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Abstract: A flash flood disaster is one of the most destructive natural disasters. With the increase
in extreme rainfall events, more and more areas will be threatened by flash floods. The flash
flood susceptibility assessment is the basis of flash flood risk assessment and is also an important
step in flash flood disaster management. Based on Citespace analysis tools, this study made a
bibliometric and visualized analysis of 305 documents collected in the core collection of Web of
Science in the past 15 years, including the analysis of the number of publications and citation
frequency, influence analysis, keyword analysis, author co-citation analysis, and institutional co-
operation analysis. This paper summarizes the current research status and future development trend
of flash flood susceptibility assessment from five key research subfields, including assessment scale,
assessment unit, assessment index, assessment model, and model assessment method, discusses
the analysis of the application of remote sensing and GIS in flash flood susceptibility assessment,
discusses the problems encountered in the current research of the five subfields, and provides
suggestions for flash flood hazard control.

Keywords: flash flood susceptibility assessment; assessment scale; assessment unit; assessment index;
assessment model; accuracy assessment; Citespace; GIS; remote sensing

1. Introduction

Flash floods refer to the floods that hit low-lying areas [1], which are often affected by
extreme rainfall [2,3], and are characterized by suddenness, large water volume, fast flow
rate [4,5], and strong destructive power [6–8]. Flash flood disasters refer to the flash flood
events that cause economic loss or loss of life and property due to the outbreak of flash
floods [9], including landslides, debris flows, and dam breaks [4]. They can cause massive
property damage [10–13], affect economic development [2,14,15], and pose a big threat
to people’s lives [16–19] because of their complex characteristics. Flash flood disasters
threatened many areas such as the United States [20], Iran [21], India [22], Saudi Arabia [23],
Italy [24], and Bangladesh [25]. Affected by extreme climate, the flood frequency will
increase significantly in the future [26]. Among various flood disasters, the number of
deaths caused by flash floods was the highest [27,28]. From 2010 to 2016, more than
10,000 flash flood events occurred in China, accounting for 70% of the total number of
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casualties of flood events [29]. In particular, the number of dead or missing in 2010 reached
3887 and accounted for 92% of the total number of casualties of flood events [30]. The great
destructiveness of flash flood disasters has made the research of flash floods receive more
attention and win a place in the study of natural disasters [31].

Susceptibility evaluation is used to estimate the areas where dangerous events may
occur [32]. The flash flood susceptibility assessment is to assess the scale, outbreak character-
istics and spatial distribution of flash floods that have occurred or may occur in a particular
area based on the geographic information system (GIS) and remote sensing technology
(RS), which is the basis for hazard and risk analysis of flash floods. Flash flood events are
usually more likely to occur in areas with high susceptibility. Flash flood susceptibility
zoning includes the catalog of flash floods that have occurred in the area and the estimation
of possible flash floods in the future. RS and GIS are widely used in natural disasters, and
they are also the basis of flash flood susceptibility assessment. With the help of remote
sensing and GIS, flash flood susceptibility assessment can predict the possibility of the
occurrence of future flash floods in the area. The increased number of future flash floods
and conducting flash flood susceptibility assessment will reduce economic losses from
flash floods and even prevent human casualties from flash floods. Flash flood susceptibility
assessment is a key step in managing flash flood disasters [33], and also helps to prevent
flash flood disasters [34,35] and manage flash flood risks [36]. In addition, the concept of
flash flood guidance (FFG) mentioned in some studies needs to be distinguished [37,38].
FFG is an estimate of the amount of rainfall required to cause stream flooding in a given
area and the time for a flash flood warning [39]. FFG differs from flash flood susceptibility
assessment in two aspects: (1) Spatial scale. FFG is generally estimated based on streams
and rivers. Compared with FFG, the scale of flash flood susceptibility assessment is wider,
including river basins, urban counties, etc. (2) Time scale. FFG considers rainfall and
soil moisture in streams and requires real-time monitoring of changes in factors, so it is a
dynamic assessment. The assessment of flash flood susceptibility is a static assessment,
which is usually carried out at the end of a flood season or after the occurrence of the flash
flood. Thus, they are not the same. It is of great research value to summarize the research
status of flash flood susceptibility assessment.

The uncertainty of flash floods makes it challenging to carry out susceptibility assess-
ments. Currently, the research on the flash flood susceptibility assessment is still in the
exploratory stage, a mature assessment process has not been formed, and few scholars
have summarized and analyzed it. In the research field, only seven review articles were
published in the past 15 years, and few studies systematically summarized the flash flood
susceptibility assessment. Therefore, it is essential to determine the assessment framework
of flash flood susceptibility, and the statistical analysis of articles in this field has construc-
tive significance for future studies. Table 1 listed some reviews and analyzed their review
methods. It could be found that the review often adopted a research development method
based on time sequence, a method based on analyzing cases to summarize the research fo-
cus, a PRIAMA approach, and a method based on a thematic logical structure. Bibliometric
analysis and knowledge mapping were used in this review, which is the novelty of this
review. There are three advantages of using bibliometric analysis and scientific knowledge
mapping. (1) Provide a clear search process and an intuitive scientific knowledge map.
(2) Enable the development of research fields to be analyzed and referenced from multi-
ple perspectives, such as a temporal ruler, institutional perspective, journal perspective,
country perspective, author perspective, etc. (3) Acquire the key points of the research
content through visual mapping. On this basis, this study made a visualized analysis of
documents on the flash flood susceptibility assessment in the core collection of Web of
Science by using Citespace (version 6.1), analyzed the research status of five important sub-
fields (including the assessment scale [1,33,40,41], assessment unit [36,42,43], assessment
index [34,44,45], assessment model [46–49], and accuracy assessment method [50–52] of
flash flood susceptibility), sorted out and summarized the research hotspots and trends of
flash flood susceptibility assessment, analyzed the application of remote sensing in flash
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flood susceptibility assessment, and discussed the limitations of existing studies and put
forward suggestions for future studies.

Table 1. Summary of previous reviews.

Method Characteristics Research Content

Time sequence Facilitate understanding of the
evolution of the research field.

A review of advances in China’s flash flood
early-warning system [53]

This paper reviewed the three stages of
China’s flash flood
early-warning system.

Case study

Easy acquisition of key elements of
the study. However, a large amount
of data is needed to support
the theory.

Flash flood susceptibility modeling: a review [54]
This paper summarized the modeling
process of flash flood susceptibility by
six researchers.

PRISMA
methodology

A clear literature search process;
Standardized document analysis
process; Objective analysis results.

Advances and challenges in flash flood risk
assessment: A review [55]

This paper used the PRIAMA method to
search nearly 60 articles in the Google
scholar database to analyze the methods,
uncertainties and challenges in flash
flood risk assessment.

Logical structure

Logical; The review methodology
includes step-by-step analysis of
research links in the field of study
and categorical summaries, etc.;
Easily identify the problems facing
the field of study.

Flood risk assessment, future trend modeling, and risk
communication: a review of ongoing research [56]

This paper first reviewed the common
approaches to flood risk assessment.
With the impact of climate change,
population, and urbanization, this paper
focused on the application of climate
change and population and economic
growth in risk assessment.

A review of advances in flash flood forecasting [57]

This paper used the logical structure of
flash flood forecasting and reviewed the
development of quantitative
precipitation estimation (QPE) and
quantitative precipitation forecasting
(QPF), remote sensing data products,
and flow forecasting models in flash
flood forecasting and
uncertainty estimation.

Flood risk assessments at different spatial scales [58]

This paper summarized the study of
methods, use of assessments, and
uncertainty in risk assessment at
macroscopic and microscopic scales.

A review on remote sensing and GIS applications to
monitor natural disasters in Indonesia [59]

This paper was based on the logic
sequence of image acquisition,
classification, and map generation.

2. Materials and Methods
2.1. Research Methods

As a method for quantitative analysis of the authors, fields, institutions, and research
topics of documents [60], the bibliometric method combines statistics, bibliography, math-
ematics, and other methods. It can obtain the developmental direction of a discipline
through meta-analysis of a field [61]. Since being proposed by Pritchard [62] in 1969, it
has been widely used for the analysis of documents in various fields, such as computer
science [63], management [64], chemistry [65], education [66], etc. The bibliometric analysis
includes performance analysis and scientific research mapping [67]. Performance analysis
makes statistics on the publication of authors, countries, publications, and journals, and
funding institutions and evaluates the publication performance [68] by citation analysis and
other means. In this study, the influence of authors, countries, publications and journals,
and funding institutions was analyzed through the citation count provided by WOS.

It is now a popular method to analyze the development process and future trends in
the document research field based on scientific knowledge mapping. CiteSpace, VOSviewer,
CitNetExplorer, etc., are popular software used to execute bibliometric analysis procedures.
Che et al. [69] compared nine kinds of software, such as CiteSpace, VOSviewer, and CitNet-
Explorer. They proved that CiteSpace is the software that can maximize the utilization of
document information and have the highest comprehensiveness. As a kind of software that
carries out document detection based on Java programs and makes a visualized analysis
of emerging trends in the research field in the time dimension [70], Citespace can provide
various types of bibliometric analysis [71], such as co-word analysis, co-citation analysis,
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and co-operative network analysis, analyze the title, abstract and keywords from the per-
spective of the keywords, authors, institutions, and countries, as well as provide analysis
functions including double graph superposition and timeline. Therefore, in this study,
Citespace was used to process the data of flash flood susceptibility assessment, and the
analysis of keyword co-occurrence, keyword burst, author co-citation, and institutional
co-operation was successively made to study the future development direction of flash
flood susceptibility assessment.

2.2. Data Sources

The document data of this paper comes from the core collection database of the Web
of Science (WOS). Web of Science, as one of the most famous database sites, can provide
high quality research data and ensure the reliability of research data [72]. In addition,
WOS is recommended as the database of choice for Citespace analysis. In this study, the
“AND” operator was used to perform Boolean operations on two search expressions by
advanced search. The first search expression is as follows: TS = “flash flood *”, where “*” is
a wildcard, including “flash flood”, “flash floods”, “flash flooding”, etc. The second search
expression is TS = “fluvial flooding”. The third search expression is TS = “inundation”.
The fourth search expression is TS = “susceptibility”. A total of 519 journal papers were
searched after the deadline for the search was set as 8 July 2022, and the time interval
was set from 2000 to 2022, including conference papers, conference reviews, and letters.
Then, after the search results were refined, an editorial article (a study on glacioclimatology
and magnetic mineralogy [73]), 175 irrelevant articles, and 38 duplicates were excluded to
finally obtain 305 valid records (as the source of analysis data). The specific search process
is shown in Figure 1. The article citation frequency for this study was based on the WOS
Core Collection database. Five representative papers were mined in the search process, as
shown in Table 2. These five articles focus on five subfields of research: assessment scale,
assessment unit, assessment index, assessment model, and accuracy assessment in flash
flood susceptibility assessment.

Figure 1. Search process.
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Table 2. Characteristic analysis of representative documents.

Title Year Cite Frequency Country/Regions Keywords The Research Content

Comparative assessment of the flash-flood
potential within small mountain
catchments using bivariate statistics and
their novel hybrid integration with
machine learning models [74]

2020 50 Romania

Bâsca Chiojdului catchment;
Flash-flood potential index; Statistical
index; Machine learning models;
Ensemble models

This study used a bivariate statistical method and
multiple new ensemble models of multiple machine
learning models to calculate the flash flood
potential index in the Bâsca Chiojdului river basin.

Flash flood susceptibility modeling using
geo-morphometric and hydrological
approaches in Panjkora Basin, Eastern
Hindu Kush, Pakistan [75]

2019 34 Pakistan
Hindu Kush; Flash flood;
Susceptibility model;
Geo-morphometry; Surface run-off

This study divided the Panjkora Basin, Eastern
Hindu Kush, Pakistan into 30 sub-basin units and
used geo-morphometric and hydrological
approaches to evaluate the flash flood susceptibility.

Flash Flood Susceptibility Assessment
Based on Geodetector, Certainty Factor,
and Logistic Regression Analyses in Fujian
Province, China [44]

2020 6 China
Geodetector; Certainty factor; Flash
flood susceptibility; GIS; Logistic
regression; Fujian Province

This study used Pearson Correlation coefficient and
Geodetector to screen and evaluate the index
weight and developed an integrated model of
deterministic factor and logistic regression to assess
the flash flood susceptibility.

Flash flood susceptibility modeling using
an optimized fuzzy rule based feature
selection technique and tree based
ensemble methods [76]

2019 101 Vietnam
Bagging and boosting models; FURIA;
Genetic algorithms; Flash flood
susceptibility; Vietnam

This study developed an integrated approach based
on feature selection method (FSM) and tree for flash
flood susceptibility.

Flash-Flood Susceptibility Assessment
Using Multi-Criteria Decision Making and
Machine Learning Supported by Remote
Sensing and GIS Techniques [48]

2020 77 Romania

Flash-flood potential index; K-Star;
k-Nearest Neighbor; Analytical
hierarchy process; Prahova river
catchment; Machine learning

This study evaluated the performance of the
Analytical Hierarchy Process (AHP), fi (kNN), and
K-Star (KS) algorithms and their ensembles for flash
flood susceptibility mapping with statistical
indicators: sensitivity, specificity, and accuracy.
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3. Results
3.1. Analysis of the Number of Publications and Citation Frequency

Through the analysis of the document data in the core collection of WOS, the time
distribution diagram of the number of publications and citation frequency of flash flood
susceptibility was obtained, as shown in Figure 2. The number of publications and citation
frequency showed an upward trend from 2007 to 2021. The field of flash flood susceptibility
assessment was divided into three stages.

(1) The first stage: The period from 2007 to 2015 is the embryonic stage of flash flood
susceptibility assessment, in which the number of articles published in the research
field every year was less than 10 per year, the number of citations per article per year
was not much, and an obvious structural interruption could be seen in 2008 and 2011.

(2) The second stage: The period from 2016 to 2019 is the exploration stage of the de-
velopment of this field, in which 26 articles were published per year. Although only
18 articles were published in 2018, the number of citations (448) was about twice
that of 2017 (the number of articles published was 22), indicating that the field of
flash flood susceptibility assessment received significant attention in 2018. This result
was consistent with that of Franceschinis [77]. In addition, Franceschinis et al. [77]
conducted a questionnaire on risk awareness of residents in 2005 and 2018. In 2005,
residents did not have knowledge and experience of floods and believed that the
possibility of occurrence of floods in the future was extremely low. Still, in 2018, the
number of residents decreased significantly, and frequent floods increased people’s
attention and research efforts.

(3) The third stage: Since 2020, the number of articles published and the number of
citations per article per year have increased significantly. The number of articles
published in 2020 reached 67, and the number of citations topped 1442, reaching a
new height. This stage is a stage of vigorous development in this field. The research
work from 2007 to 2015 accounted for 11.5% of all research work. The relative share
rose to 34.10% from 2016 to 2019 and reached 54.4% after 2020, indicating that flash
flood susceptibility assessment will be the research hotspot in the following years.

Figure 2. Time distribution of number of publication and citation frequency from 2007 to 2022.

Five articles with the highest citation frequency were selected from 305 articles, as
shown in Table 3. The highly cited articles can reflect the research hotspots in the research
field and are generally forward-looking, and the research results are often helpful for future
research. Khosravi et al. [78] conducted research on the assessment of flash flood suscepti-
bility by four hybrid machine learning models (the research article was cited 300 times, and
its citation frequency ranked first), showing that the advanced decision tree model has a
good application prospect in the assessment of flash flood susceptibility. De Moel et al. [79]
showed that inundation depth, land use, the value of risk elements, and sensitive hydro-
logical conditions could reduce the uncertainty in flood damage estimates. Hong et al. [80]
suggested that the result of flood susceptibility assessment should be compared with the
result of flood simulation model in the future to estimate the speed, depth and duration
of flood. Rahmati et al. [81] suggested that GIS and the analytic hierarchy process (AHP)
could be used to assess potential flooding in areas without data. Collier et al. [82] made
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it clear that constrained flash flood forecasting is a method to improve the forecast accu-
racy; accurate flash flood forecasting is conducive to the timely prevention and control
of regional disasters and the forecasting of flash flood intensity in flash flood-prone areas
and is conducive to the further study of flash flood susceptibility. This article, published
in 2007, is the first article in this field. This article has not received much attention within
eight years after its publication. However, as the research is incessantly deepened, as this
article has been cited 172 times. It is one of five highly cited articles published in the past
ten years and has landmark significance.

Three of the five highly cited articles used different models for the flash flood sus-
ceptibility assessment in a particular area [78,80,81], showing that methods of flash flood
susceptibility assessment tend to be diversified [36,49,83].

3.2. Influence Analysis
3.2.1. Analysis of Authors’ Productivity

The Price Law measures the distribution law of document authors in various dis-
ciplines, M = 0.749 (nmax)/2, where nmax represents the maximum number of papers
published by authors in this field, and authors who have published more than M papers
in this field are considered as core authors. Through the analysis of the core collection
database of WOS, it was found that Costache is the author who has published the most
significant number of papers (22 articles in total, nmax = 22). The M value is 8.24, so the
author who has published more than eight articles is the core author, as shown in Figure 3.

Figure 3. Distribution diagram of core authors.

As one of the most productive authors, Costache has published 22 articles, 16 of
which were published by Costache as the first author. With strong research ability, this
author has maintained high productivity since publishing articles in 2017. For example,
this author published four articles in 2019 and 2021 and five articles in 2020, and had
higher productivity than most of the authors. Costache mainly studied the situation of
flash floods in Romania, and assessed the flash flood susceptibility by different mod-
els [48,84,85] (or determined the flash flood potential index (FFPI) [31,86,87]). Arabameri
participated in all of Costache’ studies [48,84,85]. Pham Q.B. participated in some of
Costache’ research [48,74,88]. As the second most productive scholar, Bui published 19
articles during the search process, mainly studying the flash flood susceptibility in Viet-
nam. Bui proposed many new models for assessing flash flood susceptibility, such as the
integrated algorithm of FURIA-GA, LogitBoost, Bagging, and AdaBoost taking fuzzy rule
as the basis and the GA as the search method [76], integrated model PSO-ELM of extreme
learning machine (ELM) and particle swarm optimization (PSO) [89], and integrated model
based on multivariate adaptive regression splines (MARS) and particle swarm optimization
(PSO) [90]. As the third most productive scholar, Pham B.T. studied the accuracy difference
in assessing flash flood susceptibility through different intelligent learning models [36,45].
Ngo studied the flash flood susceptibility in northwest Vietnam and put forward integrated
intelligent learning assessment models: an integrated model of hybrid quantum particle
swarm optimization (QPSO) and Credal decision tree (CDT), QPSO-CDTreeEns model [34],
and integrated model FA-LM-ANN of firefly algorithm (FA) and back-propagation artificial
neural network (FA-LM) [91].
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Table 3. Five highly cited papers.

Title Total Citations Year Research Purpose Research Contents

A comparative assessment of decision trees algorithms
for flash flood susceptibility modeling at Haraz
watershed, northern Iran [78]

300 2018 Flash flood susceptibility mapping
The flash flood disaster susceptibility assessment at
Haraz watershed, northern Iran was made by four
machine learning hybrid models.

Effect of uncertainty in land use, damage models and
inundation depth on flood damage estimates [79] 249 2011 Flood damage uncertainty estimation

The study assessed the impact of uncertainty in
inundation depth, land use, the value of risk elements,
and sensitive hydrological conditions on flood
damage estimates.

Flood susceptibility assessment in Hengfeng area
coupling adaptive neuro-fuzzy inference system with
genetic algorithm and differential evolution [80]

179 2018 Flood susceptibility assessment

The flood susceptibility assessment in Hengfeng
County, China was made respectively by the hybrid
model of adaptive neuro-fuzzy inference system
(ANFIS) and genetic algorithm, and the hybrid model
of adaptive neuro-fuzzy inference system (ANFIS) and
differential evolution, showing that the hybrid model
of ANFIS-DE has higher accuracy.

Flash flood forecasting: What are the limits of
predictability? [82] 172 2007 Flash flood forecasting method

The method of forecasting flash floods under the
limitations and uncertainties of meteorology and
hydrology in the forecasting system was elaborated.

Flood hazard zoning in Yasooj region, Iran, using GIS
and multi-criteria decision analysis [81] 159 2016 Identify flood risk areas

The analytic hierarchy process (AHP) was used to
identify flood risk areas, which showed that the
method has high accuracy.
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3.2.2. Analysis of the Influence of Countries/Regions

Based on the analysis of the core collection of WOS, the number of publications of
countries/regions studied is shown in Figure 4. China (51) made the largest contribution
to the flash flood susceptibility assessment, followed by Vietnam (43), India (43), Iran
(40), Romania (33), the United States (32), Austria (18), Norway (14), Korea (14), and
Australia (13). China is a country that has long been threatened with flash floods, and many
scholars have researched flash flood disaster early warning [92–94], risk assessment [19,95],
and so on. In 2018, a flash flood occurred in the north-western mountainous area of Vietnam,
which is the area that has been studied most in Vietnam [90,96,97]. Among all the studies
on flash flood susceptibility assessment in India, Uttarakhand is the area that has been
studied most, which is also the area with the most significant number of deaths caused
by flash floods in India [98]. This area has four pilgrimage towns and is the origin of two
important rivers in India (Ganges and Yamuna). The flash floods happened to occur during
the pilgrimage period [22]. Therefore, the frequent occurrence of flash floods has brought
huge threats to life safety and caused economic losses in this area [99,100]. According to
Figure 4, research in developing countries is significantly more than that in developed
countries. Flash floods not only cause losses to developing countries but also to developed
countries. However, the losses of developing countries are much greater than those of
developed countries. This is because developing countries’ economies and science and
technology are weaker than those of developed countries, and developing countries cannot
predict disasters or reduce losses in time [101] due to the lack of an official flash flood early
warning system [102]. Therefore, developing countries have suffered a deeper impact from
flash floods and conducted more research on flash flood susceptibility assessment.

Figure 4. Distribution diagram of number of publication of countries/regions.

3.2.3. Influence of Publications and Journals

Figure 5 shows the journals with the number of papers published ranking in the top six.
Many high-level research results on flash flood susceptibility assessment were concentrated
in these journals. Natural Hazards, as a journal that pays most attention to the flash flood
susceptibility assessment, has focused on the prediction and risk management of natural
disasters such as landslides, floods, and earthquakes and has provided many high-level
academic papers since its establishment in 1988. Geocarto International is a journal that
serves many fields such as geographic information systems, remote sensing, geoscience,
and environmental science. It pays attention to the new development, technology, and
application of remote sensing and geographic information system. Journal of Hydrology
and Science of the total environment are prominent journals. Science of the total environment
involves environmental science. Based on IF data released by SCI, this journal publishes
9349 articles every year, and it is the journal with the most significant number of articles
per year among the five journals and has great influence. Water covers all aspects of water
research, including water science, hydrology, and water resources management. Remote
Sensing is an international journal in the field of remote sensing. In about 11 years after its
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establishment, this journal published 5119 articles every year and attached importance to
the quality and innovation of articles, which had a high influence in this field at that time.
Among these five journals, Natural Hazards is an American journal, Journal of Hydrology
and Science of the total environment are Dutch journals, Geocarto International, Water, and
Remote Sensing are from the UK and Switzerland, respectively, all of which prove that
developed countries with advanced science and economy have published a large number
of publications with high quality [103].

Figure 5. Top six journals.

3.2.4. Analysis of the Influence of Funding Institutions

Institutions and organizations that pay attention to flash floods can be identified by
analyzing the funding institutions. The institutions that have provided funds more than
five times were obtained based on the analysis of core collection of WOS, as shown in
Figure 6. National Natural Science Foundation of China, which has been recorded 17 times,
is an institution that cares most about the flash flood susceptibility assessment and also a
funding institution that supports the research of flash flood susceptibility assessment. The
European Commission and Science and National Key R&D Program of China have been
recorded 12 times and 9 times, respectively. Five of the eight funding institutions are from
China, a country that is frequently threatened by flash floods and has an annual average
number of deaths of 984 caused by flash floods [104]. Therefore, China has invested a
significant amount money in the study of flash floods.

Figure 6. Institutions providing funds for more than five times.

3.3. Keyword Analysis
3.3.1. Keyword Co-Occurrence Analysis

The keyword is a condensed version of the abstract of a paper. The frequency of
keywords can determine the focus of the research field. The higher the frequency of
keywords is, the more attention will be paid to the research field. Citespace software was
used to de-duplicate and analyze the articles in core collection of WOS, the time slice was
set to 1 year, keyword nodes were used, and “Minimum Spanning Tree + Pruning the
merged network” was used for network tailoring. Words that can be generally used and are
irrelevant, such as “event” were deleted, and keywords that appear more than 10 times were
retained to generate a keyword cloud image, as shown in Figure 7. In Figure 7, the larger the
font size of the letter is, the higher the frequency of the letter is. The letter with the largest
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font size in the figure is “flash flood”, followed by “model” and “susceptibility”. The top
20 keywords with the highest frequency are shown in Table 4. Among these high-frequency
keywords, keywords such as “hazard”, “spatial prediction”, “landslide susceptibility”,
“area”, “risk”, “risk assessment”, “prediction”, “vulnerability”, “river basin”, “climate
change”, “susceptibility assessment”, “classification”, and “debris flow” are subject words
corresponding to the flash flood susceptibility assessment. Floods often occur in flat and
low-altitude areas [105,106]. The catchment areas of the river were the main disaster-
affected areas during the flash floods and the main research areas. Due to the complexity
of flash floods and the dynamic environment of the river basin, the river basin was often
seriously damaged [45], and more and more scholars carried out flash flood susceptibility
assessments in catchment areas of the river [47,100]. As the keywords related to the
flash flood susceptibility assessment, “logistic regression”, “frequency ratio”, “weights of
evidence”, and “support vector machine” were also the most frequently used models in the
mountain flood susceptibility assessment. Logistic regression (LR) is a machine learning
method for solving binary classification. As the contribution rate of each parameter can be
quantified by using logistic regression as an assessment model for flash flood susceptibility
assessment [107], many scholars adopted hybrid models formed by logistic regression
and other methods for research [108–110]. Frequency ratio (FR), a statistical method of
quantitative probability analysis, has the advantages of convenient data processing and
an easily understood calculation process [111], and is often used in geological hazard
analysis [112,113]. LR and FR were applied to the flash flood susceptibility assessment
earlier than other models. Youssef et al. [23] used FR and the integrated model of LR and
FR to assess the flood susceptibility of Saudi Arabia, in 2016, which was also the first time
the integrated model of FR and LR was applied to the research in this field. In addition, the
weight of evidence and the support vector machine (SVM) is GIS-based machine learning
models, which have been applied since 2016, indicating that the model of flash flood
susceptibility assessment has gradually changed from the statistical model to the machine
learning model.

Figure 7. Frequency diagram of keywords.

Table 4. Top 20 high-frequency keywords.

Number Keywords Count Year Number Keywords Count Year

1 flash flood 92 2012 11 climate change 38 2012
2 model 76 2007 12 risk assessment 36 2007
3 susceptibility 51 2012 13 vulnerability 34 2010
4 risk 50 2010 14 prediction 32 2007
5 logistic regression 47 2012 15 weights of evidence 31 2016
6 hazard 43 2010 16 river basin 30 2016
7 spatial prediction 43 2018 17 support vector machine 25 2016
8 area 41 2012 18 susceptibility assessment 25 2016
9 landslide susceptibility 40 2010 19 classification 24 2012
10 frequency ratio 39 2016 20 debris flow 24 2013

3.3.2. Keyword Burst Analysis

The keyword changes of citations can be detected through the Burst function of
Citespace. Figure 8 shows the top 25 keywords with the strongest citation bursts from
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2007 to 2022, including each research topic’s first appearance time and duration. As a word
with the maximum burst strength, “susceptibility” began to appear in 2015 and ended
in 2017, with a strength value of 5.55. The study of flash flood susceptibility is helpful
in preventing flash flood disasters and reducing property losses and casualties. “Flood
damage” is the keyword with the most extended duration. Floods are one of the most
destructive natural disasters. Many countries and regions around the world suffer from
flash floods, resulting in economic loss, damage to infrastructure, and loss of lives [21–23].
The keyword with high burst strength in recent years was “morphometric analysis”, which
is also the current research hotspot. Morphometry was often used in watershed studies. The
digital elevation model in the GIS system was used to generate morphometric parameters,
such as area, perimeter, drainage frequency, etc., to evaluate the risk degree of flash floods
in the watershed [25,35].

Figure 8. Top 25 keywords with the strongest citation bursts.

As shown in Figure 8, the research on the flash flood susceptibility assessment in
different periods in chronological order mainly focuses on the following core topics:

(1) The first stage is the period from 2010 to 2015. At this stage, the keyword “debris
flow” had a maximum strength of 3.6, followed by landslide and flood, showing that
scholars who studied the flash flood susceptibility assessment during this stage mainly
discussed the hazard assessment of debris flows and landslides. The word “debris
flow” originally covered flash floods, so the combined events of debris flows and flash
floods were studied in many articles [114,115]. For example, Stolle et al. [116] analyzed
the susceptibility of debris flow in the Ladakh Range by morphometric method, but
later researchers found that the identification of different disaster processes by debris
flow would affect the analysis of risk assessment and others [117], so more and more
independent studies had been conducted for flash floods after 2015. In addition, as
rainfall was the main disaster-causing factor, Mei et al. [118] conducted their research
on precipitation estimation in the river basin in the eastern Italian Alps, which was
also the main research area at this stage.

(2) The second stage is the period from 2015 to 2017. The keywords with the highest
strength were “susceptibility” (5.55) and “social vulnerability” (4.7). Social vulnera-
bility assessment could understand the impact of flash floods and was an important
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part of flood risk assessment framework [119]. Remote sensing was one of the key
words in this period. The map of the research area and the data of the influencing
factors could be obtained by remote sensing technology, which provided sufficient
preparation for the research.

(3) The third stage is the period from 2018 to 2022. The keywords of “decision tree” had
the maximum strength (with strength of 2.8), followed by the keyword of “rotation
tree” and “discriminant analysis” (both of which were 2.1). At this stage, the research
on the flash flood susceptibility assessment focused on the potential index and assess-
ment model of flash floods. The accurate determination of the assessment index of
flash flood susceptibility could help improve the model’s accuracy. The weight was an
important determination criterion, so the strength of the importance was larger at this
stage. With the introduction of artificial intelligence and the exposure of models such
as “rotation forest”, “decision forest”, and “morphometric analysis”, the assessment
models of flash flood susceptibility became more diversified.

(4) The research and analysis of the above three development periods found that the
academic community explored more and more deeply the flash flood susceptibility
assessment and tended to determine high-precision assessment models and complete
susceptibility assessment.

3.4. Author Co-Citation Analysis

Suppose scholars B and C are cited simultaneously in the articles of scholar A. In
that case, there is a co-citation relationship between B and C. Through author co-citation
analysis, the distribution of highly cited authors in the field of flash flood susceptibility
assessment can be obtained to identify outstanding scholars in this field. The preprocessed
data were imported into Citespace, the cluster analysis was made by tf*idf weighted
algorithm, and K (Keywords) was used to name clusters to generate a timeline graph. The
co-citation network is shown in Figure 9, the pennant diagrams of the first four highly cited
authors are shown in Figure 10, and the co-citation cluster is shown in Figure 11. In order to
increase the readability of the results, the map was optimized and adjusted in a co-citation
network diagram (Figure 9) to display important information. In the co-citation cluster
map (Figure 11), the number of network nodes N = 624, the number of connection lines
E = 853, and the network density is 0.0044. The index for exploring the structure and clarity
of clustering network Modularity Q is 0.7421 (>0.3), indicating that the clustering network
has significant structure; Mean Silhouette is 0.9266 (>0.5), indicating that the clustering
result is reasonable. In the figure, the color of each cluster represents the year when the
co-citation relationship first appeared, and the progressive process of cluster color from
gray to blue to yellow indicates an increased process over the years from 2007 to 2022. The
node represents the co-citation author. The larger the node is, the more times the author is
cited. The connection line between the nodes represents the co-citation relationship.

Figure 9. Author co-citation network.
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Figure 10. Diagram of pennant figures of the top four cited authors. (a). Diagram of pennant figures
of Tehrany. (b). Diagram of pennant figures of Bui. (c). Diagram of pennant figures of Khosravi.
(d). Diagram of pennant figures of Pradhan.

Figure 11. Author co-citation clustering.

In Figure 9, the center color of the nodes of most authors is blue first and then continues
until red appears, indicating that since 2016, a large number of authors in research fields
have been cited, and currently, they still have a higher number of citations.

In Figure 9, the most cited authors are Tehrany (112), Bui (94), Khosravi (91), and
Pradhan (76), respectively, who are the authors with high influence in the field of flash flood
susceptibility assessment. According to Figure 9, almost all of the top four authors with
the highest citations have been cited since 2016, and the research field has also increased



Remote Sens. 2022, 14, 5432 15 of 34

since that year. Moreover, their articles were widely cited in 2020 and 2021, and these
two years was also the peak period for the publication of articles in this field, indicating
that they are highly influential authors, and the research on the flash flood susceptibility
assessment has attracted a lot of attention in 2020 and 2021. Figure 10 shows the pennant
figure of four authors. Figure 10a–d represent the four authors of Tehrany, Bui, Khosravi,
and Pradhan, respectively. In Figure 10, the yellow, orange, and green color areas from
top to bottom represent the subsequent scholars, contemporary scholars, and previous
scholars related to the highly influential authors, respectively. In general, people tend to
cite scholars who are on the upper part of the pennant figure in the idf hierarchical system
in the pennant figure. All highly influential authors in the pennant figure tend to cite
previous scholars or contemporary scholars, while subsequent scholars tend to cite highly
effective authors [120]; therefore, the closer the author is to the bottom of the figure, the
more times the author is cited.

The research topic of Tehrany tended towards environment science and ecology and
geology, and its research on the application of weights of evidence function, frequency
ratio, support vector machine, and other methods in flood sensitivity map [121–124]
received a lot of attention. Khosravi made greater contributions to landslides, debris flowed,
susceptibility, and groundwater, and published the most cited articles [78] (as described
in Section 3.1), which cited Tehrany, Bui, Pradhan, and the author himself, forming a
co-citation relationship. Bui was not only the author with the second highest number
of citations but also the author with the second highest productivity (see Section 3.2.1),
indicating that this author has an irreplaceable position in this research field. These four
authors were included in the #1 machine learning cluster in terms of clustering analysis.
They studied many machine learning methods, one of the critical points in the flash
flood susceptibility assessment. Additionally, they showed that the assessment model is a
research hotspot in the flash flood susceptibility assessment.

Figure 11 shows six clusters, i.e., #0 flash flood, #1 machine learning, #2 surface run-
off, #3 decision trees, #4 logistic regression, and #5 road network. The second cluster
#1 machine learning has 63 members, including Costache, who is the author with the
highest productivity. The authors with stronger influence are all members of this cluster.
Machine learning has been widely used in research fields as the most used model in flash
flood susceptibility assessment. However, with the development of information technology
and the improvement of science and technology, a single model was no longer used in
the machine learning method for flash flood susceptibility assessment, and many hybrid
models appeared. For example, Arabameri et al. [125] adopted three hybrid machine
learning integrated models to assess the flash flood susceptibility in the Gorgan basin, Iran;
Bui et al. [76] assessed the flash flood susceptibility in Bao Yen District and Bac Ha District
of Lao Cai Province, Vietnam by the integrated models of FURIA-GA with three models
(namely LogitBoost, Bagging, and AdaBoost). At the same time, it can be found that the GIS-
based machine learning model is the main model for flash flood susceptibility assessment.

3.5. Institutional Co-Operation Analysis

The co-operation between different institutions can improve the research level of insti-
tutions and maximize the utilization of resources [61]. Through the analysis of institutional
distribution, the research groups for flash flood susceptibility assessment were found, and
a co-operation network diagram of institutions for publishing documents in this field was
generated after the preprocessed data were imported into Citespace, as shown in Figure 12.
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Figure 12. Co-operation network diagram of institutions for publishing documents.

As shown in Figure 12, the larger the node is, the more documents the institution
publishes. The thickness between nodes represents the number of co-operative papers
between institutions. The color of the connection line represents the year of co-operation.
The more prominent the purple circle on the outer side of the node is, the greater the
centrality value is. In the figure, the number of network nodes N = 287, the number of
connection lines E = 242, and the network density is 0.0059, indicating that at present,
the co-operation between the institutions for flash flood susceptibility assessment is not
close, and most institutions tend to study independently. The centrality of University of
Bucharest is 0.10 (=0.1), and it is a crucial node, showing that this institution is a significant
turning point for institutional co-operation in the research field and the core institution
in institutional co-operation network. According to Figure 12, a co-operation circle with
University of Bucharest as the core has been formed in the field of flash flood susceptibility
assessment, including Duy Tan University, Natl Inst Hydrol & Water Management and Ton
Duc Thang University. As the institution that has made the most significant contribution
to the research field, and one of the most influential institutions in Vietnam, Duy Tan
University has published 26 articles covering computer, medicine, and other disciplinary
fields, and carried out a lot of high-quality studies [126,127], since its articles were published
in 2011. It also established the most frequent co-operation with Ton Duc Thang University.
Chinese Acad Sci (CAS), which ranks fifth in the number of publication, rarely co-operated
with the top four institutions. As the most famous academic and scientific institution in the
field of natural science in China, it mainly collaborated with domestic institutions in China,
such as University of Chinese Acad Sci and China Inst Water Resources & Hydropower
Res, etc. As there were not many connection lines between nodes in the co-operation
network, CAS tended to study independently compared with the top four institutions.
Table 5 showed the institution with a top five ranking in the number of papers published.
The five institutions published a total of 100 papers, accounting for 32.79% of the total
number of articles published. Four of the five institutions were university units, which also
showed that universities are the main contributors in the research field.

Table 5. Five most influential institutions in the research field.

Institutions Centrality Count

Duy Tan University 0.09 26
University of Bucharest 0.10 24

Natl Inst Hydrol & Water Management 0.08 18
Ton Duc Thang University 0.02 17

Chinese Acad Sci 0.04 15

4. Main Subfields of Flash Flood Susceptibility Assessment

Through the analysis of keywords and research hotspots, it was found that the selec-
tion of the assessment model was the focus of the flash flood susceptibility assessment.
The assessment index of the screening directly affected the precision of the assessment
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model and the accuracy of the model with statistical model assessment methods, such as
error of judgment. In addition, it was found in the analysis that the assessment scale and
assessment unit were the basis steps for conducting susceptibility assessment. Therefore,
comprehensively, this study divided the research in the field of flash flood susceptibil-
ity assessment into five subfields: assessment scale, assessment unit, assessment index,
assessment model, and model assessment method.

4.1. Assessment Scale

The selection of the assessment scale is the basis of the flash flood susceptibility assess-
ment. At present, the scale of the research area for flash flood susceptibility assessment is
mainly divided into three scales: administrative division, watershed, and disaster-affected
site. The administrative division is the administrative region divided by regions, including
countries, provinces, and cities/districts/counties in the flash flood susceptibility assess-
ment. Among the existing research, there is a lack of research on susceptibility assessment
on a national scale. The main reason is that many factors affect flash floods, and the research
on a national scale increases the complexity and difficulty.

Watershed refers to the scale in the research of flash flood susceptibility assessment.
The research area is dominated by watersheds and basins, the most commonly used scales
in the existing research. The main reason is that watersheds and basins can more easily
lead to flash floods under extreme rainfall due to the unique topography, and there is
heterogeneity in the impact of flash floods under different administrative units.

The data of flash flood disaster-affected sites not only help to generate the flash flood
disaster catalog map but also the basis for forming the spatial geographic database of flash
flood susceptibility. The use of rich data can more accurately study the regional flash flood
susceptibility. In the flash flood susceptibility assessment on a scale of the disaster-affected
site, the flood indexes related to historical flash flood events can be extracted by field
investigation and other means to improve the assessment accuracy.

The research on the representative assessment scales is listed in Table 6. It is convenient
to obtain map data by remote sensing technology with the administrative region assessment
scale. Evaluating watershed parameters in the watershed scale can help assess flash flood
susceptibility. The assessment accuracy is increased by obtaining accurate data based on
disaster points. Different research scales have different geographical assessment conditions,
and researchers can choose the appropriate assessment scale according to the study area.

4.2. Assessment Unit

The assessment unit is the minimum spatial unit used in the flash flood disaster sus-
ceptibility assessment, which directly affects the assessment effect of disasters. Therefore,
reasonable selection and division of units are vitally important for the susceptibility as-
sessment. The assessment unit in the existing research is generally divided into a grid
unit, slope unit, topographical unit, unique condition unit, and geomorphic unit. Different
assessment units are usually selected for different types of disasters. For example, the grid
unit and geomorphic unit are often used as the assessment unit for debris flow susceptibility
assessment; the grid unit and slope unit are often used as the assessment unit for landslide
susceptibility assessment; grid unit, slope unit, and sub-basin-based geomorphological
units are often used for flash flood susceptibility assessment. Sub-basin based geomorpho-
logical units are used to analyze susceptibility through spatial visualization by quantifying
geomorphological parameters. The application of such units is rather limited, so grid units
and geomorphological units are most often used in flash flood susceptibility assessment.
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Table 6. Assessment scale.

Scale The Researchers Research Area The Research Methods

Administrative division

Province Zeng et al. [128] Yunnan Province, China

This study developed a cascade flash flood warning
(CFFG) system, including flash flood potential index
(FFPI), flash flood hazard index (FFHI), and flash flood
risk index (FFRI), and showed that the counties in
eastern Yunnan were the most vulnerable to
mountain floods.

City/Area Waqas et al. [129] Chitral in Khyber Pakhtunkhwa
(KPK), Pakistan

This study used a comprehensive analysis method and
frequency ratio model to evaluate flash
flood susceptibility.

Watershed
Watershed Band et al. [33] the Kalvan watershed in Markazi

Province, Iran

This study used five machine learning models to
assess the flash flood susceptibility and identify
flood-prone areas in the study area.

Basin Afreen et al. [130] Panjkora Basin This study used a frequency ratio model to identify
flood-prone areas in the Panjkora Basin.

Disaster-affected site Disaster-affected site Saleh et al. [131] 110 flash flood locations in the Sungai
Pinang catchment

This study used four integrated machine learning
models: statistical index-logistic regression (SI-LR),
statistical index-k-nearest neighbor (SI-KNN),
statistical index-extreme Gradient Boosting
(SI-XGBoost), and statistical index-Random Forest
(SI-RF) to map flash flood susceptibility.
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4.2.1. Type of the Assessment Unit

The susceptibility assessment units’ selection should be related to the actual topog-
raphy. The appropriate assessment unit should be selected according to the topography
to obtain higher accuracy [132]. The methods, advantages, and disadvantages of the
assessment units are shown in Table 7.

Table 7. Type of the assessment unit.

Unit Type Methods The Advantages and
Disadvantages

Grid unit

The study area is divided into
squares of uniform size based on
DEM, and then a matrix is formed
for calculation.

a. Convenient calculation
and division;
b. Cannot reflect the unit geology
and topography.

Slope unit
The region near similar terrain is
divided into a nearly
homogeneous unit.

a. Reflect geological and
topographical conditions;
b. Integrity.

Topographical unit
The continuous terrain surface is
divided into several discrete
terrain units with differences.

a. Reflect the geology;
b. The higher the precision, the
greater the number of units and
the more complex the work.

Unique condition unit

Overlay the assessment factor
data layers to obtain multiple
irregular assessment units of
different sizes.

a. It is suitable for the study of
large regional scale;
b. High computational difficulty.

Geomorphic unit

The internal homogeneity and
external difference of geomorphic
types were maximized, and
geomorphic units were taken as
the assessment units.

a. Reflect unit geology;
b. The division accuracy depends
on the professional height.

Geomorphic units are commonly used in watershed-based assessments. Researchers
generally divided the watershed into several sub-basin units. For example, Ahmad et al. [2]
divided the Dir lower watershed into five sub-basins; Mahmood et al. [43] adopted a
threshold of 4 km2 to divide Ushairy Basin into 17 sub-basins; Mahmood et al. [75] adopted
a threshold of 25 km2 to divide Panjkora Basin into 30 sub-basins; El-Fakharany et al. [133]
divided the Heliopolis basin into 10 sub-basins; Singh et al. [99] divided Ganga Basin into
29 sub-basins. However, not all basins were divided into sub-basin units for assessment,
and many researchers used grid units for assessment [47,134].

4.2.2. Size of the Assessment Unit

The grid unit is the most commonly used assessment unit for flash flood suscepti-
bility assessment. The grids generally generate the assessment unit for the flash flood
susceptibility assessment with a certain resolution created by GIS software. The selection
of appropriate map resolution can improve the accuracy of the assessment unit, but if the
resolution is too coarse or too fine, the optimal accuracy cannot be guaranteed. In addition,
the division of the optimal unit size needs to be further studied. The representative studies
on the assessment unit of flash flood susceptibility are shown in Table 8.

Table 8. Size of the assessment unit.

The Researchers Research Area Unit Size

Youssef et al. [23] Five Wadis in Jeddah, Saudi Arabia 5 × 5 m
Alireza et al. [125] Gorgan Basin, Iran 12.5 × 12.5 m
Tehrany et al. [135] the part of Kelantan River Basin in North East part of Peninsular Malaysia 15 × 15 m
Pham, B.T et al. [36] Nghe An Province, north central coast region of Vietnam 20 × 20 m
Al-Abadi et al. [136] Northeastern Missan province in southern Iraq 30 × 30 m

Magnini, A. et al. [137] Most of northern Italy and a small part of Switzerland 90 × 90 m
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4.3. Assessment Index

Many factors affect flash floods’ occurrence, including terrain, geology, hydrometeorol-
ogy, human activities, etc., which are also essential indexes for the flash flood susceptibility
assessment. Band et al. [33] considered 15 hydrological, climate, and geographical en-
vironmental factors and showed that topographic and hydrological parameters (such as
elevation, slope, and distance from the river) were the most effective. Pham et al. [45]
analyzed nine factors affecting flash floods and showed that the distance from the river
was the most important factor. Ngo et al. [34] considered 10 flash flood factors and pointed
out that land use/land cover (LULC), slope, curvature, and Topographic Wetness Index
(TWI) were the most important indicators. Dejen et al. [138] considered nine flash flood
risk parameters and pointed out that LULC and slope were the key indicators. Flash floods
mainly occur in areas with flat curvature. The surface flow floods caused by heavy rainfall
are more likely to occur in shallow soils with poor permeability and soils in low-lying
areas. Therefore, rainfall intensity, LULC, TWI, and others are essential factors that cause
flash floods. In general, rainfall, slope, curvature, Stream Power Index (SPI), TWI, LULC,
NDVI, and distance to the river are all assessment indexes to be considered, among which
slope, LULC, and distance to the river are the most important indicators, but still need to
be screened for different research areas.

The correct selection of assessment indexes can improve the accuracy of flash flood
susceptibility prediction. At present, the research on the screening of assessment indexes
is generally divided into two situations: (1) the assessment indexes are determined by
analyzing the correlation between factors. The main methods include Pearson correlation
coefficient (PCC), multicollinearity, geographic detector interaction detector, etc. (2) the
correlation between flash flood impact factors and flash floods is judged to determine index
weight and select high weight factor as the assessment index. The main methods include
principal component analysis, correlation-based feature selection method, geographic
detector factor detector, etc. The research on the screening of representative assessment
indexes is listed in Table 9.

A researcher can choose the screening of assessment indexes according to their wishes.
Pearson correlation coefficients are used for the analysis of the independence of assessment
factors. This method can be operated easily, and it will be more intuitive to describe the
correlation between variables through the formed matrix. The multiple linear regression
method uses the variance inflation factor (VIF) to determine the correlation between
independent variables. The higher the VIF value is, the more serious the multicollinearity
between independent variables is. The principal component analysis (PCA) simplifies the
judgment of collinearity by reducing the number of variables.
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Table 9. Research on the screening of representative assessment indexes.

The Researchers The Assessment Index Screening Method for Correlation
between Factors

Screening of Correlation between
Factors and Flash Flood The Final Assessment Index

Cao et al. [44]

Elevation, Slope, Topographic relief, NDVI, Land use type, Soil type,
Soil depth, Distance from rivers, 6 h precipitation (H6_100), 24 h
precipitation (H24_100), Annual rainfall, Tropical cyclone index,

Population density, Economic density.

Pearson correlation coefficient Geodetector
H24_100, Annual rainfall, Topographic relief,
Elevation, NDVI, Land use type, Population

density, Tropical cyclone index.

Pham, B.T. et al. [45] Distance from rivers, Aspect, Elevation, Slope, Rainfall, Distance from
faults, Soil, Land use, Lithology. - Correlation based feature selection

method
Distance from rivers, Slope, Elevation, Lithology,

Soil, Rainfall, Land use, Aspect.

Costache et al. [74]
Slope, L-S factor, Land use/Land cover, TWI, Convergence index,

Lithology, Hydrological soil group, Stream Power Index (SPI), TPI, Profile
curvature.

Variance Inflation of multicollinearity
investigation (VIF), Tolerance,

Information Gain method
- Slope, TPI, TWI, Land use, Lithology, L-S Factor,

Convergence index, Hydrological soil groups

Liu et al. [18]
Flash flood intensity, Ele and Slp, Soil, P5, P50, and P100, Vegetation

Fractional Cover (VFC), POP, Pcul, and GDP, Variation in the flash flood
intensity, Changes in precipitation, human activity factors.

Geographic detector (interaction
detector) Geographic detector (factor detector) VFC, POP, Pcul, and GDP, P5, P50, and P100,

Human activity, Precipitation.

Table 10. Representative assessment models.

Research Models Research Area Methods Conclusions

Intelligent learning model Kangsabati watershed, India [139]

The three models of particle swarm optimization (PSO), artificial neural network
(ANN), and deep learning neural network (DLNN) were used for mapping the
flash flood sensitivity in the research area, and classifying the flash flood prone

areas in the research area.

Among the three models, PSO model performed well, and
can be used for the landscape sensitivity mapping in

subtropical areas, eastern India.

Statistical model Xiqu Gully, Beijing, China [140] Frequency ratio (FR) and statistical index (SI) models were used to generate the
flash flood sensitivity mapping in the research area.

FR model was more suitable for the flash flood sensitivity
mapping in this area.

Hydrological model Panjkora Basin, Eastern Hindu Kush, Pakistan [67]

The surface morphology hierarchical model and NRCS-CN hydrological model
were used for estimating the flash flood susceptibility in the research area and

mapping the flash flood sensitivity in the research area in combination with the
parameters of surface morphology, hydrology, geology, and

land cover in GIS environment.

The flash flood sensitivity mapping can be well done by
this method.

Hydrodynamic model Lengkou catchment, Shanxi Province, China [141]
A hydrodynamic model of flash floods based on two-dimensional shallow water
equation (2D-SWE), including rainfall and infiltration parameters was proposed

in this research to simulate two flash floods in the research area.

The model predicted the scale of flash floods more
accurately, and can predict large-scale flash floods.

Hybrid model Bac Ha Bao Yen (BHBY) region in northwest Vietnam [91] A new hybrid machine learning method was proposed in this research for spatial
prediction of flash floods in the research area.

The hybrid model has high efficiency and is a new method
for predicting flash flood susceptibility.
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There are also some methods that can not only measure the correlation between factors
but also the correlation between independent and dependent variables. The correlation-
based feature selection method (CFS) is based on the assumption that “the basis of good
feature subsets is to be highly correlated with classes but not correlated with each other”,
and includes the correlation analysis between random variables and the correlation analysis
between independent variables and dependent variables. Geodetector is a method to
measure the relationship between independent variable X and dependent variable Y [44].
The interaction detector can reflect whether the independent variables X1 and X2 (and
more X factors) interact with the dependent variable Y. The factor detector can judge the
correlation between independent variables and dependent variables. The advantage of this
method is that the results are intuitive and reliable, and no assumptions or restrictions on
independent and dependent variables are required.

Generally speaking, PCC and VIF are easy to manipulate when analyzing correlations
between assessment metrics. Analyzing the correlation between assessment indicators
and torrents is more intuitive using the results of Geodetector. The correlation between
assessment indicators and the correlation with flash floods both influence the accuracy of
the assessment. Therefore, researchers are advised to consider all aspects of the assessment
and choose a more appropriate screening method.

4.4. Assessment Model

The assessment model is an essential means of flash flood susceptibility assessment.
Assessment models can predict the possibility of occurrence of regional flash floods. Hy-
drological models and hydrodynamic models are mainly used to simulate the occurrence of
flash floods. However, the hydrological model has excellent uncertainty due to the neglect
of some physical mechanisms of flash floods and the need to calibrate many historical data.
The hydrodynamic model can describe the surface flow dynamics in detail but requires
certain assumptions and a large amount of calculation. Currently, the mainstream assess-
ment models include traditional statistical models, hydrological models, hydrodynamic
models, and intelligent learning models based on machine learning, deep learning, and
hybrid models. Among them, statistical models, intelligent learning models, and hybrid
models are the most used models in existing studies. The studies on representative models
are shown in Table 10.

(1) Intelligent learning model: This model selects appropriate flash flood susceptibility
assessment indexes based on artificial intelligence and big data, conducts data test,
determines the sample set and realizes the training dataset through a specific algo-
rithm. The models such as artificial neural network (ANN), deep learning neural
network (DLNN), random forest model, multilayer perceptron (MLP), particle swarm
optimization (PSO), support vector machine (SVM), etc. are often used in the research
of flash flood susceptibility.

(2) Statistical model: This model is generated by applied mathematical and statistical
methods, which generally analyze the relationship between independent and depen-
dent variables by determining the weight or probability of each independent variable.
Frequency ratio (FR), statistical index (SI) model, logistic regression, consequences
of evidence model (WOE), fuzzy analytical hierarchy process (FAHP), and analytical
hierarchy process (AHP), etc., are often used in the study of flash flood susceptibility.

(3) Hydrological model: This model simulates the occurrence process of flash floods
with factors, such as rainfall, hydrological soil, land cover, etc., quantifies surface
runoff, and obtains flash flood sensitivity map with the help of remote sensing and
geographic information system technology for further susceptibility assessment.

(4) Hydrodynamic model: This model determines the boundary conditions and simulates
the possibility of flash flood disasters by using hydrodynamics equations (such as
Manning Formula, Energy Equation, Saint-Venant Equation, etc.).

(5) Hybrid model: The model is an integration of a GIS-based intelligent learning model,
statistical model, hydrological model, and hydrodynamic model, including a multi-
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intelligent learning model, dual statistical model, intelligent learning-statistical model,
intelligent learning-hydrodynamic model, and hydrological-hydrodynamic model.
Most of the studies adopt multi-intelligent learning models, dual statistical models,
and intelligent learning-statistical models, while very few scholars use intelligent
learning-hydrodynamic models and hydrological-hydrodynamic models for their
studies.

From the review, it was found that the research in recent years had been biased toward
the application of GIS-based hybrid models. The advantage of using a hybrid model for
susceptibility assessment was that the model had higher accuracy than a single model and
had a larger development space. Liu et al. [142] combined four machine learning models:
fuzzy membership value (FMV), binary statistical method, support vector machine (SVM),
classification and regression tree (CART), and convolutional neural network (CNN) were
integrated to form three hybrid models, including SVM-FMV, CART-FMV, and CNN-FMV
to predict flood susceptibility. It indicated that the accuracy of the three hybrid models was
higher than that of the respective single machine-learning models. Ding et al. [143] also
confirmed this statement.

4.5. Accuracy Assessment

To verify the accuracy of the assessment results of flash flood susceptibility, some
methods need to be used to evaluate the performance of the assessment model in the study.
Receiver operating characteristic curve (ROC), area under the curve (AUC), and statistical
error index are usually used to evaluate the model’s performance.

(1) ROC-AUC method

The receiver operating characteristic curve (ROC) is the most frequently used assess-
ment method in flash flood susceptibility assessment. The curve is drawn with the true
positive rate (TPR) as the ordinate and the false positive rate (FPR) as the abscissa mainly
evaluates the performance of the model by the value of the area under the curve (AUC).
When the AUC value is between 0.5–1.0, the closer the AUC value is to 1, the higher the
accuracy of the model is. When the AUC value is 0.9–1.0, it means that the model has high
accuracy; when the AUC value is 0.7–0.9, the model has general accuracy; when the AUC
value is 0.5–0.7, it means that the model has low accuracy.

(2) Error statistical index

Error statistical indexes include sensitivity (SST), specificity (SPF), accuracy (ACC),
root mean square error (RMSE), mean absolute error (MAE), Kappa statistics, coefficient
of determination (R2), etc. Generally, the statistical index combined with more than three
indexes is used for evaluation, and different indexes may generate models with additional
optimal accuracy. The frequently used error statistical indexes in the study are listed in
Table 11.

The two methods of ROC-AUC and error statistical index can be used together or
separately. In most studies, the ROC-AUC method is used to evaluate the model’s perfor-
mance. However, when different optimal prediction models are generated using multiple
statistical indexes, the optimal model developed by the ROC-AUC method is more reliable.
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Table 11. Statistical indexes.

Error Statistical Index Statistical Indexes Calculation Method

SST (%) [21,84] The closer the value is to 100,
the more accurate the model is. SST = A

A+D [49]

SPF (%) [21,84] The closer the value is to 100,
the more accurate the model is. SPF = C

C+B. [49]

ACC (%) [48,105] The closer the value is to 100,
the more accurate the model is. ACC = A+C

A+C+B+D [49]

RMSE [144–146] The closer the value is to 0,
the more accurate the model is. RMSE =

√
n
∑

i=1

(yi−ti)
2

n [49]

MAE [144,147] The closer the value is to 0,
the more accurate the model is. MAE = 1

n

n
∑

i=1
|yi − ti| [89]

Kappa statistics [34,47,84] The closer the value is to 1,
the more accurate the model is.

K = Po−Pest
1−Pest

Po = (A + C)Pest =

(A + D)× (A + D) + (B + C)× (D + C) [49]

R2 [89]
The closer the value is to 1,

the more accurate the model is. R2 = 1−
n
∑

i=1
(yi−ti)

2

n
∑

i=1

(
ti−
−
t
)2 [89]

Note: A, B, C, and D are the number of true positive, false positive, true negative, and false negative, respectively.
Po : relative consistency obtained by raters; Pest: probability of assuming consistent opportunities; n: number of

samples; yi : predicted value of sample i; Pest: predicted average value of the sample; ti : target value of sample i;
−
t :

targeted average value.

5. Application of Remote Sensing and GIS in Flash Flood Susceptibility Assessment

Remote sensing and GIS are essential components of the spatial analysis of various
natural hazards and are the basis of flash flood susceptibility assessment. Remote sensing
technology and GIS play an important role in assessment scale, assessment unit, assessment
index, and assessment model. From the visual analysis of this study, the application of
remote sensing technology and GIS in flash flood susceptibility assessment will become
more and more extensive in the future.

(1) Application of remote sensing and GIS in the flash flood susceptibility assessment scale

Identification of study areas based on remote sensing and GIS is an essential tool for
delineating the scale of flash flood susceptibility assessment. DEM and multiple remote
sensing satellite images have become popular tools for identifying delineated flash flood
susceptibility areas.

As the flash flood susceptibility assessment in the administrative scale, GIS was used
to obtain maps of the target area and flash flood inventory maps. Pham et al. [36] acquired
an inventory map of flash flood hazards at Nghe An Province, Vietnam, from satellite
images and aerial photographs. Saber et al. [46] obtained and produced inventory maps of
flash flood sites through remote sensing.

In watershed-scale flash flood susceptibility assessment, watershed boundaries are
usually delineated in a GIS environment through DEM. It is worth mentioning that the
combined application of RS and GIS has promoted the development of watershed flash
flood susceptibility assessment. Determination of watersheds using GIS software has
replaced the traditional manual determination of watersheds and has become the dominant
method of measurement [35]. Nasir et al. [35] used the ArcHydro tool in ArcGIS to delineate
the Swat River watershed. Mahmood et al. [43] used inverse radiometer and satellite-based
thermal emission. Mahmood et al. [75] used a watershed modeling approach to delineate
the Panjkra basin based on the GIS environment. In addition, flash flood inventory maps of
the watershed are also frequently accessed through remote sensing techniques. For example,
Abedi et al. [148] acquired flash flood inventory maps by orthophoto. Pham et al. [45]
delineated flash flood hazard points on a map with GIS software. Costach et al. [149]
obtained flash flood hazard points with the help of high-resolution satellite images.
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For disaster point-based scale assessment, disaster data are used to classify the test and
validation sets, so the accuracy of disaster data affects the reliability of the assessment. The
application of remote sensing technology and GIS has improved the accuracy of disaster
data [57]. Remote sensing images such as Sentinel-1 c-band SAR images and handheld GIS
tools are often used in studies to identify flash flood sites. Ngo et al. [34] acquired data
from Sentinel-1 c-band SAR images. Ngo et al. [96] used Sentinel-1 C-band SAR images to
identify flash flood lists. Bui et al. [90] used handheld GIS to confirm the polygons of flash
flood points in their research.

Research showed that remote sensing and GIS databases were the primary databases
for flash flood susceptibility assessment [101,149]. Therefore, the databases for future
studies will still be dominated by GIS databases.

(2) Application of remote sensing and GIS in flash flood susceptibility assessment unit

The generation of raster units of specific pixel size based on GIS software is the most
common method of grid unit division in existing studies [44,96]. Researchers divided
remote sensing images into specific size units to conveniently construct of thematic maps of
each factor for the next step of the study. For example, Pham et al. [36] used ArcGIS software
to generate raster units with 20 m pixels to construct thematic maps. Arabameri et al. [125]
built topographic factor thematic maps with 12.5 m resolution in a GIS environment.
Bui et al. [89] divided remote sensing images into 20 m size units in GIS software and made
thematic maps. Bui et al. [90] divided remote sensing images into 10 m raster units. Since
the image sources are primarily remotely sensed images, RS and GIS software will continue
to be applied in future studies.

(3) Application of remote sensing and GIS in flash flood susceptibility assessment index

Accurate identification of flash flood influencing factors is an essential part of flash
flood susceptibility assessment [101]. Remote sensing technology plays a significant role in
acquiring influencing factors and is an instrument for the acquisition of assessment indexes.
Costach et al. [48] selected 8 out of 10 assessment indexes by remote sensing technology.
Hang et al. [16] selected 12 factors as assessment indexes and 7 of them acquired by remote
sensing data. Bui et al. [89] chose elevation, slope, curvature, top shade, aspect, TWI, and
SPI from DEM and NDVI from Landsat-8 Operational Land Imagery. Janizadeh et al. [49]
considered elevation, slope, slope aspect from the DEM, and land use from the OLI Landsat
satellite imagery. Waqas et al. [129] chose factors including distance to the river, drainage
density slope, and elevation from DEM and Sentinel-2 satellites, and land cover based on
Advanced Land Observing Satellite (ALOS).

Overall, topographical factors, such as slope, curvature, stream power index (SPI), and
topographic wetness index (TWI), can be obtained by digital elevation model, hydrological
data can be obtained by radar satellite, and remote sensing parameters including vegetation
cover and land use/land cover (LULC) are generally obtained through remote sensing
image interpretation. The images of each assessment index are indispensable data for flash
flood susceptibility assessment. Therefore, remote sensing technology and GIS are still
essential ways to acquire assessment indicators in future studies.

(4) Application of remote sensing and GIS in a flash flood susceptibility assessment model

The accuracy of prediction of flood risk areas has been improved by GIS combined
with other methods in recent studies [54]. Ding et al. [143] considered machine learning
as the most cutting-edge method. With the development of deep learning, GIS-based ma-
chine learning and deep learning intelligent learning models have become the mainstream
models for flash flood susceptibility assessment. Bui et al. [36] used four machine learning
methods, including Kernel Logistic Regression (KLR), Radial Basis Function Classifier
(RBFC), Naive Bayes Multinomial (NBM), and Logistic Model Tree (LMT) to assess the flash
flood susceptibility. Chakrabortty et al. [139] tested three models, namely swarm optimiza-
tion (PSO), an artificial neural network (ANN), and a deep-leaning neural network (DLNN).
Janizadeh et al. [49] used five machine learning methods, including alternating decision
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tree (ADT), functional tree (FT), kernel logistic regression (KLR), multilayer perceptron
(MLP), and Quadratic Discriminant Analysis (QDA) to assess the flash flood susceptibility.
Khosravi et al. [78] used four decision tree-based machine learning models, i.e., Logical
Model Tree (LMT), Reduced Error Pruning Tree (REPT), Naive Bayes Tree (NBT), and ADT
for flash flood susceptibility mapping.

Current research tends to use a hybrid model dominated by intelligent learning models
other than a single one. Costach et al. [84] used AHP, DNN, FR-DNN, and AHP-DNN to
assess flash-flood susceptibility, indicating that the DNN-AHP hybrid model had higher
accuracy. Costach et al. [47] tested the Index of Entropy (IOE), AHP, ADT-IOE, and ADT-
AHH, showing that the accuracy of the hybrid model is higher than that of the single
model. Costach et al. [150] used four stand-alone models, including ADT, Rotation Forest
(RT), WOE, and Logistic Model Tree (LMT), and three hybrid models, namely ADT-WOE,
RT-WOE, and LMT-WOE, showing that among the seven models, the ADT-WOE hybrid
model was the best in terms of accuracy. Meanwhile, these studies showed that using
hybrid models can improve prediction accuracy. In addition, GIS-based machine learning
models possess higher accuracy than statistical models even when the number of flash
flood points decreases [54]. Therefore, the application of GIS in flash flood susceptibility
assessment models is also increasing.

6. Discussions

In the past 15 years, flash flood susceptibility assessment has received significant
attention and made substantial progress. However, it continues to face great challenges
due to the limitations of incomplete data, uncertainty in optimal resolution, and the master
control factors and models. Accurate prediction of flash flood-prone areas is prospective
for reducing the impact of flash floods. Therefore, this study examined five subfields of
assessment scales, assessment units, assessment metrics, assessment models, and model
assessment methods to look into the future direction of flash flood susceptibility assessment
research. It will enhance the assessment framework of this research area and increase the
accuracy of flash flood susceptibility assessment.

For assessment scale, the watershed as the assessment scale is the most studied assess-
ment scale, which facilitates risk management by policymakers. The main reason is the
ability to respond to the spatial variability of flash floods at relatively small administrative
scales [40] and the convenience of dividing small scales into multiple homogeneous re-
gions [151], since flash flood impacts are heterogeneous across administrative divisions [40].
Therefore, whether future studies need to investigate at the national scale needs further
exploration. Disaster databases help researchers understand the changing nature of flash
flood disasters [152,153]. The statistical analysis method of flash flood disasters based
on GIS and RS is very popular, which makes it possible to carry out multidisciplinary
integrated analysis of flash flood disasters based on the data management function of
GIS [91,101]. The prerequisite for analyzing flash flood susceptibility using GIS is historical
flash flood data with higher accuracy [154]. At present, only 38.46% of the databases
providing disaster data on the Internet have open access [155], and the data contained
in each database is not the same, while the spatio-temporal coverage is limited [W36].
Therefore, establishing an open flash flood disaster database based on the GIS platform
and acquisition of multi-period flash flood disaster data will help solve such a problem.

For the assessment unit, sub-basin units are the primary assessment units in a relatively
small number of watershed-scale studies [2,43,75]. However, most studies continue to
divide remote sensing images into multiple grid units based on GIS software [34,44,156].
The grid units were divided into several sizes, including 5 m [23], 12.5 m [125], 15 m [135],
20 m [36], 30 m [136], and 90 m [137], which were chosen by various researchers. Tian
et al. [157] showed that the raster resolution affects the topographic parameters. However, it
would not mean that the higher the resolution, the higher the accuracy [157]. Moreover, the
optimal resolution depends on the size of the study area. Therefore, the optimal resolution
varies from the study area to study area. The best resolution can be acquired by assessing
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and comparing the accuracy of each resolution, and the grid unit divided using the best
resolution size is more accurate. Therefore, it is possible to improve the accuracy of flash
flood susceptibility assessment by using grid units with the best resolution size.

For the assessment index, flash flood hazards have different regularities under different
environmental conditions, which diversify the factors for assessing flash flood suscepti-
bility [101,158]. Correlations among assessment factors influence the analytical accuracy
of models [109,159], and flood risk mitigation can be performed by identifying the key
drivers [160]. Current studies seldom focus on the correlation between assessment indexes.
Hence, the choosing of correlation effects among mutually independent assessment factors
or softening factors is one of the basic trends in quantitative studies of flash flood suscepti-
bility and an aspect which should not be ignored in the accuracy requirements of flash flood
susceptibility analysis. Second, current studies tend to assess the susceptibility of areas
with flash floods that have occurred by means of flash flood hazard inventories and lack
predictions of future flash flood events [47,88]. Correctly assessing the relationship between
predictors and floods improves accuracy in predicting future flood-affected areas [84],
which provides direction for predicting future flash flood events.

For the assessment model, a GIS-based hybrid model applied to flash flood susceptibil-
ity assessment increases the accuracy [54]. With the wide application of machine learning
and artificial intelligence in natural hazard assessment [51,109,159,161], the hybrid intel-
ligent learning model will be the dominant flash flood susceptibility assessment model.
However, current research mostly builds multi-intelligent learning hybrid models, and
rarely creates hybrid models that combine with traditional hydrological and hydrodynamic
models [83]. Belloset al. [162] indicated that compared to traditional hydrological models,
hydrodynamic models can describe surface flow dynamics. Additionally, hydrodynamic
models can predict large flash floods [141]. Therefore, the establishment of a hybrid model
of hydrodynamic model and GIS-based machine learning model is of great help for the
dynamic assessment and prediction of future flash flood events.

For model assessment accuracy, using different error statistics metrics may lead to
varying optimal accuracy models. For example, Costache et al. [149] analyzed SST, SPF,
ACC, and Kappa to obtain different best models. Pham et al. [36] used SST, SPF, Kappa,
RMSE, and ROC curves to evaluate the accuracy of the four models and got different
results. Additionally, Bui et al. [76] pointed out that this situation is limited mainly by
the data quality and the identification of non-flooded areas. More accurate results tended
to be obtained using ROC curves [76]. Therefore, the ROC curve is a mandatory model
assessment method when performing a model assessment.

7. Conclusions

This study used bibliometric and visual analysis to systematically analyze the relevant
literature in the field of flash flood susceptibility assessment, including influence analysis,
keyword co-occurrence analysis, keyword outbreak analysis, author co-citation analysis,
and institutional co-operation analysis. Based on the analysis, the study summarized and
discussed the current status and development trends of research in five key subfields, i.e.,
assessment scales, assessment units, assessment indexes, assessment models, and model
assessment methods, and analyzed the application of RS and GIS.

It showed that: (1) Current assessment scales were divided into administrative division,
watershed, and disaster point data scales, and watershed was the primary assessment scale.
(2) The assessment units were mainly sub-basin units and grid units. For grid units,
adopting optimal resolution size units can increase the assessment accuracy. (3) Slope,
LULC, and distance to the river are the most dominant assessment indexes. Choosing
the primary control factors and reducing the correlation between assessment indexes can
improve assessment accuracy and reduce the flood impact. (4) Hybrid models based on
GIS were the mainstream models for assessment, and using hybrid models based on GIS
machine learning and hydrodynamics can predict future flash flood events. (5) Model
assessment methods include ROC curves and error statistics indicators such as SST, with
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ROC curves being the model’s indispensable method for assessment; RS and GIS were the
basis of flash flood susceptibility assessment and remain applicable in future research. In
general, flash flood hazard susceptibility assessment remains in the developmental stage
and still faces many challenges. This study can provide research directions for subsequent
researchers to provide a basis for early identification of flash floods.
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New Hybrid Firefly–PSO Optimized Random Subspace Tree Intelligence for Torrential Rainfall-Induced Flash Flood Susceptible
Mapping. Remote Sens. 2020, 12, 2688. [CrossRef]

107. Ettinger, S.; Mounaud, L.; Magill, C.; Yao-Lafourcade, A.F.; Thouret, J.C.; Manville, V.; Negulescu, C.; Zuccaro, G.; De Gregorio, D.;
Nardone, S. Building vulnerability to hydro-geomorphic hazards: Estimating damage probability from qualitative vulnerability
assessment using logistic regression. J. Hydrol. 2016, 541, 563–581. [CrossRef]

108. Trigila, A.; Iadanza, C.; Esposito, C.; Scarascia-Mugnozza, G. Comparison of Logistic Regression and Random Forests techniques
for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy). Geomorphology 2015, 249, 119–136. [CrossRef]

109. Yaseen, A.; Lu, J.; Chen, X. Flood susceptibility mapping in an arid region of Pakistan through ensemble machine learning model.
Stoch. Environ. Res. Risk Assess. 2022, 36, 3041–3061. [CrossRef]

110. Giovannettone, J.; Copenhaver, T.; Burns, M.; Choquette, S. A Statistical Approach to Mapping Flood Susceptibility in the Lower
Connecticut River Valley Region. Water Resour. Res. 2018, 54, 7603–7618. [CrossRef]

111. Lee, S.; Pradhan, B. Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. J.
Landslides 2007, 4, 33–41. [CrossRef]

112. Oh, H.J.; Lee, S.; Soedradjat, G.M. Quantitative landslide susceptibility mapping at Pemalang area, Indonesia. J. Environ. Geol.
2010, 60, 1317–1328. [CrossRef]

113. Sharma, S.; Mahajan, A.K. A comparative assessment of information value, frequency ratio and analytical hierarchy process
models for landslide susceptibility mapping of a Himalayan watershed, India. J. Bull. Eng. Geol. Environ. 2018, 78, 2431–2448.
[CrossRef]

114. Aristizábal, E.; Arango Carmona, M.I.; Gómez, F.J.; López Castro, S.M.; De Villeros Severiche, A.; Riaño Quintanilla, A.F. Hazard
Analysis of Hydrometeorological Concatenated Processes in the Colombian Andes. In Advances in Natural Hazards and Hydrological
Risks: Meeting the Challenge; Advances in Science, Technology & Innovation; Springer: Cham, Switzerland, 2020; Volume 12,
pp. 7–10.

115. Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, an update. Landslides 2014, 11, 167–194. [CrossRef]
116. Stolle, A.; Langer, M.; Bloethe, J.H.; Korup, O. On predicting debris flows in arid mountain belts. J. Glob. Planet. Change 2015, 126,

1–13. [CrossRef]
117. Santangelo, N.; Forte, G.; De Falco, M.; Chirico, G.B.; Santo, A. New insights on rainfall triggering flow-like landslides and flash

floods in Campania (Southern Italy). Landslides 2021, 18, 2923–2933. [CrossRef]
118. Mei, Y.; Anagnostou, E.N.; Nikolopoulos, E.I.; Borga, M. Error Analysis of Satellite Precipitation Products in Mountainous Basins.

J. Hydrometeorol. 2014, 15, 1778–1793. [CrossRef]
119. Karagiorgos, K.; Thaler, T.; Heiser, M.; Hübl, J.; Fuchs, S. Integrated flash flood vulnerability assessment: Insights from East

Attica, Greece. J. Hydrol. 2016, 541, 553–562. [CrossRef]
120. White, H.D. Combining bibliometrics, information retrieval, and relevance theory: Part 1: First examples of a synthesis. J. Am.

Soc. Inf. Sci. Technol. 2007, 58, 536–559. [CrossRef]
121. Tehrany, M.S.; Kumar, L.; Shabani, F. A novel GIS-based ensemble technique for flood susceptibility mapping using evidential

belief function and support vector machine: Brisbane, Australia. PeerJ 2019, 7, e7653. [CrossRef] [PubMed]
122. Tehrany, M.S.; Jones, S.; Shabani, F. Identifying the essential flood conditioning factors for flood prone area mapping using

machine learning techniques. Catena 2019, 175, 174–192. [CrossRef]

http://doi.org/10.1016/j.jenvman.2020.111858
http://doi.org/10.1016/j.jhydrol.2019.124379
http://doi.org/10.1108/09653561011091896
http://doi.org/10.1016/j.ijdrr.2021.102573
http://doi.org/10.1080/10106049.2021.2017007
http://doi.org/10.1016/j.ijdrr.2018.11.011
http://doi.org/10.3390/ijerph9041507
http://doi.org/10.1016/j.engappai.2020.103971
http://doi.org/10.3390/rs12172688
http://doi.org/10.1016/j.jhydrol.2015.04.017
http://doi.org/10.1016/j.geomorph.2015.06.001
http://doi.org/10.1007/s00477-022-02179-1
http://doi.org/10.1029/2018WR023018
http://doi.org/10.1007/s10346-006-0047-y
http://doi.org/10.1007/s12665-009-0272-5
http://doi.org/10.1007/s10064-018-1259-9
http://doi.org/10.1007/s10346-013-0436-y
http://doi.org/10.1016/j.gloplacha.2014.12.005
http://doi.org/10.1007/s10346-021-01667-9
http://doi.org/10.1175/JHM-D-13-0194.1
http://doi.org/10.1016/j.jhydrol.2016.02.052
http://doi.org/10.1002/asi.20543
http://doi.org/10.7717/peerj.7653
http://www.ncbi.nlm.nih.gov/pubmed/31616580
http://doi.org/10.1016/j.catena.2018.12.011


Remote Sens. 2022, 14, 5432 33 of 34

123. Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Flood Susceptibility Analysis and Its Verification Using a Novel Ensemble Support Vector
Machine and Frequency Ratio Method. Stoch. Environ. Res. Risk Assess. 2015, 29, 1149–1165. [CrossRef]

124. Tehrany, M.S.; Lee, M.J.; Pradhan, B.; Jebur, M.N.; Lee, S. Flood susceptibility mapping using integrated bivariate and multivariate
statistical models. Environ. Earth Sci. 2014, 72, 4001–4015. [CrossRef]

125. Arabameri, A.; Saha, S.; Chen, W.; Roy, J.; Pradhan, B.; Bui, D.T. Flash flood susceptibility modelling using functional tree and
hybrid ensemble techniques. J. Hydrol. 2020, 587, 125007. [CrossRef]

126. Collaborators, I.P. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and
injuries, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1545–1602.

127. Afshin, A.; Sur, P.J.; Fay, K.A.; Cornaby, L.; Ferrara, G.; Salama, J.S.; Mullany, E.C.; Abate, K.H.; Abbafati, C.; Abebe, Z.; et al.
Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017.
Lancet 2019, 393, 1958–1972. [CrossRef]

128. Zeng, Z.; Tang, G.; Long, D.; Zeng, C.; Ma, M.H.; Hong, Y.; Xu, H.; Xu, J. A cascading flash flood guidance system: Development
and application in Yunnan Province, China. Nat Hazards 2016, 84, 2071–2093. [CrossRef]

129. Waqas, H.; Lu, L.; Tariq, A.; Li, Q.; Baqa, M.F.; Xing, J.; Sajjad, A. Flash Flood Susceptibility Assessment and Zonation Using
an Integrating Analytic Hierarchy Process and Frequency Ratio Model for the Chitral District, Khyber Pakhtunkhwa, Pakistan.
Water 2021, 13, 1650. [CrossRef]

130. Afreen, M.; Haq, F.; Mukhtar, Z. Flood susceptibility analysis of the Panjkora Valley Northern Pakistan, using frequencyratio
approach. Int. J. Disaster Resil. Built Environ. 2022, 13, 601–614. [CrossRef]

131. Saleh, A.; Yuzir, A.; Sabtu, N.; Abujayyab, S.K.M.; Bunmi, M.R.; Pham, Q.B. Flash flood susceptibility mapping in urban area
using genetic algorithm and ensemble method. Geocarto Int. 2022. [CrossRef]

132. Yu, C.; Chen, J. Application of a GIS-Based Slope Unit Method for Landslide Susceptibility Mapping in Helong City: Comparative
Assessment of ICM, AHP, and RF Model. Symmetry 2020, 12, 1848. [CrossRef]

133. El-Fakharany, M.A.; Hegazy, M.N.; Mansour, N.M.; Abdo, A.M. Flash flood hazard assessment and prioritization of sub-
watersheds in Heliopolis basin, East Cairo, Egypt. Arab J Geosci. 2021, 14, 1693. [CrossRef]

134. Karmokar, S.; De, M. Flash flood risk assessment for drainage basins in the Himalayan foreland of Jalpaiguri and Darjeeling
Districts, West Bengal. Model. Earth Syst. Environ. 2020, 6, 2263–2289. [CrossRef]

135. Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a
novel ensemble bivariate and multivariate statistical models in GIS. J. Hydrol. 2013, 504, 69–79.

136. Alaa, M.A.A.; Shamsuddin, S.; Ali, K.A.A. A GIS-based integration of catastrophe theory and analytical hierarchy process for
mapping flood susceptibility: A case study of Teeb area, Southern Iraq. Environ. Earth Sci. 2016, 75, 687.

137. Magnini, A.; Lombardi, M.; Persiano, S.; Tirri, A.; Conti, F.L.; Castellarin, A. Machine-Learning blends of geomorphic descriptors:
Value and limitations for flood hazard assessment across large floodplains. J. Nat. Hazards Earth Syst. Sci. 2022, 22, 1469–1486.
[CrossRef]

138. Dejen, A.; Soni, S. Flash flood risk assessment using geospatial technology in Shewa Robit town, Ethiopia. Model. Earth Syst.
Environ. 2021, 7, 2599–2617. [CrossRef]

139. Chakrabortty, R.; Pal, S.C.; Rezaie, F.; Arabameri, A.; Lee, S.; Roy, P.; Saha, A.; Chowdhuri, I.; Moayedi, H. Flash-Flood Hazard
Susceptibility Mapping in Kangsabati River Basin, India. Geocarto Int. 2022, 37, 6713–6735. [CrossRef]

140. Cao, C.; Xu, P.; Wang, Y.; Chen, J.; Zheng, L.; Niu, C. Flash Flood Hazard Susceptibility Mapping Using Frequency Ratio and
Statistical Index Methods in Coalmine Subsidence Areas. Sustainability 2016, 8, 948. [CrossRef]

141. Huang, W.; Cao, Z.X.; Qi, W.J.; Pender, G.; Zhao, K. Full 2D hydrodynamic modelling of rainfall-induced flash floods. J. Mt. Sci.
2015, 12, 1203–1218. [CrossRef]

142. Liu, J.; Wang, J.; Xiong, J.; Cheng, W.; Sun, H.; Yong, Z.; Wang, N. Hybrid Models Incorporating Bivariate Statistics and Machine
Learning Methods for Flash Flood Susceptibility Assessment Based on Remote Sensing Datasets. Remote Sens. 2021, 13, 4945.
[CrossRef]

143. Ding, L.S.; Ma, L.; Li, L.G.; Liu, C.; Li, N.W.; Yang, Z.L.; Yao, Y.Z.; Lu, H. A Survey of Remote Sensing and Geographic Infor
mation System Applications for Flash Floods. Remote Sens. 2021, 13, 1818. [CrossRef]

144. Rahman, M.; Ningsheng, C.; Islam, M.M.; Mahmud, G.I.; Pourghasemi, H.R.; Alam, M.; Rahim, M.A.; Baig, M.A.; Bhattacharjee,
A.; Dewan, A. Development of flood hazard map and emergency relief operation system using hydrodynamic modeling and
machine learning algorithm. J. Clean. Prod. 2021, 311, 127594. [CrossRef]

145. Zhang, M.; Dai, Z.; Bouma, T.J.; Bricker, J.; Townend, I.; Wen, J.; Zhao, T.; Cai, H. Tidal-flat reclamation aggravates potential risk
from storm impacts. Coast. Eng. 2021, 166, 103868. [CrossRef]

146. Mi, J.; Zhang, M.; Zhu, Z.; Vuik, V.; Wen, J.; Gao, H.; Bouma, T.J. Morphological Wave Attenuation of the Nature-Based Flood
Defense: A Case Study from Chongming Dongtan Shoal, China. J. Sci. Total Environ. 2022, 831, 154813. [CrossRef]

147. Zhao, G.; Pang, B.; Xu, Z.; Yue, J.; Tu, T.; Pang, B.; Xu, Z.; Yue, J.; Tu, T. Mapping flood susceptibility in mountainous areas on a
national scale in China. Sci. Total Environ. 2018, 615, 1133–1142. [CrossRef]

148. Abedi, R.; Costache, R.; Shafizadeh-Moghadam, H.; Pham, Q.B. Flash-flood susceptibility mapping based on XGBoost, random
forest and boosted regression trees. Geocarto Int. 2022, 37, 5479–5496. [CrossRef]

http://doi.org/10.1007/s00477-015-1021-9
http://doi.org/10.1007/s12665-014-3289-3
http://doi.org/10.1016/j.jhydrol.2020.125007
http://doi.org/10.1016/S0140-6736(19)30041-8
http://doi.org/10.1007/s11069-016-2535-2
http://doi.org/10.3390/w13121650
http://doi.org/10.1108/IJDRBE-09-2020-0104
http://doi.org/10.1080/10106049.2022.2032394
http://doi.org/10.3390/sym12111848
http://doi.org/10.1007/s12517-021-07991-7
http://doi.org/10.1007/s40808-020-00807-9
http://doi.org/10.5194/nhess-22-1469-2022
http://doi.org/10.1007/s40808-020-01016-0
http://doi.org/10.1080/10106049.2021.1953618
http://doi.org/10.3390/su8090948
http://doi.org/10.1007/s11629-015-3466-1
http://doi.org/10.3390/rs13234945
http://doi.org/10.3390/rs13091818
http://doi.org/10.1016/j.jclepro.2021.127594
http://doi.org/10.1016/j.coastaleng.2021.103868
http://doi.org/10.1016/j.scitotenv.2022.154813
http://doi.org/10.1016/j.scitotenv.2017.10.037
http://doi.org/10.1080/10106049.2021.1920636


Remote Sens. 2022, 14, 5432 34 of 34

149. Costache, R.; Arabameri, A.; Blaschke, T.; Pham, Q.B.; Pham, B.T.; Pandey, M.; Arora, A.; Linh, N.T.T.; Costache, I. Flash-Flood
Potential Mapping Using Deep Learning, Alternating Decision Trees and Data Provided by Remote Sensing Sensors. Sensors
2021, 21, 280. [CrossRef] [PubMed]

150. Costache, R. Flash-flood Potential Index mapping using weights of evidence, decision Trees models and their novel hybrid
integration. J. Stoch. Environ. Res. Risk Assess. 2019, 33, 1375–1402. [CrossRef]

151. Zhang, R.; Chen, Y.; Zhang, X.; Ma, Q.; Ren, L. Mapping homogeneous regions for flash floods using machine learning: A case
study in Jiangxi province, China. Int. J. Appl. Earth Obs. Geoinf. 2020, 108, 102717. [CrossRef]

152. Kruczkiewicz, A.; Bucherie, A.; Ayala, F.; Hultquist, C.; Vergara, H.; Mason, S.; Bazo, J.; de Sherbinin, A. Development of a Flash
Flood Confidence Index from Disaster Reports and Geophysical Susceptibility. Remote Sens. 2021, 13, 2764. [CrossRef]

153. Archer, D.; O’Donnell, G.; Lamb, R.; Warren, S.; Fowler, H.J. Historical Flash Floods in England: New Regional Chronologies and
Database. J. Flood Risk Manag. 2019, 12, e12526. [CrossRef]

154. Kaiser, M.; Günnemann, S.; Disse, M. Providing guidance on efficient flash flood documentation: An application based approach.
J Hydrol. 2020, 581, 124466. [CrossRef]

155. Muhamad, N.; Arshad, S.; Pereira, J.J. Exposure Elements in Disaster Databases and Availability for Local Scale Application: Case
Study of Kuala Lumpur, Malaysia. Front. Earth Sci. 2021, 9, 616246. [CrossRef]

156. Su, M.; Ying, Z.; Yan, H.; Chen, Q.; Chen, S.; Chen, Z.; Hong, X. The influence of landscape pattern on the risk of urban
water-logging and flood disaster. Ecol. Indic. 2017, 92, 133–140. [CrossRef]

157. Tian, Y.; Xiao, C.; Liu, Y.; Wu, L. Effects of Raster Resolution on Landslide Susceptibility Mapping: A Case Study of Shenzhen. Sci.
China Ser. Technol. Sci. 2008, 51, 188–198. [CrossRef]

158. Baran-Zgłobicka, B.; Godziszewska, D.; Zgłobicki, W. The Flash Floods Risk in the Local Spatial Planning (Case Study: Lublin
Upland, E Poland). Resources 2021, 10, 14. [CrossRef]

159. Ruidas, D.; Chakrabortty, R.; Islam, A.M.T.; Saha, A.; Pal, S.C. A novel hybrid of meta-optimization approach for flash flood-
susceptibility assessment in a monsoon-dominated watershed, Eastern India. Environ. Earth Sci. 2022, 81, 145. [CrossRef]

160. Lin, J.; He, X.; Lu, S.; Liu, D.; He, P. Investigating the influence of three-dimensional building configuration on urban pluvial
flooding using random forest algorithm. Environ. Res. 2021, 196, 110438. [CrossRef] [PubMed]

161. Hu, Q.; Zhu, Y.; Hu, H.; Guan, Z.; Qian, Z.; Yang, A. Multiple Kernel Learning with Maximum Inundation Extent from MODIS
Imagery for Spatial Prediction of Flood Susceptibility. Water Resour. Manag. 2022, 36, 55–73. [CrossRef]

162. Bellos, V.; Papageorgaki, I.; Kourtis, I.; Vangelis, H.; Kalogiros, I.; Tsakiris, G. Reconstruction of a flash flood event using a 2D
hydrodynamic model under spatial and temporal variability of storm. Nat. Hazards 2020, 101, 711–726. [CrossRef]

http://doi.org/10.3390/s21010280
http://www.ncbi.nlm.nih.gov/pubmed/33406613
http://doi.org/10.1007/s00477-019-01689-9
http://doi.org/10.1016/j.jag.2022.102717
http://doi.org/10.3390/rs13142764
http://doi.org/10.1111/jfr3.12526
http://doi.org/10.1016/j.jhydrol.2019.124466
http://doi.org/10.3389/feart.2021.616246
http://doi.org/10.1016/j.ecolind.2017.03.008
http://doi.org/10.1007/s11431-008-6009-y
http://doi.org/10.3390/resources10020014
http://doi.org/10.1007/s12665-022-10269-0
http://doi.org/10.1016/j.envres.2020.110438
http://www.ncbi.nlm.nih.gov/pubmed/33171118
http://doi.org/10.1007/s11269-021-03010-2
http://doi.org/10.1007/s11069-020-03891-3

	Introduction 
	Materials and Methods 
	Research Methods 
	Data Sources 

	Results 
	Analysis of the Number of Publications and Citation Frequency 
	Influence Analysis 
	Analysis of Authors’ Productivity 
	Analysis of the Influence of Countries/Regions 
	Influence of Publications and Journals 
	Analysis of the Influence of Funding Institutions 

	Keyword Analysis 
	Keyword Co-Occurrence Analysis 
	Keyword Burst Analysis 

	Author Co-Citation Analysis 
	Institutional Co-Operation Analysis 

	Main Subfields of Flash Flood Susceptibility Assessment 
	Assessment Scale 
	Assessment Unit 
	Type of the Assessment Unit 
	Size of the Assessment Unit 

	Assessment Index 
	Assessment Model 
	Accuracy Assessment 

	Application of Remote Sensing and GIS in Flash Flood Susceptibility Assessment 
	Discussions 
	Conclusions 
	References

