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Abstract: Traditional soil characterization methods are time consuming, laborious and invasive and
do not allow for long-term repeatability of measurements. The overall aim of this paper was to
assess and model spatial variability of the soil in an olive grove in south Italy by using data from
two sensors of different types: a multi-spectral on-board drone radiometer and a hyperspectral
visible-near infrared-shortwave infrared (VIS-NIR-SWIR) reflectance radiometer, as well as sample
data, to arrive at a delineation of homogeneous areas. The hyperspectral data were processed using
Continuum Removal (CR) methodology to obtain information about the content and composition
of clay. Differently, the multispectral data were firstly upscaled to the support of soil data using
geostatistics and taking into account the change of support. Secondly, the data acquired with the
two different sensors were integrated with soil granulometric properties by using two multivariate
geostatistical techniques: multi-collocated cokriging to achieve a more exhaustive and finer-scale soil
characterization, and multi-collocated factor cokriging to extract synthetic scale-dependent indices
(regionalized factors) for the delineation of soil in homogeneous zones. This paper shows the impact
of change of support on the uncertainty of soil prediction that can have a significant effect on decision
making in Precision Agriculture. Moreover, four regionalized factors at two different scales (two
for each scale) were retained and mapped. Each factor provided a different delineation of the field
with areas characterized by different granulometries and clay compositions. The applied method is
sufficiently flexible and could be applied to any number and type of sensors.

Keywords: topsoil; olive grove; clay composition; block cokriging; granulometry; multi-collocated
cokriging; multi-collocated factorial cokriging; regularization; VIS-NIR-SWIR spectroscopy

1. Introduction

In recent years, agriculture has been undergoing a profound revolution, moving from
an era characterized by widespread mechanization to an intensive use of information [1,2]
such as Precision Agriculture (PA) [3]. Agriculture is currently much more complex than in
the past, and its success depends strongly on the efficiency and reliability of the methods
used to collect site-specific within-field information and to process this large amount
of data.

Among the various components of an agricultural system, soil is undoubtedly one
of the most important due to its significant impact on plant growth, yield and product
quality/safety [2–4]. Farmers have always been well aware of this, since for centuries,
they have been using soil information to make their agronomic management decisions.
Traditionally, soil information has been collected with grid sampling at both regional and
local scales. While this method has produced useful results in the past, it currently shows all
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its limitations in modern agriculture, having its disadvantages. The information obtained
with sampling is generally expensive and inevitably sparse, i.e., it is not available at every
point in the field. To make informed management decisions in agriculture, it is necessary
to have soil information at more detailed scales, sometimes even at sub-metric scales for
certain agricultural operations such as pathogen control [5] and weed detection [6], which
would make grid sampling almost impractical.

Fortunately, modern technology offers several opportunities to make effective use of
the massive amount of data made available to the farmer today. However, appropriate
data processing techniques are needed to integrate the limited soil information from
sampling with the higher spatial density information provided by remote (RS) and proximal
(PS) sensing.

These are two techniques that acquire the information about an object without physical
contact (case RS) either in direct contact or at a maximum height of 2 m from the surface
(case PS). The RS uses distinct platforms as satellites, airborne or UAV with different sensors.
Instead, the PS are mounted on platforms ranging from handheld, fixed installations, or
robotics and tractor-embedded [7] sensors. Many studies have used RS images of bare soil
and soil reflectance to map and quantitatively characterize soil attributes [8–12], although
these remotely sensed data cannot be considered as a substitute for direct soil sampling
and lab measurements. A more efficient way of considering soil data acquired by RS is to
see them as a new, complementary and valuable source of soil information to provide more
precise predictions [11–13].

Moreover, images of bare soil from satellite or aircraft can cover large areas with a
sufficient degree of detail, to allow for the estimation of some key properties of the soil,
even where ground samplings could be considered sparse by traditional soil surveyors [8].
Although the technical characteristics of satellite products have improved a lot in recent
years, such as those commercially offered by EOS (Earth Observation System, ww.eos.com
(accessed on 24 October 2022)), their spatial resolution may not be adequate in PA.

To improve the predictions of crop yield models based on aerial images of the plant
at one meter or tens of meters scale, there is need to supplement them with soil data at
least at a similar scale [14–16]. Furthermore, in order to be able to intervene promptly with
some agronomic operation, there is need to have an on-time record of the state of the crop
and/or soil. Aerial measurements from a drone (UAV) make it possible to obtain images of
soil or crop at a centimetric spatial resolution and at the time desired by the farmer. This
explains the increasing use of drones for PA in recent times also in combination with lower
prices and fewer restrictions on flight authorization.

Although the use of hyperspectral radiometers on board drones is becoming increas-
ingly popular, it is currently not yet common in PA, due to both the still high costs and
the complexity of signal processing. Multispectral images with low spectral density may
sometimes limit interpretation of spatial variability of soil properties.

Furthermore, spectroscopic reflectance measurements on soil samples obtained in the
laboratory allow for quantitative determinations of soil properties. It has now become
common laboratory practice for soil analytical measurements. However, hyperspectral
data captured with spectrometers are generally noisy and difficult to interpret even under
well-controlled laboratory conditions [2,17,18]. It is therefore extremely critical to use
appropriate procedures for both data pre-processing and analysis. Currently three distinct
estimation techniques are widely applied to characterize qualitative and quantitative
soil attributes: (1) chemometric techniques by regression models as partial least square
regression (PLSR) models [19]; (2) machine learning techniques [20] widely used in recent
years, and (3) continuum removal (CR) [21].

While pre-treatment methods are required to correct baseline shifts in reflectance spec-
tra across the wavelength range due to the scattering effect [22,23], CR is a normalization
treatment of spectra which only concerns those absorption regions to be compared against a
common baseline [24]. This technique has the advantage of identifying specific absorption
features that should persist at different observation conditions.



Remote Sens. 2022, 14, 5442 3 of 22

After the application of the CR method, intensity values of absorption at specific
bands can be calculated from VNIR-SWIR spectra to estimate minerals, rocks and some soil
properties. The absorption characteristics of several minerals, including clay and CaCO3,
have been extensively studied using this technique both under laboratory conditions [25]
and from remotely sensed data [26]. New machine learning techniques are being developed
but to determine mainly the main chemical and physical properties of soil such as organic
carbon, clay and pH [20].

Soil samples for lab spectroscopic analysis are usually collected with grid sampling,
which inevitably limits their number.

After this brief examination of the potential and limitations of the different methods
of measurement, it is evident that there is no single sensor capable of providing accurate
measurements of all soil properties. To improve the accuracy of spatial predictions, a suc-
cessful approach may be used for several different sensors in addition to direct laboratory
measurements of soil attributes, a process called data fusion [27–29]. The fusion of sensors
allows the inputs from different sensors to be combined synergistically into a single image
of the environment/soil under study [30–35].

The resulting model is more accurate because it balances the strengths of the different
sensors. It is then possible to use the information provided by sensor fusion to support more
informed actions. This is by no means a trivial problem since it involves jointly analysing
heterogeneous multi-source spatial data with different statistical properties and spatial
resolution [34,35]. Furthermore, when delineating management zones in PA, predictions
are made at a higher level of spatial association than the one of the original data (upscal-
ing). This process, known as change of support [36–38], reduces spatial heterogeneity
and estimate uncertainty by producing a smoothing effect. Geostatistics offers various
solutions to data fusion and change of support problems specifically in PA. Block cokriging
for modelling spatial variability and block factor cokriging for partitioning field into ho-
mogeneous sub-field areas are the traditional geostatistical techniques used to treat these
critical issues. The advantages of using geostatistics derive from the fact that it explicitly
takes into account the spatial correlation between observations and allows the reduction in
uncertainty, due to upscaling, to be evaluated quantitatively.

The objective of this work is the definition of a geostatistical approach of multi-
spectral drone soil data fusion with hyperspectral ground-based data and laboratory
granulometry measurements for field delineation in homogeneous areas, which is also
capable of estimating the uncertainty reduction due to scale change.

2. Materials and Methods
2.1. Soil Sampling and Study Site

The sampling was carried out in an olive grove of 100-year-old trees of the Ogliarola
Salentina cultivar in July 2019, located in Oria (province of Brindisi, southeast of Italy).
Topsoil (0–0.20 m) subsamples were collected in three different places under each of the
61 plants of the olive grove field, with a sampling scale of 16 m on average. The sampling
design was therefore determined by the particular geometry of the olive grove planting.
Since the soil was compact, we dug with a spade a small vertical-walled hole to the
chosen depth. Then, we took a vertical slice covering the entire layer, trying to keep a
constant weight of the sample (about 2 kg). This operation was repeated for each of the
three subsamples. Finally, they were placed on a clean plastic tarp and mixed to form a
composite sample and stored in a plastic bag. The sampling design (Figure 1) is formed
by centroids of plants, around which (at about 1 m) the soil was taken. It was chosen
because one objective of the project was also to investigate whether the occurrence of
xylella infection might change the properties of the soil surrounding the plant. The distance
between trees was of 15 m on average.
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Figure 1. The soil sampling design in the olive grove of Oria.

The field is flat and gravel free. The inter-plant soil remains dry and free of weeds
for long periods in summer due to drought. It is classified as Calcic Haploxeralf, fine,
mixed, thermic (USDA, 1999), which is widespread in Mediterranean areas where grapes
and olives are cultivated. The term “Haploxeralf” involves a loamy granulometry and a
relatively thin argillic or kandic horizon, whereas “Calcic” regards a calcic horizon with
its upper boundary within 1 m of the mineral soil surface. Since in this study a topsoil
(0–0.20 m) was surveyed, this characteristic is not quite relevant.

2.2. Drone Data

The images were acquired from a multispectral sensor mounted on a multi-rotor DJI
Mavic Pro drone in August 2019 when most of the soil was free of weeds. The platform
had a total payload mass of ~800 g and a flight range of ~7 km [31,35]. The camera (Parrot
Sequoia) allowed for acquiring multispectral images at high resolution (0.07 m) from an
altitude of 70 m and with a sampling distance (GSD) of 0.066 m/pixel. The high spatial
resolution was required because this study was part of a research project aimed at early
detection of olive plants affected by Xylella [29].

The characteristics of the multispectral sensor are reported in the Table 1.

Table 1. Properties of the multispectral sensor Parrot Sequoia.

Camera
Resolution Image Size Bands Mass Size

1.2 Mpx * 1280 × 960 pixels

Green (550 ± 20 nm)
Red (660 ± 20 nm)
Red Edge (735 ± 5 nm)
NIR (790 ± 20 nm)

72 g 59 × 41 × 28 mm

* Mpx (megapixel) is equivalent to one million pixels.

The acquisitions were performed using the typical aerial-mapping “serpentine” profile
(Figure 2a) with planned overlap and 80% sidelap.
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Figure 2. The multi-rotor DJI Mavic Pro drone and its flight plan (a), an example of orthophoto image
(green band) (b).

All of the spectral data sets were processed with Pix4d Mapper 4.4.12 software apply-
ing photogrammetric techniques, to create a quoted point cloud for 3D reconstruction and
an orthophoto image for each band as the final result (Figure 2b).

The drone image had previously been classified into three classes (crown, shadow and
soil) [35]. The classification product was then cut using the polygon shapefile of the field
boundary (Oria-RE). In the following, there is the description of the different steps of the
applied methodology for extracting soil pixels alone from the drone image:

1. Recombining classes and mask generation

In this step, the procedure ‘combine classes’ of the commercial ENVI (ENvironment for
Visualizing Images) 5.1 software (Harris Geospatial) was applied. In this way, two classes
(crown and shadow) were merged into one class ‘not-soil’, and then, the corresponding
binary image (not soil 0, soil 1) was extracted.

2. Point shapefile of soil

Four point shapefiles containing soil information were extracted from each drone band
using the tool (r.tovector) of the Grass (Geographic Resources Analysis Support System)
module integrated in the open source software: QGIS (Quantum Geographic Information
System) version 3.22, Białowieża, Poland.

3. CSV file

To use soil drone data in the subsequent geostatistical analysis, the point shapefile
was converted into CSV format. This step was performed by applying the plugin MMQGIS
in QGIS.

The methodology to extract the soil information from drone data is shown in the
following flowchart (see Figure 3).
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2.3. Laboratory-Based Granulometry Measurement

The granulometric determinations were based on taking the suspension of particles
with diameters less than 200 µm at different heights and at predetermined times according
to the pipette method [39,40]. The following soil particle size fractions (%) were determined
directly: coarse sand (2.0–0.2 mm), silt (0.05–0.002 mm) and clay (<0.002 mm). The fine
sand (0.2–0.05 mm) was calculated as the complement to 100 of the previous components.
Total sand was calculated as the sum of coarse and fine sand.

2.4. Hyperspectral Data and Their Analysis

The three soil samples, collected under the 61 plants, were dried, ground, sieved to
2 mm and mixed to compose a representative, homogeneous soil sample for each tree.
They were analysed in the laboratory with ASD FieldSpec IV spectroradiometer (Analytical
Spectral Devices Inc., Boulder, CO, USA) over 350–2500 nm spectral range, and VIS-NIR-
SWIR reflectance was measured.

The raw data over the whole spectral range were elaborated with principal component
analysis in a previous paper [31], and the retained components (PCs) were elaborated with
continuum removal [41] in the ranges around 1400, 1900, 2200 nm, to assess the influence
of clay composition illite (1400 nm), montmorillonite (1900 nm), kaolinite (2200 nm) [24] on
PCs’ structure. As described in the paper of Riefolo et al., 2022 [31], the three retained PCs
cumulatively explained a proportion of the variance greater than 98%; more particularly,
PC1 explained the 92.2%, PC2 4% and PC3 2% of total variance. Significant loading values
were those above a threshold level of 80. PC1 had significant loadings around 1400 nm
and from 1710 to 1810 nm. Between these two wavelength ranges, the one most directly
associable to a clay component was 1400 nm (illite), according Dufrechou et al., 2015 [41].
Given the high percentage of total variance explained, PC1 could be interpreted as a kind of
average soil reflectance over the entire spectrum explored. PC2 showed significant loadings
in the ranges between 1970 and 1990 nm and at 2500 nm; therefore, it could be associated
with the montmorillonite component [41]. Finally, PC3, showing significant loadings in the
370–440 nm range, was associated with iron oxides and more specifically with geothite.

One of the objectives of this paper was not only to estimate the granulometric compo-
nents of soil but also to characterize the composition of the clay. Due to the fact that soil is a
complex system comprising several different substances and not a pure mineral, it is likely
that other water-containing components may affect the spectra at some specified wave-
lengths, although the samples were desiccated in the laboratory. To make it comparable,
the depth parameters previously calculated at 1400 nm (D1400) and at 1900 nm (D1900)
were standardized with respect to the parameter depth at 2200 m (D2200) [41]. Therefore,
the following ratios: R1 = D1400/D2200 and R2 = D1900/D2200, were calculated and were
related spatially to other soil variables, regarding the particular granulometry discussed in
this paper.

2.5. Spectral Index of Soil Samples

In order to characterize, using only one index, the spectral properties of a soil sample
provided by the hundreds of spectral bands of the ASD sensor, a discrimination measure
was used, called SID-SAM, which is a mixture of the widely used RS spectral angle mapper
(SAM) and the spectral information divergence (SID) [31–42].

It is a stochastic measure of discrimination between two spectra and therefore is
well suited to be interpolated according to the techniques of geostatistics. To make the
values referring to the 61 soil samples comparable to each other, these measurements were
determined with respect to the same spectrum, corresponding to the maximum reflectance
for all samples over the entire spectrum (Figure 4).
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In Figure 4, the characteristic absorption bands at 1400, 1900 and 2200 nm are also visi-
ble in all spectra of soil samples, mainly assignable to the presence of illite, montmorillonite
and kaolinite, respectively.

2.6. Geostatistical Procedures

Firstly, exploratory data analysis was performed to calculate the basic statistics of
the study variables including mean, median, minimum and maximum values, standard
deviation, skewness and kurtosis.

If the data distributions appeared asymmetrical with a skewness coefficient greater
than 1, the variables were transformed into standardized Gaussian variables with mean 0
and variance 1, before performing multivariate geostatistical analysis. For this purpose,
a Hermite polynomial series was used, and the approach is called Gaussian Anamorpho-
sis [43,44].

Therefore, all geostatistical procedures were performed in the Gaussian domain, and
only the end the estimates were back-transformed to the raw data by using the fitted
anamorphosis model.

The multivariate data sets, both the one containing only drone data and the combined
one resulting from the fusion of multi-band drone data, hyperspectral data and soil granu-
lometric measurements, were spatially modelled under the scope of the linear model of
coregionalization (LMC) [43,45]. LMC considers the study variables as generated by the
same independent physical processes acting over Ns different spatial scales. All experimen-
tal direct and cross-variograms were then jointly modelled as linear combinations of the
same set of Ns basic variograms gu(h) for each spatial scale u standardized to sill 1:

γij(h) =
Ns
∑

u=1
bu

ijg
u(h)

i, j = 1, . . . , p
(1)

where γij(h) is the cross-variogram model between variables Zi and Zj; h is a distance
vector, called lag, and bu

ij are the partial sills of the variograms gu(h), specific for each pair
of variables i and j and for each spatial scale u.
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By assembling all bu
ij coefficients related to a specific scale u, a symmetric Bu matrix is

determined, which is called the coregionalization matrix. This could be considered as the
analogue of the variance–covariance matrix but for a specific scale u. Therefore, according
to the LMC perspective, the variance–covariance matrix could be decomposed into the
sum of the coregionalization matrices relating to Ns spatial scales [46]. Fitting of LMC
was performed with weighted least-squares method under the constraint of positive semi-
definiteness of the Bu by using an iterative approach developed by Rivoirard (2001) [47].
The results were evaluated with cross-validation techniques [48] using mean and variance
of the standardized error (SE) against the cokriging standard deviation as error statistics [49].
The optimal values of the two statistics should be 0 and 1, respectively.

2.7. Change of Support

Geostatistical techniques are used to model the statistical effects of change of scale
when soil measurements are made on point support (soil cores, pits, etc.), but the estimates
are to be calculated on blocks (support) bigger than the one of observations (field, land unit).
This is obtained by modifying the spatial functions (covariance, variogram) that describe
the spatial dependence between observations, thus avoiding a new soil survey [49–51].
This procedure in geostatistics is called regularization [44].

The change of support of the drone data was made necessary in order to fuse hetero-
geneous data (multi-band drone, hyperspectral and granulometric data) with different
supports in the multivariate geostatistical analysis.

The point support was assumed to be that of multispectral drone data (0.07 m × 0.07 m),
while the estimates were obtained on a 1 × 1 m block, because this was the support of the
measurements on the ground (granulometry and hyperspectral reflectance). To transform
the point variograms of the drone data into block variograms, each block of 1 by 1 m size
of the interpolation grid was discretized into equal cells with mesh of 0.10 m. After that,
pseudo-point experimental variograms were calculated in the fictitious cell centres within
the block, and then, the point variograms were averaged (regularized) over the block.

To provide the estimates of multi-spectral drone data on a 1 by 1 m block support, block
cokriging was applied, which is one of the traditional geostatistical interpolation methods
to solve the change of support problem [44,52,53]. It allows one to predict the variables at a
scale larger than the one of observation through the process of regularization as described
before. Block support variograms of drone data were then calculated from point support
variograms to provide mean estimates on a 1 m mesh grid [5]. Block cokriging allows one
to refer the estimates of different variables to the same support (block), thus solving the
crucial problem of combining sensor data with different spatial resolutions [33].

2.8. Data Fusion and Partitioning of the Field
2.8.1. Multi-Collocated Cokriging

Cokriging is the traditional multivariate estimator in geostatistics which enables one to
improve the accuracy of poorly sampled variables by using more densely sampled auxiliary
variables [54,55].

In particular, the variant multi-collocated cokriging was used in this work to fuse
sparse primary variables with gridded auxiliary variables, with the aim of improving the
spatial resolution of soil properties as compared to sampling resolution (tens of meters).
Multi-collocated cokriging [27,47] is a simplified version of full cokriging, which makes
use of the much more densely sampled auxiliary variable(s) only at the target point and at
all locations where the primary variable(s) of interest is(are) available [56]. This approach
requires that the auxiliary variable(s) is(are) known at all nodes of the interpolation grid
besides at the locations where the interest variable(s) is(are) measured. It is particularly
useful when the auxiliary variables are redundant (raster variables), whereby the use of the
full neighbourhood for interpolation would cause the inversion of the matrices to be very
time-consuming or even impossible [43,44].
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In this work, the multi-band drone variables were first interpolated onto a 1 m mesh
grid with block cokriging and then assumed as auxiliary grid variables in the application
of multi-collocated cokriging and multi-collocated factor cokriging to the complete fusion
data set.

2.8.2. Multi-Collocated Factor Cokriging

The same LMC fitted for the fusion data set was used in multi-collocated factorial
cokriging analysis to extract few synthetic scale-dependent indicators to be used for field
partition. Factor cokriging is a geostatistical technique for assessing and modelling the
spatial correlations of a multivariate spatial data set at the different scales, developed by
Matheron (1982) [57]. Besides LMC fitting, it consists of two additional steps: (i) analysing
the correlation structure of variables at each scale by applying traditional principal com-
ponent analysis (PCA) on the corresponding coregionalization matrix to extract a set of
orthogonal components known as scale-dependent regionalized factors; and (ii) cokriging
and mapping regionalized factors by solving a modified cokriging system [43]. The variant
multi-collocated factor cokriging was used in the same manner as illustrated earlier. Re-
gionalized factors are but mathematical constructions with no prior physical meaning [37];
therefore, they were interpreted on the basis of the prevalent loading coefficients in their
formulation.

The proposed data fusion approach is depicted in the flowchart of Figure 5.
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2.9. Estimation Uncertainty

Estimation uncertainty of the granulometric variables (silt, clay), which were the
target variables of this work, was assessed by calculating the confidence interval (95% CI),
which provides the range of variation of the estimate at each node of the interpolation grid
with an error less than or equal to 5% [5]. The upper and lower 95% CI limits pertaining
to the Gaussian estimate were calculated by summing or subtracting the 1.96 cokriging
standard deviation to the estimate, respectively. Upper and lower limits and estimate of
Gaussian-transformed variables were then back-transformed to the raw data by using the
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Gaussian anamorphosis model, previously fitted. This made it possible to calculate the
estimation uncertainty of even strongly skewed variables.

3. Results and Discussion
3.1. Geostatistical Analysis of Drone Data and Change of Support

From the original drone image, 2,032,972 pixels were extracted attributable to soil,
and in Table 2, the basic statistics of the four bands of soil reflectance are reported. All
four variables showed a skewness coefficient greater than 1, which means that the data
distributions were asymmetric due to the presence of numerous large outliers.

Table 2. Basic statistics of the four bands of drone reflectance.

Variable Minimum Maximum Mean Median Std. Dev. Skewness Kurtosis

green 0.027 0.256 0.098 0.094 0.018 1.56 7.73
Red 0.021 0.362 0.133 0.128 0.030 1.35 6.33
red_edge 0.028 0.401 0.183 0.177 0.034 1.15 5.78
NIR 0.032 0.558 0.235 0.228 0.041 1.08 5.65

Therefore, all four variables were transformed to standardized Gaussian variables by
fitting a point model of Gaussian anamorphosis with a number of Hermite polynomials
equal to 100. However, to calculate the set of experimental direct and cross-variograms of
the Gaussian-transformed data in a workable computer time, it was necessary to reduce
the number of pixels. This was realized by superimposing a regular grid with 1 m mesh
on the study area and then randomly selecting one point within each cell, thus retaining
12,974 pixels. The LMC fitted to the set of experimental variograms of the transformed
variables consisted of three basic spatial structures: a nugget effect, a spherical model with
a range equal to 7.78 m, and a spherical model with a range of 76.59 m. The results of cross-
validation (Table 3) were quite good because the mean and variance of the standardized
error were very close to 0 and 1, respectively, for all variables.

Table 3. The results of cross-validation for fitting of point LMC of the Gaussian-transformed drone
reflectance variables. g before the band name stands for the Gaussian-transformed drone variable.

Variable Mean Variance

g_green 0.0031 1.01
g_red −0.0083 1.00
g_red_edge −0.0007 1.07
g_NIR 0.0001 1.06

By summing the structure-specific eigenvalues, it was possible to decompose the total
spatial variance into three components accounting for 43%, (nugget effect), 43% (short-
range) and 14% (long range). These results show a clear prevalence of the variability at
short scales, within about 7 m, most likely due to the very fine scale (0.07 m) of drone
data monitoring.

To fuse the drone data with the ground-based data with larger support (1 by 1 m), the
experimental variograms were regularized on the larger support, and then, a block LMC
was fitted (Figure 6) including a nugget effect, a spherical model with a range of 10.93 m,
and a spherical model with a range of 77.59 m.
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Figure 6. Regularized block LMC of the Gaussian-transformed drone reflectance variables. Experi-
mental variogram (dots), model (bold line), intrinsic correlation hub (dashed line).

The percentages of total spatial variance explained by the three components were:
41% (nugget effect), 33% (short-range) and 26% (long-range). The effect of the change of
support was therefore to leave LMC practically unchanged in the mathematical form of its
basic structures, while the proportions of total variance explained by each component were
varied. There was a proportional reduction in short-range variability in favour of long-
range variability, although the error component (nugget effect) remained high. Differently,
there was a significant reduction in the total spatial variance from 5.26 for the point model to
2.93 for the block model (about 56%), as it results from the sum of all respective eigenvalues.

Block LMC was then used in block cokriging to obtain the estimates of drone-transformed
data both at the nodes of a 1 m-mesh grid (auxiliary grid data) and at the locations of
the soil samples (sample data), in order to create the complete coregionalization data set
including all variables used in data fusion.

3.2. Geostatistical Soil Data Fusion

Table 4 shows the basic statistics of the complete coregionalization data set. It was
preferrable to include only the individual variables D1400, D1900 and D2200 in the interpo-
lation process, while the two ratios were calculated subsequently from their estimates.
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Table 4. The statistics of the complete coregionalization data set. bck before the name of the variable
stands for block cokriging estimate.

Variable Count Minimum Maximum Mean Std. Dev. Skewness Kurtosis

Clay 61 13.34 16.48 14.94 0.72 0.00 2.50
Silt 61 27.53 33.22 30.16 1.38 0.19 2.19

Sabbia 61 51.19 57.98 54.90 1.90 −0.12 1.79
D1400 61 0.05 0.09 0.07 0.01 −0.23 2.73
D1900 61 0.18 0.30 0.24 0.03 −0.56 2.43
D2200 61 0.05 0.07 0.06 0.01 −0.29 3.29

R1 61 0.88 1.61 1.18 0.14 0.30 3.14
R2 61 2.99 5.20 3.94 0.50 0.03 2.46

PC1 61 −1.43 3.58 0.00 0.99 1.72 6.06
PC2 61 −1.75 2.37 0.00 0.99 0.59 2.47
PC3 61 −1.14 2.39 0.00 0.99 1.13 3.13

SIDSAM 61 0.00 0.09 0.03 0.03 0.90 2.82
bck_g_green 61 −2.74 0.29 −1.82 0.50 1.26 6.61

bck_g_red 61 −2.66 0.48 −1.71 0.51 1.35 6.98
bck_g_red_edge 61 −2.42 0.36 −0.93 0.69 −0.18 2.08

bck_g_NIR 61 −2.27 0.98 −0.66 0.76 −0.21 2.19

Furthermore, sand was excluded from the multivariate geostatistical analysis, as
it was linearly related to clay and silt. Since the variables were expressed in different
units and with different magnitudes, and some of them deviated significantly from the
Gaussian distribution, it was preferred to apply a Gaussian anamorphosis with 100 Hermite
polynomials to all 13 variables. Given the limited number of samples (61), it was not
possible to discover any anisotropy in the spatial variation of the variables. An isotropic
LMC was then fitted to the set of direct and cross variograms of the Gaussian-transformed
variables, comprising the following spatial structures: a nugget effect, a spherical model
with a range of 29.89 m and a spherical model with a range of 104.21 (Figure S1). Each of
these spatial components explained a percentage of the total variance of 33.7%, 23.6% and
42.7%, respectively. The cross-validation results for the two variables of main interest in
this work (gclay and gsilt) were very good (Table 5).

Table 5. The cross-validation results of the two variables (gclay and gsilt) in the data fusion process.

Variable SE Mean SE Variance

gclay −0.009 1.03
gsilt 0.006 1.03

Analysing in particular the direct variogram of gclay and its cross variograms with the
remaining variables (Figure 7a), it can be seen that in the direct variogram, the unstructured
component (nugget effect) was high, more than 75 per cent of the total sill. With regard to
the cross variograms, by assessing the distance of the model (bold line) from the intrinsic
correlation hub (dashed line), an evaluation of the strength of the spatial correlation between
the variables of the pair is obtained. Intrinsic correlation describes the maximum possible
spatial correlation between a pair of variables [43]. It can therefore be noted that these
correlations were very low for gclay with all variables, with a partial exception for the
positive correlations with gD1400 and gD1900, which was quite expected since gD1400 and
gD1900 can be considered as approximate indicators of the specific clay components in the
soil for the reasons explained in Section 2.4.

The same considerations apply largely to gsilt (Figure 7b). Again, the direct variogram
has a high nugget effect (more than 75% of the total sill) and the cross variograms indicate
that the spatial correlations with the other variables were generally low, with the exception
of the positive correlation with gclay, the negative correlation with gSIDSAM, and the
positive correlation with gPC1. The last two spatial correlations indicate that the areas
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of the field with the highest silt contents were also the most reflective. The general low
spatial correlations of the two granulometric components were mostly due to the high
nugget effect of both direct variograms, therefore indicating that soil sampling should
be intensified.

In particular, the low spatial correlation between the drone radiometric variables and
soil particle size components is essentially due to two factors: one the high nugget effects of
the variograms of the soil parameters, resulting from the too coarse (sampling scale of about
16 m on average) and limited (only 61 samples) sampling, and second from the very fine
sampling scale of the drone data with 0.07 m size pixels even if scaled to 1 m. This resulted
in approximately 70% of the total variance explained by the drone data being attributable
to a spatial scale of less than 10 m. However, it was intended to include the drone data in
the data fusion process both to investigate its potential in improving the prediction of soil
properties and as auxiliary variables at high sampling density to downscale the soil data.
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Figure 7. The direct and cross variograms of the two variables: gclay (a) and gsilt (b).

These results suggest that if the objective of the research is to partition the field
into homogeneous areas to be subjected to differentiated agronomic operations, such as
mechanical tillage or fertigation, a recording scheme should be planned in which the
different measured variables do not have very different sampling scales.

In the process of data fusion, it was not necessary to subject the variograms to regu-
larization, since all variables considered were defined on the same 1 × 1 m size support.
Furthermore, the comparison of the block LMC of the drone data alone with the LMC of the
complete fusion data set reveals an increase in the range of spatial structures, a proportional
reduction in the error component, and a prevalence of the long-range structured component
over the short-range one. These results should highlight how modelling of spatial variation
depends significantly on the sampling scheme (size, sampling distance, sample localization)
and the measurement support. It is therefore critical in a data fusion process to uniform the
supports of all variables used to the same support on which estimates are to be made.

The raw data maps of clay and silt with their respective 95% lower limit and 95%
upper limit maps are shown in Figure 8, so as to be able to determine the uncertainty of
estimates at each point.
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Figure 8. The raw data maps of clay (a1) and silt (b1) with their respective lower limit (a2,b2) and
upper limit maps (a3,b3). In (b1), the position of the reference spectrum is shown (dot). Colour scale
uses isofrequency classes.

The upper and lower limit maps appear very similar to those of the corresponding
estimates except in the absolute values, indicating that they reproduce essentially the same
spatial dependence structures.

The clay and silt maps show some affinities, although the one of clay is noisier,
probably due to the low clay content compared to that of silt. The field can then roughly
be divided into two parts according to the longer axis: the northern part characterized by
a greater proportion of fine component and the southern one. This field partition is also
consistent with the sand map drawn from the previous two (Figure 9), indicating a coarser
grain size in the southern part and in the northwestern corner.
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To better characterize the detected within-field homogeneous zones and to detail the
spatial relationships between the granulometric components and hyperspectral measure-
ments, the maps of D1400, D1900 and D2200 are also shown (Figure 10).
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According to the Dufrechou model [41] and our considerations exposed in Section 2.4,
the first two maps might be associated approximately with the two clay components called
illite (Figure 10a) and montmorillonite (Figure 10b), which look very similar and have the
lowest D values in the southwest area. The third map, representing the clay component
called kaolinite (Figure 10c), is noisier with the area of the lows shifted more towards
the northeast. Moreover, after normalization of D values with respect to granulometry,
the maps of R1 (Figure 11a) and R2 (Figure 11b) ratios confirm the geometrical pattern
of the illite and montmorillonite clay components. The ratio maps consistently provide
information not only on the spatial distribution of clay content (Figure 8a), but also on
its composition, in terms of the relative proportion among the three clay components.
These are not quantified but are expressed through D and R values as an indication of the
prevalence of one component over the others.
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The SIDSAM map (Figure 12) displays a broad strip in the northeast to southwest
direction characterized by the lowest values, which according to the SIDSAM definition,
are to be interpreted as areas of higher reflectance over the whole spectrum (350–2500 nm
range). Radiation reflection/absorption properties in the VIS-NIR-SWIR range depend
on multiple factors, among which soil granulometry plays an important role [31]. The
SIDSAM lows should therefore mostly correspond to the coarser granulometry areas of
the field.
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Examination of the cross variograms of gSIDSAM with the other variables (Figure S1)
can help us interpret its spatial distribution. gSIDSAM shows negative spatial correlation
with gsilt, the radiometric indices over the entire spectrum (gPC1, gPC2 above all, and
gPC3), and positive correlation with gD1400 and gD1900. Since SIDSAM is inversely related
to soil reflectivity, it can be assumed as a direct indicator of clay content (less reflective) but
an inverse indicator of silt content (more reflective).

The location of the absolute most reflective spectrum taken as a reference (Figure 8(b1))
seems to be consistent with the above. It corresponds to a quite high content of silt, although
not the maximum, since the reflectivity of a soil sample depends on a multitude of physical
and chemical properties and not only on the physical size of the soil particles.

To synthetize the complex relationships between the spatial structures of the different
variables, omitting the factors associated with the nugget effect as they were mostly affected
by error, the first two regionalized factors of each spatial structure with eigen values > 1
were retained (Table 6).

Table 6. Structure of the first two regionalized factors at short range (29.89 m) and of the first two
regionalized factors at long range (104.91 m), shown with the corresponding loading coefficients, the
eigen value and the percentage of explained variance. g before the name of the variable stands for
Gaussian-transformed variable.

Variable
Scale 29.89 m Scale 104.21 m

F1 F2 F1 F2

gbck_g_green 0.4531 0.2032 0.1001 0.3298
gbck_g_red 0.4037 0.2032 0.0889 0.3472

gbck_g_red_edge 0.3006 0.3592 0.2220 0.4524
gbck_g_NIR 0.2493 0.3674 0.2200 0.4212

gD1400 −0.2316 0.1418 0.5128 −0.2657
gD1900 −0.3275 0.1787 0.5088 −0.1050
gD2200 −0.2114 0.1380 0.1546 −0.0488
gPC1 0.0649 −0.4585 0.1814 −0.3510
gPC2 0.3377 −0.2675 −0.4847 0.1061
gPC3 0.2400 −0.1433 0.1231 0.2514

gSIDSAM −0.2998 0.4443 0.2209 0.1623
gclay 0.0002 −0.0836 0.0816 −0.1830
gsilt −0.0885 −0.2489 −0.0161 −0.2170

Eigen Val. 1.4358 1.3355 4.1292 1.9889
Var. Perc. 39.77 37.00 63.26 30.47

On the first factor at short range, which explained about 40% of the variance at this
scale, the drone reflectances, which correlated poorly with the other variables, and gF2
weighted mainly and positively, while gD1900 and gSIDSAM weighted negatively. In
light of the interpretation of the variables described above, this factor can be considered an
indicator of the soil reflectance as recorded by both multiband and hyperspectral sensors.
Unlike on the second short-range factor, which accounts for 37.0% of the variance, gF1
and gSIDSAM weighted mainly negatively and positively, respectively. It may thus be
interpreted as an indicator of the radiation absorption by clay.

On the first long-range regionalized factor, which explained more than 63% of the
variance at this scale, gD1400 and gD1900 weighted mainly and positively. It can therefore
be interpreted as an indicator of the clay content in the forms of illite and montmorillonite.
On the second long-range factor, which explained about 30% of the variance, the multi-band
reflectances from the drone weighted positively and at less extent and negatively D1400.
Highs in the second factor might be associated with higher silt contents while lows with
less clay contents. For this factor, it is however more difficult to assign it a unique meaning.

In Figure 13(a1,a2), the maps of the two short-range factors are displayed, which are
characterized by a high level of noise. The highs of the first factor would indicate higher
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reflectivity areas (greater silt and sand contents), while the highs of the second factor would
identify higher radiative absorption areas and then with greater clay contents.
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Figure 13(b1) shows the map of the first long-range factor, which almost faithfully
reproduces the spatial patterns of the D1400 and D1900 maps. Therefore, it depicts the
distribution of clay characterized by a large central southern zone with low content, while
the content increases along the edges of the field except in the south centre, consistently
with contents of two main components of clay. A map of the second long-range factor is
shown in Figure 13(b2) where the highs might be attributed to greater silt content and the
lows to greater sand content.

It is clear from what has been said above that the soil particle size composition signifi-
cantly controls the partitioning of this soil into homogenous areas. More specifically, based
on the first long-range factor, the field could be split into three main areas approximately of
equal size, defined as low, medium and high (Figure 14) with respect to the content of the
finer components of the granulometry. While there remains residual variability of clay, silt
and sand within each class (Figures 7 and 8), a representative value of these variables for
each class can be calculated as an expected value [35,58] (Figure 14).

Remote Sens. 2022, 14, x FOR PEER REVIEW 21 of 24 
 

 

approximately of equal size, defined as low, medium and high (Figure 14) with respect to 

the content of the finer components of the granulometry. While there remains residual 

variability of clay, silt and sand within each class (Figures 7 and 8), a representative value 

of these variables for each class can be calculated as an expected value [35,58] (Figure 14). 

 

Figure 14. The map of the first long-range factor split into three areas of about equal size on the basis 

of the content of the finest component of granulometry. 

Evidently, to arrive at a site-specific agronomic management of the olive grove in 

terms of mechanical tillage, fertilization and possible rescue irrigation, further determina-

tions would be needed both on the soil and on the plant. However, the combined use of 

remote and laboratory sensors can certainly provide an effective support for field parti-

tioning. 

4. Conclusions 

The objective of this work was to investigate the use of remote sensing and in partic-

ular of drone data to assess spatial variability of soil and then arrive at a field partition 

that could advantageously be used in differential management. To this end, a geostatisti-

cal data fusion approach was defined that could integrate RS data with hyperspectral data 

and granulometric measurements from the laboratory. 

The study has revealed the key advantages of remote sensing, especially in PA ap-

plications: nondestructive method of collecting data on soil parameters; supply of infor-

mation at fine spatial resolution over the entire field; useful complement to costly and 

time-consuming sampling. However, it has also shown the disadvantages or limitations 

of using RS alone, whose variables did not show strong spatial relationships with soil 

parameters. It is then necessary to integrate these measurements with those of other sen-

sors, such as hyperspectral sensors that allow for better physical and chemical characteri-

sation, and with direct laboratory determinations of soil properties. 

The use of collecting soil samples for laboratory measurements inevitably reduces 

the size of the data; therefore, a future challenge is the increase in data volume in addition 

to an increase in spectral bands through the implementation of a hyperspectral radiometer 

in remote and/or proximal sensing. 

Finally, a crucial issue in which the remote sensing community should be concerned 

is about scale effects. Infusing RS data with different pixel sizes and with data from vari-

ous sources, the impact of change of support on prediction and uncertainty should be 

carefully evaluated since it might significantly affect decision making, for example in PA. 

Supplementary Materials: The following supporting information can be downloaded at: 

www.mdpi.com/xxx/s1, Figure S1: Isotropic LMC fitted to the set of direct and cross vari-

ograms of the Gaussian transformed variables. 

Figure 14. The map of the first long-range factor split into three areas of about equal size on the basis
of the content of the finest component of granulometry.



Remote Sens. 2022, 14, 5442 20 of 22

Evidently, to arrive at a site-specific agronomic management of the olive grove in terms
of mechanical tillage, fertilization and possible rescue irrigation, further determinations
would be needed both on the soil and on the plant. However, the combined use of remote
and laboratory sensors can certainly provide an effective support for field partitioning.

4. Conclusions

The objective of this work was to investigate the use of remote sensing and in particular
of drone data to assess spatial variability of soil and then arrive at a field partition that
could advantageously be used in differential management. To this end, a geostatistical
data fusion approach was defined that could integrate RS data with hyperspectral data and
granulometric measurements from the laboratory.

The study has revealed the key advantages of remote sensing, especially in PA applica-
tions: nondestructive method of collecting data on soil parameters; supply of information at
fine spatial resolution over the entire field; useful complement to costly and time-consuming
sampling. However, it has also shown the disadvantages or limitations of using RS alone,
whose variables did not show strong spatial relationships with soil parameters. It is then
necessary to integrate these measurements with those of other sensors, such as hyperspec-
tral sensors that allow for better physical and chemical characterisation, and with direct
laboratory determinations of soil properties.

The use of collecting soil samples for laboratory measurements inevitably reduces the
size of the data; therefore, a future challenge is the increase in data volume in addition to
an increase in spectral bands through the implementation of a hyperspectral radiometer in
remote and/or proximal sensing.

Finally, a crucial issue in which the remote sensing community should be concerned is
about scale effects. Infusing RS data with different pixel sizes and with data from various
sources, the impact of change of support on prediction and uncertainty should be carefully
evaluated since it might significantly affect decision making, for example in PA.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14215442/s1, Figure S1: Isotropic LMC fitted to the set of direct
and cross variograms of the Gaussian transformed variables.

Author Contributions: Conceptualization, A.C. and A.B.; methodology, A.C., A.B., C.R., and F.L.;
formal analysis, A.C., A.B., C.R., and F.L.; writing—original draft preparation, A.C.; writing—review
and editing, A.C., A.B., and C.R.; visualization, A.B.; supervision, A.C.; funding acquisition, A.C. All
authors have read and agreed to the published version of the manuscript.

Funding: Project ‘XylMap—Identification of CoDiRO diffusion dynamics after analysis of progres-
sion mechanisms and development of enhanced monitoring and mapping tools and methods’ was
financed by the Apulia Region (Italy) with reference to DD n. 494 of 14/10/2015 and n. 278 of
9/8/2016 (Cod. A).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Fountas, S.; Wulfsohn, D.; Blackmore, B.S.; Jacobsen, H.L.; Pedersen, S.M. A model of decision-making and information flows for

information-intensive agriculture. Agric. Syst. 2006, 87, 192–210. [CrossRef]
2. Ge, Y.; Thomasson, J.A.; Ruixiu, S. Remote sensing of soil properties in precision agriculture: A review. Front. Earth Sci. 2011, 5,

229–238. [CrossRef]
3. ISPA International Society of Precision Agriculture. Available online: https://www.ispag.org/about/definition (accessed on 24

October 2022).
4. Berge, H.F.M.; Schroder, J.J.; Olesen, J.E.; Cervera, J.V.G. Research for AGRI Committee—Preserving agricultural soils in the EU,

European Parliament, Policy Department for Structural and Cohesion Policies, Brussels. Available online: http://www.europarl.
europa.eu/committees/en/supporting-analyses-search.html (accessed on 31 March 2017).

5. Castrignanò, A.; Quarto, R.; Venezia, A.; Buttafuoco, G. A comparison between mixed support kriging and block cokriging for
modelling and combining spatial data with different support. Precis. Agric. 2019, 20, 193–213. [CrossRef]

https://www.mdpi.com/article/10.3390/rs14215442/s1
https://www.mdpi.com/article/10.3390/rs14215442/s1
http://doi.org/10.1016/j.agsy.2004.12.003
http://doi.org/10.1007/s11707-011-0175-0
https://www.ispag.org/about/definition
http://www.europarl.europa.eu/committees/en/supporting-analyses-search.html
http://www.europarl.europa.eu/committees/en/supporting-analyses-search.html
http://doi.org/10.1007/s11119-018-09630-w


Remote Sens. 2022, 14, 5442 21 of 22

6. Jurado-Expósito, M.; López-Granados, F.; Jiménez-Brenes, F.M.; Torres-Sánchez, J. Monitoring the Spatial Variability of Knapweed
(Centaurea diluta Aiton) in Wheat Crops Using Geostatistics and UAV Imagery: Probability Maps for Risk Assessment in
Site-Specific Control. Agronomy 2021, 11, 880. [CrossRef]

7. Rossel, R.A.V.; Adamchuk, V.I.; Sudduth, K.A.; McKenzie, N.J.; Lobsey, C. Chapter Five-Proximal Soil Sensing: An Effective
Approach for Soil Measurements in Space and Time. Adv. Agron. 2011, 113, 243–291. [CrossRef]

8. De Benedetto, D.; Castrignanò, A.; Sollitto, D.; Modugno, F.; Buttafuoco, G.; Lo Papa, G. Integrating geophysical and geostatistical
techniques to map the spatial variation of clay. Geoderma 2012, 171–172, 53–63. [CrossRef]

9. Loiseau, T.; Chen, S.; Mulder, V.L.; Dobarco, M.R.; Richer-de-Forges, A.C.; Lehmann, S.; Bourennane, H.; Saby, N.P.A.; Martin,
M.P.; Vaudour, E.; et al. Satellite data integration for soil clay content modelling at a national scale. Int. J. Appl. Earth Obs. Geoinf.
2019, 82, 101905. [CrossRef]

10. Vaudour, E.; Gomez, C.; Fouad, Y.; Lagacherie, P. Sentinel-2 image capacities to predict common topsoil properties of temperate
and Mediterranean agroecosystems. Remote Sens. Environ. 2019, 223, 21–33. [CrossRef]

11. Mitran, T.; Meena, R.S.; Chakraborty, A. Geospatial Technologies for Crops and Soils; Springer Nature: Singapore, 2021.
12. Demattê, J.A.M.; Fongaro, C.T.; Rizzo, R.; Safanelli, J.L. Geospatial Soil Sensing System (GEOS3): A powerful data mining

procedure to retrieve soil spectral reflectance from satellite images. Remote Sens. Environ. 2018, 212, 161–175. [CrossRef]
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