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Abstract: Crowdsourced localization using geo-spatial big data has become an effective approach for
constructing smart-city-based location services with the fast growing number of Internet of Things
terminals. This paper presents a self-calibrated multi-floor indoor positioning framework using
a combination of Wi-Fi ranging, crowdsourced fingerprinting and low-cost sensors (SM-WRFS).
The localization parameters, such as heading and altitude biases, step-length scale factor, and Wi-
Fi ranging bias are autonomously calibrated to provide a more accurate forward 3D localization
performance. In addition, the backward smoothing algorithm and a novel deep-learning model
are applied in order to construct an autonomous and efficient crowdsourced Wi-Fi fingerprinting
database using the detected quick response (QR) code-based landmarks. Finally, the adaptive
extended Kalman filter is adopted to combine the corresponding location sources using different
integration models to provide a precise multi-source fusion based multi-floor indoor localization
performance. The real-world experiments demonstrate that the presented SM-WRFS is proven to
realize precise 3D indoor positioning under different environments, and the meter-level positioning
accuracy can be acquired in Wi-Fi ranging supported indoor areas.

Keywords: indoor localization; Wi-Fi ranging; crowdsourced fingerprinting; low-cost sensors;
deep-learning

1. Introduction

Indoor positioning ability has become an essential requirement towards smart city and
Internet-of-Things (IoT)-based applications as people spend more time indoors. Due to the
variability of indoor scenes, it is still challenging to provide universal and precise pedestrian
navigation services under Global Navigation Satellite Systems (GNSS) denied indoor
environments. The wireless navigation system has attracted the attention of researchers
due to its low-cost and wide distribution characteristics [1]. A variety of features acquired
from wireless signals could be adopted for indoor navigation purposes, for example,
received signal strength indication (RSSI) [2], channel impulse response (CIR) [3], time of
arrival (TOA) [4], time difference of arrival (TDOA) [5], angle of arrival (AOA) [6], and
channel state information (CSI) [7].

Based on IoT-terminal-supported indoor positioning technology, part of the acquired
wireless features cannot be applied because of hardware constraints or time synchroniza-
tion problems. Compared with other wireless features, Wireless Fidelity (Wi-Fi) RSSI is
supported by almost all types of IoT terminals and can be acquired in real-time, and the
Wi-Fi-RSSI-based positioning system usually contains two approaches: triangulation and
fingerprinting [8,9]. Zhuang et al. [10] enhanced the traditional Wi-Fi RSSI ranging model
by taking the RSSI measurement bias into consideration, and adopted the extended Kalman
filter (EKF) to combine the Wi-Fi RSSI aimed distance measurement results and mobile
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self-contained sensors. The realized average root mean square error (RMSE) using the
compensated RSSI observations was less than 3.47 m. Li et al. [11] proposed a novel fusion
structure which combines the inertial, Wi-Fi and magnetic location sources. A multi-level
quality-control (QC) strategy was applied to increase the efficiency and precision of the
final localization phase, and the RMSE of the proposed structure was within 4.3 m among
different environments. Chen et al. [12] proposed a deep long short-term memory (DLSTM)
network to improve the accuracy of the traditional Wi-Fi fingerprinting approach, by de-
creasing the influence of environmental effects on the collected RSSI vectors and extracting
more characteristics of continuous RSSI signals under time domains.

The existing research indicates that the traditional Wi-Fi RSSI based localization sys-
tem cannot fulfil the requirement of meter-level indoor localization accuracy because of the
instability of RSSI signal propagation in complex indoor scenes and artificial interference.
To enhance the ability of an existing Wi-Fi positioning system (WPS), IEEE 802.11-2016
proposed the 802.11mc protocol, which provides round-trip-time (RTT)-based distance
measurement results among different mobile terminals and Wi-Fi access points (APs) [13].
However, because of the hardware deviations between smartphones and Wi-Fi APs, the
raw measured RTT value normally contains initial bias which leads to the overall drift of
distance information received at terminals. Ibrahim M et al. [14] used the Intel provided
open-source software and hardware to evaluate the performance of Wi-Fi RTT ranging, and
tested the effects of initial bias and environmental factors in different indoor and outdoor
scenes and provided the basic method for bias calibration. Subsequently, ref. [15] provided
the systematic analysis of influencing factors of initial bias of Wi-Fi RTT and drew the conclu-
sion that both hardware platform and methods of signal processing would affect the value
of initial bias, and also indicated that the initial bias of Wi-Fi RTT follows the environment-
related Gaussian distribution duo to its measurement mechanism. Sun et al. [16] proposed
the geomagnetism and improved genetic approach to realize accurate Wi-Fi ranging based
localization and ranging bias compensation at the same time. The distribution of ranging
error under the NLOS scene is collected on the off-line phase, which is further applied to
the on-line phase for ranging bias compensation, and effectively improves the accuracy of
final positioning.

During the actual positioning procedure, the precision of Wi-Fi Fine Time Measure-
ment (FTM) may also be affected by the multipath propagation and non-line-of-sight
(NLOS) that may lead to the influences in real-time ranging observations [17]. In addi-
tion, Micro-Electromechanical-System (MEMS)-sensor-based localization solutions, such as
pedestrian dead reckoning (PDR) or inertial navigation system (INS) can only maintain
positioning accuracy in a short-use period, which can further be integrated with Wi-Fi
ranging to compensate for signal fluctuation and provide possible solutions for the real-
time calibration of Wi-Fi ranging. Choi et al. [18] proposed a self-calibrated multi-source
fusion system using the combination of Wi-Fi RTT, RSSI and MEMS sensors, in which
the RTT ranging and RSSI ranging are adopted as the observations to compensate for the
cumulative error of PDR, and also the initial bias, heading, and step-length parameters
are calibrated simultaneously. The experimental performance realizes the localization
precision within 1.28 m in 75% under 40-MHz bandwidth. Zhou et al. [19] developed a
device-to-device cooperative localization system, which is assisted by matrix completion
and anchor selection, and can further be applied in rare ranging results received within
indoor scenes using a limited number of anchors.

The crowdsourcing-based localization algorithm is achieved based on the analysis
of geo-spatial big data, which can be regarded as an effective way for the realization of
autonomous positioning in smart-city-based indoor scenarios. To self-construct a precise
crowdsourced Wi-Fi fingerprinting database, the following challenges are required to be
tackled: the low accuracy of collected daily-life MEMS sensors data which is seriously influ-
enced by cumulative error and local artificial interference [20], the autonomous evaluation
and accurate combination of crowdsourced trajectories [21], and the efficient deployment
and the fast detection of reference points (RPs) [22]. Zhang et al. [23] proposed a novel
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crowdsourced navigation database generation method using the optimized pedestrians’
daily-life inertial data, and established a robust quality evaluation criteria towards crowd-
sourced trajectories, which takes the sensor’s biases, navigation time, and handheld modes
into consideration. The final experiments showed comparable results with the traditional
map-aided localization method. Zhuang et al. [24] tested the positioning accuracy of two
crowdsourcing-based Wi-Fi positioning systems (WPS) including fingerprinting and trilat-
eration methods, which are not depend on the requirements of accurate indoor map and
outdoor GNSS reference. The final estimated average positioning error under different
indoor scenes are lower than 5.75 m.

In order to provide an autonomous localization performance and realize meter-level
precision in selected areas, this paper presents a self-calibrated multi-floor aimed indoor
localization structure using the combination of Wi-Fi ranging, crowdsourced Wi-Fi finger-
printing and low-cost sensors (SM-WRFS). The innovations of this article are described
as follows:

(1) This paper proposes a low-cost-sensor-based forward 3D localization and backward
smoothing framework towards the crowdsourced trajectories collection and opti-
mization with a combination of quick-response (QR)-code-based landmark detec-
tion, which significantly reduces the divergence error and magnetic interference of
raw trajectories.

(2) This paper presents a novel crowdsourcing-based Wi-Fi fingerprinting database gen-
eration algorithm using the 1D-Convolutional-Neural-Network (1D-CNN)-based
crowdsourced trajectories evaluation framework to autonomously estimate the po-
sitioning error of each step period among the collected trajectory and generate the
merged navigation database based on the error evaluation results.

(3) This paper designs the self-calibrated localization model which takes the heading bias,
altitude bias, step-length scale factor, and Wi-Fi ranging bias into consideration, and
all the related parameters are predicted and optimized simultaneously to increase the
robustness of the final multi-source fusion.

(4) This paper realizes two different types of self-calibrated integration structures: the
tightly coupled positioning method using Wi-Fi ranging and low-cost sensors and
the loosely coupled positioning method using a crowdsourced Wi-Fi database and
low-cost sensors. The integration of different location sources significantly improves
the accuracy and universality of multi-source multi-floor indoor positioning.

The main structure of this work is arranged as follows. Section 2 details the low-cost-
sensor-based 3D indoor localization and deep-learning based Wi-Fi navigation database
construction. Section 3 introduces the self-calibrated indoor localization models and multi-
source integration structures. Section 4 describes the experimental results of the proposed
SM-WRFS. Section 5 concludes this paper.

2. Low-Cost-Sensor-Based 3D Indoor Localization and Navigation Database Generation

Pedestrians’ daily-life data acquired from massive smart terminals provide an effective
approach for crowdsourced Wi-Fi-based navigation database construction and updating.
The accuracy of the constructed navigation database is subject to the poor performance
of crowdsourced trajectories. In order to effectively improve the performance of daily-
life trajectories, the different types of sensors data are fused using the self-calibrated
integration model and it provides feedback of the corresponding error parameters in
real-time. In addition, the 1D-CNN-based trajectories evaluation model is developed for
autonomously predicting the positioning error of generated crowdsourced trajectories.
Finally, the absolute location sources, including Wi-Fi RSSI fingerprinting and RTT ranging
are adaptively combined by the self-integration model and correct the Wi-Fi ranging bias at
the same time. The overall flow of proposed SM-WRFS structure is described in Figure 1.
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Figure 1. Overall flow of proposed SM-WRFS structure.

In this section, a low-cost-sensor-based forward positioning and backward smoothing
framework is introduced in order to provide a more robust reference trajectory during
the off-line phase of Wi-Fi database generation. In addition, a novel deep-learning-based
trajectory error prediction model is proposed to autonomously generate the final navigation
database using the error evaluation results of crowdsourced trajectories.

2.1. Low-Cost-Sensor-Based Localization and Optimization

In this work, the low-cost sensors are applied as the autonomous location source
during the off-line phase of crowdsourced fingerprinting database generation. In this case,
the pedestrian’s 3D location, the real-time heading information, and the heading bias are
modeled as the state vector [25]:

Xt =
[
rt

x, rt
y, rt

z, θt, bt

]T
(1)

where rt
x, rt

y, rt
z indicate the updated 3D position of the pedestrian at the current moment t,

θt represents the calculated real-time heading, and bt is the corresponding heading bias.
The current state vector is updated by the detected step-length and calculated heading

information, and the dynamic model of the proposed state update equation is described as:

Xt+1 = f (Xt) + Gtωt (2)

where f (Xt) indicates the system relationship, Gt indicates the noise distribution matrix,
andωt indicates the state noise with Gaussian distribution. The detailed description of
f (Xt) is shown as:

f (Xt) =


rt−1

x + cos θt · Lt
rt−1

y + sin θt · Lt

rt−1
z + ∆ht

θt−1 + ∆T · bt
exp(−∆T/Tc) · bt−1

(3)

where the heading bias bt is presented as a first-order Markov process, which is updated
and provides feedback in real-time to compensate for the drift error of the calculated
heading θt, ∆T represents the update time period, Tc is the correlation time, Lt represents
the calculated step-length information, and is provided by [26]:

Lt = α · [0.7 + β(H − 1.75) + ς · (Ft − 1.79)H
1.75

] (4)
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in which α, β, ς represent the scale related parameters, Ft represents the gait frequency, and
H is the pedestrian’s height. To realize 3D localization, the barometer data is collected for
the altitude update [27]:

∆ht = 44, 330 · (1.0− (
100pt

p0
)

1.0
5.255

) (5)

where ∆ht indicates the estimated relative altitude indoors, pt and p0 are the acquired
pressure data during current time period t and the reference pressure level.

The EKF linearizes the proposed state model through the first-order Taylor series, the
Jacobian matrix of the state equation f (Xt) is linearized as:

Ft =


1 0 0 − sin θt · Lt 0
0 1 0 cos θt · Lt 0
0 0 1 0 0
0 0 0 1 ∆T
0 0 0 0 exp(−∆T/Tc)

 (6)

Among the forward localization procedure, to improve the heading estimation perfor-
mance, the measured magnetic vector is firstly calibrated by the ellipsoid fitting method in
order to provide more robust initial heading information [28]. When the pedestrian is walk-
ing in indoor environments, the magnetic data during detected quasi-static magnetic field
(QSMF) periods [29] is applied as the observation for real-time heading bias calibration:

ψ̃t − ψ̂0 = δψt + nψ (7)

where ψ̂0 represents the calculated magnetic heading under the first epoch of the detected
QSMF period, and the magnetic measurement ψ̃t under other QSMF epochs is applied as
the real-time observations, and nψ indicates the measurement noise.

In this paper, the QR code is developed to acquire the reference 3D location for the
low-cost-sensor-based method. The QR codes and the corresponding location information
can be generated from the on-line website [30], which are deployed in indoor scenes and
can be scanned by Android-supported smartphones as shown in Figure 2.
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Figure 2. Acquirement of QR-Code-Based Reference Points.

In the off-line phase of crowdsourced database generation procedure, the 3D reference
location provided by the scanned QR code and the calculated relative heading change
information under recognized QSMF periods is applied as the observation vector:

Zt = h(Xt) + νt =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1

Xt + νt (8)
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where Zt = [pt
x, pt

y, pt
z, δψt] represents the acquired QR code based 3D location reference,

and νt indicates the measured error of reference location and heading deviation, which is
assumed to be zero-mean Gaussian white noise.

The raw crowdsourced trajectories between two recognized QR reference points can
be optimized by the EKF-based backward smoothing algorithm; the whole procedure of
low-cost-sensor-based forward localization and back smoothing is described as follows:

(1) State vector update using the real-time calculated gait and heading values:

x−t = f (xt−1) (9)

(2) Linearization procedure using the first-order Taylor series:

Ft =
∂ f (xt)

∂xt

∣∣∣xt=x−t
(10)

(3) Covariance matrix prediction:

P−t = Ft,t−1Pt−1FT
t,t−1 + Qt (11)

(4) Kalman gain matrix update:

Kt = P−t Ht
T
[
HtP−t Ht

T + Rt

]−1
(12)

(5) State vector update:
xt = x−t + Kt

[
zt −Htx−t

]
(13)

(6) Covariance matrix update:
Pt = P−t −KtHtP−t (14)

(7) Backward Smoothing:

x̂t−1,t = x̂t−1 + Pt−1FT
t (P

−
t−1

)
−1

(x̂t − x̂t
−) (15)

Pt−1|t = Pt−1 − (Pt−1FT
t (Pt

−)
−1

)(Pt − Pt
−) · (Pt−1FT

t (Pt
−)
−1

)
T

(16)

where xt and zt indicate the state vector and observation vector provided by the
low-cost sensors update and QR code. Equations (9) to (14) define the low-cost-
sensor-based forward localization, and Equations (15) and (16) describe the backward-
smoothing procedure using the forward result.

2.2. Crowdsourced Fingerprinting Database Generation

In order to generate an autonomous and efficient crowdsourcing-based Wi-Fi RSSI
fingerprinting database, the crowdsourced trajectories should be evaluated and weighted
based on the positioning error prediction result. The challenge is that the ground-truth
dataset is missing in the real-world procedure of the crowdsourced trajectories collection;
the only ground-truth information that can be acquired is the detected QR-code-based
landmark points. To realize the autonomous prediction of positioning error, an effective
evaluation and selection of crowdsourced trajectories plays an important role in the final
procedure of Wi-Fi fingerprinting database construction. The quality of a pedestrian’s daily-
life trajectory is affected by the navigation time, walking distance, handheld modes, motion
modes, and so on. In this section, 1D-CNN-based error prediction model is proposed for
autonomously evaluating the quality of each collected trajectory. The following features
are extracted from each trajectory, which are applied as the input vector in the procedure of
1D-CNN training phase, which include:

(1) Collected gait-length information vt during each recognized gait period.
(2) Estimated heading value θt during each recognized gait period.
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(3) Ratio between current itinerary and total itinerary:

pd(t) =

k
∑

t=1
vt

n
∑

t=1
vt

(17)

where n represents the collected gait number during each trained trajectory, k indicates
the steps taken.

(4) Ratio between the current used time and total used time:

pt(t) = T(t)/Ttotal (18)

where Ttotal represents the overall time duration of the counted trajectory, and T(t)
indicates the used time period at the current moment.

(5) Ratio between current counted step quantity and the overall step quantity:

ps(t) = step(t)/steptotal (19)

where steptotal represents the overall step quantity of estimated trajectory, and step(t)
indicates the current counted step quantity.

(6) The estimated product of trajectory distance and time period between two detected
reference points:

S1 = di · ti, di =
N

∑
k=1

Lk (20)

where S1 indicates the estimated time and distance index of selected trajectory, di and
ti represent the recorded distance and time period of the selected trajectory, and Lk
indicates the recorded gait-length vector during the selected trajectory.

(7) The similarity among raw walking track and optimized walking track: In this work,
the dynamic time warping (DTW) index is applied to calculate the similarity among
raw walking track and optimized walking track. The location vector of raw walking
track can be described as ςk = {τ1, τ2, . . . , τm}, and the optimized walking track can
be modelled as ςre f er = {γ1, γ2, . . . , γn}, the DTW index is calculated as [31]:

DTW(ςrefer, ςk)
= Dist(γn, τm) + min[D(γn−1, τm), D(γn, τm−1), D(γn−1, τm−1)]

(21)

where DTW(ςrefer, ςk) indicates the cumulated distance provided by the raw walking
track and the optimized walking track, and D(γn, τm) indicates the distance between
two location vectors.

(8) Trajectory offset angle: Assuming that two reference points can be acquired in each
collected trajectory, and the trajectory offset angle can be calculated by constructing
the reference vector and raw vector:

ϑ = arccos


→

AB ·
→

AC∣∣∣∣ →AB
∣∣∣∣ · ∣∣∣∣ →AC

∣∣∣∣
 (22)

where
→

AB indicates the reference vector which is constructed by the first reference

point and the second reference point, and
→

AC is the raw vector which is constructed
by the first reference point and the end point of the raw trajectory.

The above extracted features are modeled as the input vector of 1D-CNN for train-
ing purposes, the positioning error under each step period of optimized trajectories by
Equations (15) and (16) is modeled as the output vector.
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The main description of 1D-CNN model is presented as [32].
Figure 3 describes the main description of the proposed 1D-CNN error prediction

model, in which the input vector is provided by the calculated characteristics of crowd-
sourced trajectories and the overall error evaluation results of crowdsourced trajectories
are further considered for navigation database generation after removing the trajectory
data with the larger error.
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In the training phase of the 1D-CNN model, the ground-truth trajectory is provided in
order to obtain the optimal model parameters. In the prediction phase, the positioning error
of crowdsourced trajectories is autonomously predicted without ground-truth data. After
the 1D-CNN-based evaluation of each collected trajectory, the localization error of each
point in the trajectory can be acquired, and the optimized crowdsourced Wi-Fi navigation
database is generated using weighted results acquired from the raw dataset:

RSSm
weighted =

n

∑
j=1

(
v

j
CNN

n
∑

j=1
v

j
CNN

) ·RSSj
collected (23)

where RSSm
weighted indicates the weighted RSSI values at the mst position among navigation

database, v
j
CNN indicates the 1D-CNN reported positioning error of each trajectory at

the adjacent reported locations, and n is the number of collected trajectories. RSSj
collected

indicates the collected RSSI vector provided for crowdsourced trajectories at the same
reported location. The proposed crowdsourced Wi-Fi database generation structure can
significantly increase the generation efficiency and decrease the dimension and complexity.

3. Self-Calibrated Integration Model and Multi-Source Fusion Framework

In the proposed self-calibrated localization framework, all the related parameters
are modeled and calibrated simultaneously in order to obtain the optimal positioning
result, including the heading bias, step-length scale factor, Wi-Fi ranging bias, and altitude
bias. This section will introduce the detailed self-calibration multi-floor indoor localization
model using the different fusion models which contain Wi-Fi FTM, RSSI fingerprinting,
and low-cost-sensor-based positioning methods.

3.1. Self-Calibration Model of Step-Length and Altitude

The pedestrian’s step-length in this work is estimated according to the relationship
between height and step frequency, while the scale parameter α affects the precision of
step-length calculation due to the different motion features of pedestrians. To enhance
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the adaptability of step-length model, the scale parameter α is modeled as the random
walk process:

αstep = α0 +

∆Tstep∫
t=0

εαStep dt (24)

where αstep indicates the step-length parameter, α0 represents the initial value, εαStep indi-
cates the white noise, and ∆Tstep represents the step interval.

The initial bias of the low-cost barometer is influenced by the cumulative error and
environmental factors, such as temperature and humidity. In proposed SM-WRFS, a
novel height-related zero-velocity update technology (H-ZUPT) is proposed to enhance
the performance of the speed estimation error in the z-axis. Instead of detecting the
quasi-static (QS) period by the acceleration or gyroscope angular rate data, the pressure
change information and radio-frequency (RF)-based observations are adopted to detect the
height-related QS period:

1
N

N

∑
k=1

(
‖pb

k − pb
average‖

2

ζ2
p

+
‖ub

k − ub
k−1‖

2

ζ2
u

) < ξ (25)

where pb
average indicates the mean value of real-time measured pressure data in a slide

window of length N, ζ2
p is the measured noise, ub

k indicates the RF reported floor, and ζ2
u is

RF-based measured noise. When the height-related QS period is detected, the state update
model of altitude and related bias information can be modeled as [27]:[ .

h
.
bh

]
=

[
wh

− 1
τbh

bh + υbh

]
(26)

where wh indicates the state noise for the altitude update, τbh
and υbh

represent the correla-
tion time and the driving noise of the random walk process.

During the detected height-related QS periods, the measured model for the H-ZUPT
based altitude update is described as:

h̃b − ĥ0 = δh + bh + nhb
(27)

where h̃b is the barometer measured altitude and ĥ0 is extracted from the first epoch of
each detected height-related QS period. In these detected QS periods, the ideal observed
value is always regarded as zero when the pedestrian remains static or moves among the
same floor, and the change of altitude at the detected height-related QS period is caused
by the bias of barometer. By using the above equation, the bias of barometer originated
altitude estimation is estimated in real-time, and provides feedback to the original altitude
estimation result h̃b

calibrated = h̃b − bh, thus the barometer-calculated altitude information
can autonomously be calibrated by the proposed model.

3.2. Self-Calibration Model of Wi-Fi Ranging

The deviation of different intelligent terminals and Wi-Fi APs leads to various ranging
biases. In this work, the bias of Wi-Fi ranging is calibrated to constrain the influences of
mobile terminals deviations. We divide the calibration cases into dynamic and static scenes,
during the static periods in the pedestrian’s initial walking procedure, the Gradient-Descent
(GD)-based ranging bias calibration algorithm is proposed to estimate high-precision initial
ranging bias. The QS periods are recognized using the collected inertial sensors data [29]:

1
N

N

∑
k=1

(
‖fb

k − gn‖2

ζ2
f

+
‖ωk

g‖
2

ζ2
w

) < Ω (28)
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where N represents the length of sliding window, fb
k andωk

g indicate the measured accel-
eration and angular velocity data at epoch k, ζ2

f and ζ2
f represent the measured noises of

accelerometer and gyroscope, and Ω is the set threshold.
Once the QS periods are recognized, the least square (LS) algorithm is applied to

acquire the location of the pedestrian based on the real-time RTT measurements [17]:

PRTT = (ATA)
−1

ATB (29)

where PRTT is the optimal position of the users, and the matrix A and B are described as:

A = 2 ·


(PAP(2) − PAP(1))

T

...
(PAP(N) − PAP(1))

T

 (30)

B =


‖PAP(2)‖

2 − ‖PAP(1)‖
2 − (Lraw(2) − dbias)

2 + (Lraw(1) − dbias)
2

...
‖PAP(N)‖

2 − ‖PAP(1)‖
2 − (Lraw(N) − dbias)

2 + (Lraw(1) − dbias)
2

 (31)

where PAP(N) indicates the position of the selected Wi-Fi AP, Lraw(N) represents the measured
RTT value, dbias is the RTT bias that exists among the smartphone and Wi-Fi AP.

Under ideal circumstances, the position of the pedestrian remains theoretically un-
changed in the detected QS periods. Thus, the differences between the estimated positions
during each detected QS period approximately equals zero, and the GD-based RTT bias
optimization model is presented as:

h(x) =
M−1

∑
i=1

M−1

∑
j=i
‖Pj+1

RTT − Pi
RTT‖

2

(32)

where x represents the RTT bias, and M indicates the collected Wi-Fi-FTM-based positioning
results during the detected QS period using the LS algorithm, the difference between each
estimated location is cumulated to obtain the optimal bias value. The loss function is
presented as:

L(x̂) = (v− h(x̂))TR−1(v− h(x̂)) (33)

Because the optimization model is not linear, Taylor series are applied to linearize the
proposed model:

v = h(x) +ω

= h(x̂) + dh(x)
dx

∣∣∣
x=x̂

(x− x̂) + 1
2!

d2h(x)
dx2

∣∣∣
x=x̂

(x− x̂)2 + · · ·+ω

≈ h(x̂) + dh(x)
dx

∣∣∣
x=x̂

(x− x̂) +ω

= h(x̂) + Hδx +ω

(34)

where δx is the deviation of state value and observed value, and H indicates the Jacobian
matrix. The relationship between observation and prediction vectors is shown as:

v− h(x̂) = Hδx +ω (35)

The final expression of δx can be obtained as:

δx = (HTR−1H)
−1

HTR−1δv (36)
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Non-linear least squares need to iterate the above process until the state estima-
tion error is lower than the threshold. In general, the nonlinear least squares update is
described as:

x̂γ = x̂γ−1 + δx̂γ−1 (37)

where γ represents the number of iterations, and the optimal bias value can be obtained if
L(x̂) reaches the specified value.

In a dynamic scene, the result provided by the GD algorithm can be served as the
initial ranging bias if the initial QS period is detected, and the Wi-Fi ranging bias in a
dynamic case is modeled as the random walk process, which can feedback in real-time to
obtain better calibration and integration performance:

.
bRTT = −(1/τbRTT )bRTT + εbRTT (38)

where bRTT indicates the Wi-Fi ranging bias, and εbRTT is the white noise. The RTT-bias-
based error model is described as:

δ
.

XW = FWδXW + GWεW (39)

where δXW = bRTT, FW = 0, GW = 1, and εW = εbRTT .

3.3. Self-Calibrated Integration Model Based on AEKF

In this section, the AEKF is adopted to realize a concrete and accuracy framework for
multi-source integration. The system model in AEKF uses the MEMS-sensor-based method
which is proposed in Section 2. In this section, a universal and self-calibrated integration
structure using Wi-Fi FTM, RSSI fingerprinting, and low-cost sensors is proposed.

The state vector of multi-source integration and calibration model is described as:

Xt
total = [rt

x, rt
y, rt

z, θt, αt
step, bt

θ , bt
h, bt

RTT ]
T (40)

where rt
x, rt

y, and rt
zrt

z indicate the updated 3D position of the pedestrian at the current
moment t, θt represents the calculated real-time heading, bt

θ , bt
h, and bt

RTT indicate the
heading bias, altitude bias, and Wi-Fi ranging bias, and αt

step is the step-length parameter.

The total self-calibrated state update model f (Xt+1
total) can be described as:

f (Xt+1
total) =



rt
x + cos θt · L(αt

step)

rt
y + sin θt · L(αt

step)

rt
z + ∆ht − bt

h
θt + ∆Tgyro · bt

θ
α0 + exp(−∆Tstep/τα) · αt

step
exp(−∆Tgyro/τbθ

) · bt
θ

exp(−∆Tbaro/τbh
) · bt

h
b0

RTT + exp(−∆TRTT/τbRTT ) · b
t
RTT

(41)

where bt
θ , bt

h, and bt
RTT indicate the heading bias, altitude bias and Wi-Fi ranging bias,

∆Tstep is the step interval, ∆Tgyro, ∆Tbaro, and ∆TRTT represent the sampling interval of
gyroscope, barometer, and Wi-Fi RTT. τα, τbθ

, τbh
, τbRTT are the correlation times of step,

heading, altitude, and RTT. L(αt
step) indicates the calibrated step-length.



Remote Sens. 2022, 14, 5376 12 of 20

The integration structure in this work includes two types: the tightly coupled position-
ing method and the loosely coupled positioning method. Under the Wi-Fi FTM covered
indoor scenes, the observed Wi-Fi ranging is presented as:

δZRTT =


δz1,range
δz2,range

...
δzm,range

 =


dMEMS,1 − dFTM,1
dMEMS,2 − dFTM,2

...
dMEMS,m − dFTM,m

 (42)

where δzm,range represents the observation residuals among Wi-Fi RTT and MEMS sensors-
provided distance measurements; The MEMS-sensor-based distance observation dMEMS,m
is described as follow:

dMEMS,m =
√
(Ek

MEMS
− PE

m)
2
+ (Nk

MEMS
− PN

m )
2 (43)

where (Ek
MEMS, Nk

MEMS) represents the MEMS-sensors-originated location information,
and (Pm

E, Pm
N) represents the position of the mst Wi-Fi AP.

The overall measured distance using Wi-Fi RTT protocol can be modeled as:

dFTM,m = Lraw − bRTT − vRTT (44)

For the Wi-Fi FTM ranging bias self-calibration, the real-time estimated ranging bias
bRTT is provided feedback by the above equation and the final calibrated ranging result
dFTM,m is further served as the observation in Equation (38) to obtain the optimal estimation
results of the state vector.

For normal indoor scenes that do not cover the Wi-Fi ranging protocol supported APs,
the crowdsourced Wi-Fi-RSSI-fingerprinting-based loosely coupled positioning method is
adopted to provide a universal positioning solution by integrating with MEMS sensors.
The observed model of RSSI fingerprinting is presented as:{

δzn
p = pn

rssi − pn
MEMS

δzn
v = vn

rssi − vn
MEMS

(45)

where pn
rssi and vn

GNSS indicate the acquired Wi-Fi RSSI fingerprint provided location and
velocity results under the navigation system, pn

MEMS
and vn

MEMS
are the MEMS-sensor-based

results by which pn
MEMS

=
[
rt

x, rt
y, rt

z

]
is calculated in Equation (37), and vn

rssi and vn
MEMS

are
calculated as follows:  vn

rssi =
pn

rssi
(t)−pn

rssi(t−1)
∆Trssi

vn
MEMS

=
pn

MEMS
(t)−pn

MEMS
(t−1)

∆TL

(46)

where vn
rssi and vn

MEMS
are calculated using the time difference of locations changes provided

by the Wi-Fi fingerprinting and MEMS sensors, respectively. ∆Trssi and ∆TL indicate the
update rates of Wi-Fi fingerprinting and MEMS-sensor-based step detection.

4. Experimental Results of SM-WRFS

To estimate the precision of proposed SM-WRFS, comprehensive experiments are
presented in this work. The results also aim to estimate the precision of crowdsourced
trajectory optimization and the navigation database generation algorithm, and the self-
calibrated integration framework. A complex office building which contains multiple
floors was adopted as the experimental site, as described in Figure 4. Several QR codes
were deployed at points A, C, J, K, M, and R. The Intel 8260AC integrated Wi-Fi APs
were applied to provide FTM function. Google Pixel 3 and Pixel 4 were adopted as the
tracking terminals, which support the Wi-Fi FTM protocol and integrate rich sensors. The
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sampling rates of Wi-Fi FTM, RSSI fingerprinting and low-cost sensors were 5 Hz, 0.3 Hz
and 50 Hz, respectively.
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4.1. Performance Estimation of the Forward Localization and Trajectory Optimization

The accuracy of crowdsourced trajectories proved to have significant effects during
the on-line phase of Wi-Fi fingerprinting. To estimate the accuracy of EKF-based forward
localization and backward smoothing, the pedestrian began at point A, passed point B, C, D,
K, L, M, N, O, K, D, C, E, B, and finally walked back to point A. The QR codes deployed at
A, C, K and M were applied in this case. The performance comparison between EKF-based
3D forward localization and backward smoothing is shown in Figure 5.
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Figure 5 demonstrates that the proposed EKF-based backward smoothing algorithm
further improves the accuracy of the proposed crowdsourced forward trajectory; the
comparison of estimated accuracy on the reference points is described in Figure 6.
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It can be seen in Figure 6 that the proposed backward EKF effectively improves the
performance of forward trajectories, and the average positioning error decreased from
2.4 m to 1.2 m.

4.2. Performance Estimation of the Crowdsourced Navigation Database Generation

In our paper, a deep-learning based model is developed to independently estimate the
positioning error of crowdsourced trajectories. The training dataset is collected in different
indoor environments, and the ground-truth trajectory is provided by the total station with
centimeter-level accuracy. The performance comparison between forward-EKF trajectory,
backward-EKF trajectory, and ground-truth trajectory is described in Figure 7.
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In this work, the 1D-CNN-based crowdsourced trajectory evaluation algorithm is
proposed for the positioning error evaluation during each step. The proposed 1D-CNN
model contains two phases; in the training phase, the extracted feature from optimized
crowdsourced trajectories is modeled as the input vector and the ground-truth positioning
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error during each step period is modeled as the output vector. After the training phase, the
optimal parameter of 1D-CNN can be acquired. During the prediction phase, the ground-
truth positioning error is not required, only the input vector provided by the extracted
feature from optimized crowdsourced trajectories is needed for trained 1D-CNN, and the
positioning error under each step period can be autonomously predicted by the trained
1D-CNN model. In this case, the open-source dataset provided by IPIN-2020 Track 3 [33]
is generated for the training purposes of the proposed 1D-CNN-based crowdsourced
trajectories error prediction model, then the trained model is applied to autonomously
predict the positioning error during each step period of collected crowdsourced trajectories;
the comparison between the predicted positioning error and ground-truth positioning error
at each step is presented in Figure 8.
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Figure 8 shows that the proposed deep-learning based trajectory evaluation algorithm
achieved meter-level error prediction accuracy, and the proposed 1D-CNN structure is
compared with state-of-art long short-term memory (LSTM) [34] and multilayer perceptron
(MLP) network [35], and the error prediction comparison results are described in Figure 9.
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Figure 9 indicates that the proposed 1D-CNN model proves to have a much better per-
formance compared with the MLP and LSTM networks, and the error prediction accuracies
of the three algorithms were 0.71 m, 0.84 m, and 0.95 m in case of 75%, respectively.

In this work, the crowdsourced Wi-Fi fingerprinting database was generated by col-
lecting the daily-life trajectories provided by 25 different users and the overall number of
56 trajectories were collected and the raw RSSI vector was further weighted according to
the 1D-CNN-based trajectory error prediction results in order to generate the final crowd-
sourced database. To evaluate the performance of crowdsourced Wi-Fi fingerprinting and
calculation efficiency of the final generated crowdsourced navigation database, the pro-
posed deep-learning approach was compared with the state-of-art database establishment
(DE) method proposed in [23]. Four Indexes are compared, including k-nearest-neighbor-
based positioning precision in 75% (KNN-P), the capacity of generated crowdsourced
fingerprinting database (C-CFD), the calculation time of KNN (KNN-T), and the crowd-
sourced trajectory optimization error in 75% (CT-OPE); the comparison results are described
in Table 1.

Table 1. Comparison of Database Generation Methods.

Model

Index
KNN-P C-CFD KNN-T CT-OPE

SL-WRFS 5.2 m 150 14.89 ms 1.375 m
DE [20] 6.1 m 200 20.11 ms 1.369 m

Table 1 describes the main indexes of two database generation methods. The pro-
posed SL-WRFS proves to have a higher localization accuracy within 5.2 m in 75%, and
smaller database capacity and calculation time, and the two algorithms show the similar
trajectory optimization error within 1.375 m and 1.369 m in 75%, respectively. Thus, the
proposed deep-learning-based navigation database generation algorithm presents a better
performance compared with the quality assessment criteria proposed in [23].

4.3. Performance Estimation of SM-WRFS

The performance of SM-WRFS is evaluated based on a comprehensive 3D indoor
scene shown in Figure 4, in which the crowdsourced Wi-Fi fingerprinting database was
constructed using the deep-learning model. To estimate the performance of RTT bias self-
calibration, the tester walked around the office scene which is covered by the Wi-Fi-FTM-
based location sources, and the RTT bias calibration results using different smartphones
are shown in Figure 10.
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Figure 10 shows that the estimated RTT biases under different smartphones gradually
converge at −1.3 m and −1.4 m with the procedure of multi-source fusion in the office
scene. In addition, the static polynomial fitting method applied in [15] is applied as the
comparison, which obtains the RTT biases of−1.25 m and−1.35 m, similar to the calibration
algorithm in our work.

In the final experiment, the pedestrian walked past the Wi-Fi fingerprinting and
ranging covered indoor areas, and the self-calibrated integration model is proposed to
achieve real-time 3D localization. The walking route of the tester started with point A,
passed by points B, E, F, G, H, I, F, G, H, I, F, J, E, C, D, K, O, N, M, P, O, R, Q, P, K, D, C,
E, and B, and returned to point A. The calibration performance of the proposed H-ZUPT
algorithm is shown in Figure 11.
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Figure 11 shows that a large improvement is realized by the proposed H-ZUPT
algorithm, and the 3D localization comparison between forward-EKF without the self-
calibration algorithm, and Wi-Fi fingerprinting, Wi-Fi FTM triangulation, and self-calibration
algorithm assisted SM-WRFS is shown in Figure 12.
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It can be seen in Figure 12 that the proposed forward-EKF also exists in the cumulative
error, while the proposed SM-WRFS effectively increases the robustness of the multi-floor
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localization. The positioning error comparison results between forward-EKF and the final
self-calibrated model SM-WRFS are described in Figure 13.
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Figure 13 describes the positioning errors comparison under complex 3D indoor
environments using uncalibrated forward-EKF model and final self-calibrated model SM-
WRFS which reach 3.18 m in 75% and 2.19 m in 75%, respectively.

Finally, the proposed SM-WRFS structure is compared with two state-of-art positioning
algorithms in the office scene and 3D corridor scene, in which the Kalman-filter-based
RTT and PDR fusion algorithm (KRP) [17] and unscented Kalman-filter-based multi-source
fusion algorithm (DRWMs) [36] are compared in the office scene, and the multi-sensor
multi-floor system (MSS) [27] and cross-layer positioning method (CPM) [37] are compared
in the corridor scene. The staircase under the corridor scene almost does not exist in the
fingerprinting database coverage due to the distribution characteristics of deployed local
Wi-Fi APs. The accuracy comparison of 2D localization and altitude estimation are shown
in Figure 14.
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Figure 14 proves that the proposed SM-WRFS achieves a more accurate 2D positioning
and altitude estimation accuracy in different positioning scenes. In the office scene, the
positioning error of SM-WRFS reaches 1.22 m in 75%, compared with 1.44 m of KRP in
75%, and 1.47 m of DRWMs in 75%; in the corridor scene, the 2D positioning errors of the
proposed SM-WRFS, KRP, and CPM are 2.36 m, 3.12 m, and 3.23 m in 75%, respectively, and
the positioning accuracy of SM-WRFS is maintained in the staircase under corridor scene
with nearly no database coverage, and the altitude estimation errors are similar, which
were 0.44 m, 0.45 m, and 0.48 m in 75%, respectively.
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5. Conclusions

The performance of crowdsourcing-based multi-floor indoor positioning is subject to
cumulative error, hardware deviation and environmental interference. To solve these prob-
lems, this paper presents the SM-WRFS framework, which includes following contributions:

(1) The EKF-based forward localization and backward smoothing using QR codes based
landmarks, and the accuracy of optimized trajectories are autonomously evaluated by the
deep-learning based error prediction algorithm for the navigation database generation.

(2) The localization parameters, such as step-length scale factor, heading and altitude
biases, and Wi-Fi ranging bias are calibrated in real-time to eliminate the cumulative
error and hardware deviation effects of multi-source fusion.

(3) Two different integration models are proposed, aiming at providing more accurate
and universal multi-floor indoor localization performance. The designed experiments
achieve a 2D localization error lower than 1.22 m in the office scene and 2.36 m in the
corridor scene, respectively.

Author Contributions: This paper is a collaborative work by all the authors. Y.Y. proposed the idea
and implemented the system. Q.W. and X.D. performed the experiments, analyzed the data, and
wrote the manuscript. R.C. and L.C. aided in proposing the idea, provided suggestions, and revised
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Funding: This work was supported by The Hong Kong Polytechnic University (1-ZVN6, 4-BCF7);
The State Bureau of Surveying and Mapping, P.R. China (1-ZVE8); and Hong Kong Research Grants
Council (T22-505/19-N).

Data Availability Statement: Data sharing is not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, H.; Darabi, H.; Banerjee, P.; Liu, J. Survey of wireless indoor positioning techniques and systems. IEEE Trans. Syst. Man

Cybern. Part C (Appl. Rev.) 2007, 37, 1067–1080. [CrossRef]
2. Ruizhi, C.; Liang, C. Indoor Positioning with Smartphones: The State-of-the-art and the Challenges. Acta Geod. Cartogr. Sin. 2017,

46, 1316.
3. Zhang, D.; Liu, Y.; Guo, X.; Gao, M.; Ni, L.M. On distinguishing the multiple radio paths in rss-based ranging. In Proceedings of

the 2012 Proceedings IEEE INFOCOM., Orlando, FL, USA, 25–30 March 2012; pp. 2201–2209.
4. He, Z.; Ma, Y.; Tafazolli, R. Improved high resolution TOA estimation for OFDM-WLAN based indoor ranging. IEEE Wirel.

Commun. Lett. 2013, 2, 163–166. [CrossRef]
5. Suraweera, N.; Li, S.; Johnson, M.; Collings, I.B.; Hanly, S.V.; Ni, W.; Hedley, M. Environment-Assisted Passive WiFi Tracking

With Self-Localizing Asynchronous Sniffers. IEEE Syst. J. 2020, 14, 4798–4809. [CrossRef]
6. Zafari, F.; Gkelias, A.; Leung, K.K. A survey of indoor localization systems and technologies. IEEE Commun. Surv. Tutor. 2019, 21,

2568–2599. [CrossRef]
7. Wang, X.; Gao, L.; Mao, S.; Pandey, S. CSI-based Fingerprinting for Indoor Localization: A Deep Learning Approach. IEEE Trans.

Veh. Technol. 2016, 66, 763–776. [CrossRef]
8. Zhuang, Y.; Yang, J.; Qi, L.; Li, Y.; Cao, Y.; El-Sheimy, N. A Pervasive Integration Platform of Low-Cost MEMS Sensors and

Wireless Signals for Indoor Localization. IEEE Internet Things J. 2017, 5, 4616–4631. [CrossRef]
9. Li, Y.; He, Z.; Gao, Z.; Zhuang, Y.; Shi, C.; El-Sheimy, N. Toward Robust Crowdsourcing-Based Localization: A Fingerprinting

Accuracy Indicator Enhanced Wireless/Magnetic/Inertial Integration Approach. IEEE Internet Things J. 2018, 6, 3585–3600.
[CrossRef]

10. Zhuang, Y.; El-Sheimy, N. Tightly-Coupled Integration of WiFi and MEMS Sensors on Handheld Devices for Indoor Pedestrian
Navigation. IEEE Sens. J. 2015, 16, 224–234. [CrossRef]

11. Li, Y.; Zhuang, Y.; Zhang, P.; Lan, H.; Niu, X.; El-Sheimy, N. An improved inertial/wifi/magnetic fusion structure for indoor
navigation. Inf. Fusion 2017, 34, 101–119. [CrossRef]

12. Chen, Z.; Zou, H.; Yang, J.; Jiang, H.; Xie, L. WiFi Fingerprinting Indoor Localization Using Local Feature-Based Deep LSTM.
IEEE Syst. J. 2019, 14, 3001–3010. [CrossRef]

13. IEEE Std 802.11-2016; IEEE Standard for Information Technology-Telecommunications and Information Exchange between
Systems-Local and Metropolitan Area Networks-Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Specifications. IEEE Computer Society LAN/MAN Standards Committee: Manhattan, NY, USA, 2016.

http://doi.org/10.1109/TSMCC.2007.905750
http://doi.org/10.1109/WCL.2012.122612.120802
http://doi.org/10.1109/JSYST.2019.2960510
http://doi.org/10.1109/COMST.2019.2911558
http://doi.org/10.1109/TVT.2016.2545523
http://doi.org/10.1109/JIOT.2017.2785338
http://doi.org/10.1109/JIOT.2018.2889303
http://doi.org/10.1109/JSEN.2015.2477444
http://doi.org/10.1016/j.inffus.2016.06.004
http://doi.org/10.1109/JSYST.2019.2918678


Remote Sens. 2022, 14, 5376 20 of 20

14. Ibrahim, M.; Liu, H.; Jawahar, M.; Nguyen, V.; Gruteser, M.; Howard, R.; Yu, B.; Bai, F. Verification: Accuracy evaluation of WiFi
fine time measurements on an open platform. In Proceedings of the 24th Annual International Conference on Mobile Computing
and Networking, New Delhi, India, 29 October–2 November 2018; pp. 417–427.

15. Yu, Y.; Chen, R.; Liu, Z.; Guo, G.; Ye, F.; Chen, L. Wi-Fi Fine Time Measurement: Data Analysis and Processing for Indoor
Localisation. J. Navig. 2020, 73, 1106–1128. [CrossRef]

16. Sun, M.; Wang, Y.; Huang, L.; Xu, S.; Cao, H.; Joseph, W.; Plets, D. Simultaneous WiFi Ranging Compensation and Localization
for Indoor NLoS Environments. IEEE Commun. Lett. 2022, 26, 2052–2056. [CrossRef]

17. Liu, X.; Zhou, B.; Huang, P.; Xue, W.; Li, Q.; Zhu, J.; Qiu, L. Kalman Filter-Based Data Fusion of Wi-Fi RTT and PDR for Indoor
Localization. IEEE Sens. J. 2021, 21, 8479–8490. [CrossRef]

18. Choi, J.; Choi, Y.S. Calibration-free positioning technique using Wi-Fi ranging and built-in sensors of mobile devices. IEEE Internet
Things J. 2020, 8, 541–554. [CrossRef]

19. Zhou, M.; Li, Y.; Wang, Y.; Pu, Q.; Yang, X.; Nie, W. Device-to-Device Cooperative Positioning via Matrix Completion and Anchor
Selection. IEEE Internet Things J. 2021, 9, 5461–5473. [CrossRef]

20. Zhuang, Y.; Li, Y.; Lan, H.; Syed, Z.; El-Sheimy, N. Wireless Access Point Localization Using Nonlinear Least Squares and
Multi-Level Quality Control. IEEE Wirel. Commun. Lett. 2015, 4, 693–696. [CrossRef]

21. Chang, K.; Han, D. Crowdsourcing-based radio map update automation for Wi-Fi positioning systems. In Proceedings of the
3rd ACM SIGSPATIAL International Workshop on Crowdsourced and Volunteered Geographic Information, Dallas TX, USA,
4 November 2014; pp. 24–31.

22. Ju, H.; Park, S.Y.; Park, C.G. A smartphone-based pedestrian dead reckoning system with multiple virtual tracking for indoor
navigation. IEEE Sens. J. 2018, 18, 6756–6764. [CrossRef]

23. Zhang, P.; Chen, R.; Li, Y.; Niu, X.; Wang, L.; Li, M.; Pan, Y. A Localization Database Establishment Method Based on Crowdsourc-
ing Inertial Sensor Data and Quality Assessment Criteria. IEEE Internet Things J. 2018, 5, 4764–4777. [CrossRef]

24. Zhuang, Y.; Syed, Z.; Li, Y.; El-Sheimy, N. Evaluation of Two WiFi Positioning Systems Based on Autonomous Crowdsourcing of
Handheld Devices for Indoor Navigation. IEEE Trans. Mob. Comput. 2015, 15, 1982–1995. [CrossRef]

25. Liu, T.; Kuang, J.; Ge, W.; Zhang, P.; Niu, X. A Simple Positioning System for Large-Scale Indoor Patrol Inspection Using
Foot-Mounted INS, QR Code Control Points, and Smartphone. IEEE Sens. J. 2020, 21, 4938–4948. [CrossRef]

26. Chen, R.; Pei, L.; Chen, Y. A smart phone based PDR solution for indoor navigation. In Proceedings of the 24th International
Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2011), Portland, OR, USA, 20–23 September
2011; pp. 1404–1408.

27. Li, Y.; Gao, Z.; He, Z.; Zhang, P.; Chen, R.; El-Sheimy, N. Multi-Sensor Multi-Floor 3D Localization With Robust Floor Detection.
IEEE Access 2018, 6, 76689–76699. [CrossRef]

28. Pei, L.; Liu, N.; Zou, D.; Choy, R.L.F.; Chen, Y.; He, Z. Optimal Heading Estimation Based Multidimensional Particle Filter for
Pedestrian Indoor Positioning. IEEE Access 2018, 6, 49705–49720. [CrossRef]

29. Kuang, J.; Niu, X.; Chen, X. Robust Pedestrian Dead Reckoning Based on MEMS-IMU for Smartphones. Sensors 2018, 18, 1391.
[CrossRef]

30. Available online: https://www.the-qrcode-generator.com (accessed on 1 September 2022).
31. Wu, Y.; Chen, R.; Li, W.; Yu, Y.; Zhou, H.; Yan, K. Indoor Positioning Based on Walking-Surveyed Wi-Fi Fingerprint and Corner

Reference Trajectory-Geomagnetic Database. IEEE Sens. J. 2021, 21, 18964–18977. [CrossRef]
32. Wang, X.; Mao, D.; Li, X. Bearing fault diagnosis based on vibro-acoustic data fusion and 1D-CNN network. Measurement 2020,

173, 108518. [CrossRef]
33. Potortì, F.; Torres-Sospedra, J.; Quezada-Gaibor, D.; Jiménez, A.R.; Seco, F.; Pérez-Navarro, A.; Ortiz, M.; Zhu, N.; Renaudin,

V.; Ichikari, R.; et al. Off-line evaluation of indoor positioning systems in different scenarios: The experiences from IPIN 2020
competition. IEEE Sens. J. 2021, 22, 5011–5054. [CrossRef]

34. Liu, Z.; Shi, W.; Yu, Y.; Chen, P.; Chen, B.Y. A LSTM-based approach for modelling the movement uncertainty of indoor trajectories
with mobile sensing data. Int. J. Appl. Earth Obs. Geoinf. ITC J. 2022, 108, 102758. [CrossRef]

35. Yu, Y.; Chen, R.; Chen, L.; Li, W.; Wu, Y.; Zhou, H. H-WPS: Hybrid Wireless Positioning System Using an Enhanced Wi-Fi
FTM/RSSI/MEMS Sensors Integration Approach. IEEE Internet Things J. 2022, 9, 11827–11842. [CrossRef]

36. Yu, Y.; Chen, R.; Chen, L.; Guo, G.; Ye, F.; Liu, Z. A Robust Dead Reckoning Algorithm Based on Wi-Fi FTM and Multiple Sensors.
Remote Sens. 2019, 11, 504. [CrossRef]

37. Hao, Z.; Dang, J.; Cai, W.; Duan, Y. A Multi-Floor Location Method Based on Multi-Sensor and WiFi Fingerprint Fusion. IEEE
Access 2020, 8, 223765–223781. [CrossRef]

http://doi.org/10.1017/S0373463320000193
http://doi.org/10.1109/LCOMM.2022.3187208
http://doi.org/10.1109/JSEN.2021.3050456
http://doi.org/10.1109/JIOT.2020.3004774
http://doi.org/10.1109/JIOT.2021.3109291
http://doi.org/10.1109/LWC.2015.2483509
http://doi.org/10.1109/JSEN.2018.2847356
http://doi.org/10.1109/JIOT.2018.2817599
http://doi.org/10.1109/TMC.2015.2451641
http://doi.org/10.1109/JSEN.2020.3030934
http://doi.org/10.1109/ACCESS.2018.2883869
http://doi.org/10.1109/ACCESS.2018.2868792
http://doi.org/10.3390/s18051391
https://www.the-qrcode-generator.com
http://doi.org/10.1109/JSEN.2021.3086485
http://doi.org/10.1016/j.measurement.2020.108518
http://doi.org/10.1109/JSEN.2021.3083149
http://doi.org/10.1016/j.jag.2022.102758
http://doi.org/10.1109/JIOT.2021.3132023
http://doi.org/10.3390/rs11050504
http://doi.org/10.1109/ACCESS.2020.3039394

	Introduction 
	Low-Cost-Sensor-Based 3D Indoor Localization and Navigation Database Generation 
	Low-Cost-Sensor-Based Localization and Optimization 
	Crowdsourced Fingerprinting Database Generation 

	Self-Calibrated Integration Model and Multi-Source Fusion Framework 
	Self-Calibration Model of Step-Length and Altitude 
	Self-Calibration Model of Wi-Fi Ranging 
	Self-Calibrated Integration Model Based on AEKF 

	Experimental Results of SM-WRFS 
	Performance Estimation of the Forward Localization and Trajectory Optimization 
	Performance Estimation of the Crowdsourced Navigation Database Generation 
	Performance Estimation of SM-WRFS 

	Conclusions 
	References

