater than 1000 Wm−2 [45,73]. According to the observa-
tions [74,75], the water clarity of lakes on the TP, as defined by the Secchi depth, is high: the
mean is about 5 m. Therefore, most of these lakes are relatively transparent, allowing solar
radiation to penetrate into deep layers. Solar radiation exponentially attenuates with water
depth, which makes a large proportion of solar energy, particularly in the near-infrared
band, be absorbed by the upper-most thin layer during the summer. However, as shown
in Figure 4, there is a strong thermal stratification. This causes a much higher daytime
MODIS LSWT than the subsurface temperature at the Aqua daytime overpass time (13:30
local time). As shown in Figure 3a2,c2, the daytime MD in Aqua is larger than 1.5 ◦C while
in Terra it ranges between 0.6 ◦C and 1.8 ◦C.

The second is the depth of the in-situ measurements. According to the water tem-
perature profile proposed by Wilson et al. [64], the water temperature in the subsurface
layer varies rapidly with depth when the lake is thermally stratified. The depths of in-situ
measurements in some lakes are considerably larger than that in other regions [25,27,31,53],
therefore the measured subsurface temperature may be considerably cooler than the skin
temperature due to the strong thermal stratification in the daytime.

Therefore, the representativeness in the vertical profile is different between the MODIS
and the subsurface data. During the lake turnover period, the water is well mixed and
the difference in representativeness is small and the evaluation result during this period
is credible. However, during the stratification period, the water temperature varies with
depth and the difference in representativeness is considerable; therefore, the evaluation
during this period is not credible, and the difference between the in-situ data and the
MODIS LSWT cannot be harshly attributed to the errors in the MODIS data.

Based on the above evaluation and reasoning, the MODIS LSWT has good accuracy
for the TP lakes, with a root mean square error (RMSE) of less than 1.6 ◦C.

5. Discussions

Although the MODIS LSWT has good accuracy, there are still some distinct errors.
Figure 2 shows some substantial underestimates in the nighttime MODIS LSWT when
compared to the in-situ data during the monsoon season (summer), as also reported by
Wan et al. [44]. Theoretically, the skin cooling effect at night causes the skin temperature to
be slightly lower than the subsurface temperature, but it cannot explain such large cold
biases at night during the monsoon season. We noticed that the large cold biases strongly
depend on climate zones. For the lakes in the monsoon-controlled region (e.g., Lake Peiku
Co and Lake Nam Co), some MODIS LSWTs during the monsoon season were severely
underestimated. On the contrary, this situation was not so apparent for the lakes in the
westerlies-dominated region (e.g., Lake Bangong Co).
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During the monsoon season (from June to August), water vapor content in the
monsoon-controlled region is considerably higher than in the westerly-dominated re-
gion. We speculate that the large cold biases may be related to the water vapor and cloud
processes. As an example, we analyzed the relative humidity data from the observations
of Lake Peiku Co, a typical lake in the monsoon region. The relative humidity data were
measured at the north shoreline [76]. Figure 6a shows the temporal variations of the
MODIS LSWT and in-situ measurements, Figure 6b shows the diurnal variations in relative
humidity in two days with large cold biases in the MODIS LSWT and Figure 6c shows
the same in the adjacent two days with small biases. It can be seen that the nighttimes
with large cold biases are more humid than the ones with small biases. So, the large cold
biases may be associated with the local water vapor circulation and clouds. On the TP, due
to the thin air, the surface energy loss through upwelling longwave radiation is strong,
causing rapid cooling of the land surface but weaker cooling of the lake surface. The
resulting land–lake thermal contrast can drive cold airflow from the land to the lake surface
at night. Meanwhile, evaporation from the warmer lake surface at night can replenish the
water vapor in the cold air. The air convergence over the lake surface due to land wind
causes upward flow. If the relative humidity is high, the upward flow may result in the
condensation of water vapor. The large lakes are still at the warming stage during monsoon
season (e.g., Lake Zhari Namco shown in Figure 4) and the land–lake thermal contrast is
not so strong at night. Thus, upward motion over the TP’s lakes is not strong enough to
cause deep convections. Instead, it may cause the condensation of water vapor to form
low-level fog or shallow clouds, which are usually undetectable by the MODIS sensor.

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 15 
 

 

 
Figure 6. Comparison of MODIS Aqua and in-situ measurements of nighttime LSWT on Lake Peiku 
Co, (located in Himalaya region) (a), the diurnal variation in relative humidity on 14 July 2016 and 
29 August 2016 (b) and 20 August 2016 and 28 August 2016 (c). On these two days in panel (b), 
MODIS LSWTs showed large negative deviations from the in-situ measurements, and the opposite 
in panel (c), indicated by the four red rectangles in part (a). 

At the same time, the cloud mask criterion for the MO/YD11A1 inland water surface 
temperature retrieval is relatively relaxed compared to that for retrieving the land surface 
temperature, i.e., a water surface temperature is retrieved when the confidence of a clear-
sky condition is 66% or greater, but the confidence must be greater than 99% for the land 
temperature retrieval [57]. In other words, the MODIS algorithm’s detection of near-sur-
face shallow clouds or fog has lower confidence. Therefore, shallow clouds and fog miss-
ing from the cloud mask might result in a considerable underestimate of nighttime LSWT 
during the monsoon season. Due to the lack of observational data, this speculation is sub-
ject to further confirmation in the future. 

Given the frequent occurrence of large cold biases, the use of nighttime MODIS 
LSWT data with large cold biases during the monsoon season should be avoided in the 
monsoon-controlled region of the TP. 

6. Conclusions 
There are more than 1400 lakes with an area greater than 1 km2 on the TP. Due to the 

lack of in-situ measurements, the MODIS LSWT product has been used to assess changes 
in lake temperature and to calculate evaporation, but the applicability of this product has 
remained unclear. Early limited evaluations for this region did not consider the represent-
ativeness of in-situ subsurface data, and thus may have caused uncertainties in the eval-
uation. In this study, we deployed buoys to measure subsurface water temperature in five 
large lakes on the TP and assessed the advantages and limitations of the MODIS LSWT 
(both Terra and Aqua) based on the buoy data. Particularly, we pay attention to the rep-
resentativeness of in-situ data that varies with the seasons. 

The agreement between the MODIS-derived LSWT and the in-situ observed subsur-
face temperature highly depends on the lake’s thermal structure. During the turnover 

Figure 6. Comparison of MODIS Aqua and in-situ measurements of nighttime LSWT on Lake Peiku
Co, (located in Himalaya region) (a), the diurnal variation in relative humidity on 14 July 2016 and
29 August 2016 (b) and 20 August 2016 and 28 August 2016 (c). On these two days in panel (b),
MODIS LSWTs showed large negative deviations from the in-situ measurements, and the opposite in
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At the same time, the cloud mask criterion for the MO/YD11A1 inland water surface
temperature retrieval is relatively relaxed compared to that for retrieving the land surface
temperature, i.e., a water surface temperature is retrieved when the confidence of a clear-
sky condition is 66% or greater, but the confidence must be greater than 99% for the land
temperature retrieval [57]. In other words, the MODIS algorithm’s detection of near-surface
shallow clouds or fog has lower confidence. Therefore, shallow clouds and fog missing
from the cloud mask might result in a considerable underestimate of nighttime LSWT
during the monsoon season. Due to the lack of observational data, this speculation is
subject to further confirmation in the future.

Given the frequent occurrence of large cold biases, the use of nighttime MODIS LSWT
data with large cold biases during the monsoon season should be avoided in the monsoon-
controlled region of the TP.

6. Conclusions

There are more than 1400 lakes with an area greater than 1 km2 on the TP. Due to
the lack of in-situ measurements, the MODIS LSWT product has been used to assess
changes in lake temperature and to calculate evaporation, but the applicability of this
product has remained unclear. Early limited evaluations for this region did not consider the
representativeness of in-situ subsurface data, and thus may have caused uncertainties in
the evaluation. In this study, we deployed buoys to measure subsurface water temperature
in five large lakes on the TP and assessed the advantages and limitations of the MODIS
LSWT (both Terra and Aqua) based on the buoy data. Particularly, we pay attention to the
representativeness of in-situ data that varies with the seasons.

The agreement between the MODIS-derived LSWT and the in-situ observed subsurface
temperature highly depends on the lake’s thermal structure. During the turnover period
(i.e., October to the freeze-up date), the MODIS LSWT generally shows good agreement
with the in-situ data, indicating its high accuracy. Due to water mixing, the in-situ data
during the nighttime of this period can be used as the ground truth in the validation
of the MODIS LSWT, and the result confirms that the MODIS skin temperature can be
representative of the subsurface temperature of the mixed layer of the lakes. During the
lake-stratified period (from May to September), the in-situ data measured below the surface
cannot represent the skin temperature detected by the MODIS LSWT and cannot be used
as the ground truth for the validation of the latter.

Despite good performance in large Tibetan lakes, the MODIS lake surface temperatures
can be questionable in the monsoon-controlled region. Due to the influence of the Asian
monsoon, the nighttime LSWT can be heavily underestimated in the MODIS retrievals on
some humid days in summer. This severely restricts the use of the MODIS LSWT on the
Tibetan Plateau.

In summary, the MODIS LSWT has a high accuracy (RMSE < 2 ◦C) for large lakes in the
TP. However, if the MODIS LSWT is assumed to represent the subsurface water temperature
of a lake, it is preferable to use its nighttime data during the lake turnover period, but not
to use them during the lake stratified period (especially the monsoon period).
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