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Abstract: The vast digital archives collected by optical remote sensing observations over a long
period of time can be used to determine changes in the land surface and this information can be very
useful in a variety of applications. However, accurate change extraction requires highly accurate
image-to-image registration, which is especially true when the target is urban areas in high-resolution
remote sensing images. In this paper, we propose a new method for automatic registration between
images that can be applied to noisy images such as old aerial photographs taken with analog film,
in the case where changes in man-made objects such as buildings in urban areas are extracted from
multitemporal high-resolution remote sensing images. The proposed method performs image-to-
image registration by applying template matching to road masks extracted from images using a
two-step deep learning model. We applied the proposed method to multitemporal images, including
images taken more than 36 years before the reference image. As a result, the proposed method
achieved registration accuracy at the subpixel level, which was more accurate than the conventional
area-based and feature-based methods, even for image pairs with the most distant acquisition times.
The proposed method is expected to provide more robust image-to-image registration for differences
in sensor characteristics, acquisition time, resolution and color tone of two remote sensing images,
as well as to temporal variations in vegetation and the effects of building shadows. These results
were obtained with a road extraction model trained on images from a single area, single time period
and single platform, demonstrating the high versatility of the model. Furthermore, the performance
is expected to be improved and stabilized by using images from different areas, time periods and
platforms for training.

Keywords: image-to-image registration; deep learning; template matching; high-resolution remote
sensing; aerial photograph

1. Introduction

Using the vast digital archives collected by optical remote sensing observations over a
long period of time, it is possible to obtain more quantitative information on changes in
land cover and land use. Especially in urban areas, new construction and loss of man-made
structures, mainly buildings, occur repeatedly and these changes are useful information
for predicting future land use [1], monitoring urban growth [2,3], performing disaster
assessment [4], updating maps [5–7] and so on. For example, since building damage
from earthquakes is related to the age of the building [8,9], if the age of buildings can be
estimated from data obtained by monitoring changes in buildings over time using optical
remote sensing, such data could be used to predict and analyze earthquake damage over a
wide area [8,9].

Algorithms for change detection from multitemporal high-resolution remote sensing
images can be broadly classified into two types: pixel-based and object-based. Pixel-based
methods extract changes in target objects by comparing pixel brightness values, gradients,
edges, etc., between images [10–13]. These methods are often applied to remote sensing
images with relatively low resolution. On the other hand, object-based methods extract
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changes in target objects by first extracting them from old and new images and then
comparing their spatial context, texture, shape, area, etc. [12–14]. Both pixel-based and
object-based methods require accurate registration between images to accurately extract
changes [15–17]. In particular, as the resolution of images becomes higher, the effect of
misalignment becomes more significant [15], requiring more accurate registration. Even
with object-based methods, which are said to be relatively robust against misalignment
compared to pixel-based methods, accurate image registration is important, because the
effect of misalignment becomes significant when the object size is small, as in the case of
buildings [15].

Image-to-image registration methods have long been a subject of active research and
various automated methods have been proposed. Image-to-image registration generally
consists of three steps: estimation of the amount of misalignment between images, esti-
mation of the transformation model, and image transformation. Among these, estimating
the amount of misalignment between images is the most difficult task and has been the
focus of research on image-to-image registration. In estimating misalignments, the analyst
often manually selects tie points, but this is time-consuming and labor-intensive and the
accuracy also depends on the analyst. Therefore, methods that automatically estimate the
amount of misalignment between images are useful and they can be broadly classified into
area-based and feature-based methods.

Area-based methods estimate the amount of misalignment based on the similarity
between two images. Simple methods use mean square error [18], normalized cross-
correlation [19], correlation coefficient [20], mutual information [21], etc., between pixel
values of two images. When subpixel-level accuracy is desired, frequency-domain char-
acteristics of the image may be used, such as phase-only correlation [22–26]. Note that
these area-based methods work well when the characteristics of the two images are close,
such as stereo images, but it is difficult to obtain reproducible results when the images
are taken using different sensors at different times and angles, as is often seen in remote
sensing. Feature-based methods, on the other hand, extract low-level features such as
edges and corners from images and use the correlation between these features to obtain
tie points. Typical methods [27–29] include those based on scale-invariant feature trans-
form (SIFT) [30] and histograms of oriented gradients (HOG) [31]. These methods, like
area-based methods, work well under limited conditions, but differences in image charac-
teristics may reduce their applicability when different sensors, shooting times and shooting
attitudes are used [32]. Especially in urban areas, buildings and their shadows are known
to have a significant impact on the accuracy of SIFT-based methods [33]. Furthermore, if
the boundaries of buildings and other 3D structures are adopted as feature points, they are
affected by geometric distortion.

For more robustness of feature-based methods, many methods have been proposed
to extract straight line segments from an image by edge extraction or Hough transform
and to obtain the amount of misalignment between images by matching between the
obtained straight line segments [34–36]. However, methods that use straight line segments
are more complicated than the aforementioned registration using tie points from low-
level features such as corners and edges, because it is difficult to match lines to lines.
An additional problem is that the performance of methods using straight line segments
is greatly affected by the quality of the line segments detected [34]. If the detected line
segment candidates contain many outliers, these methods are more likely to lead to incorrect
geometric transformation models [34].

Against this background, this paper proposes a new method of automatic subpixel
registration that can be applied to images that are noisy and have very different textures,
such as old aerial photographs taken with analog film, in the case of extracting changes in
man-made objects such as buildings in urban areas from multitemporal high-resolution
remote sensing images. The proposed method is a hybrid of area-based and feature-
based methods, in which roads in urban areas are extracted using a deep learning model
trained in two steps and the amount of misalignment is estimated by applying template
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matching between the obtained road mask images. Although it is difficult to apply this
method to cases where the road network changes significantly due to urban expansion or
redevelopment, if the road network as a whole has not changed significantly, it is expected
that this method can be used for highly accurate registration between images even if the
two images were acquired several decades apart by different instruments.

Section 2 describes the proposed method, the data used for validation and the valida-
tion method. Section 3 shows the validation results of the proposed method and Section 4
discusses its accuracy and practicality. Finally, in Section 5, we present our conclusions.

2. Materials and Methods
2.1. Proposed Method
2.1.1. Overview

The proposed method achieves high robustness and subpixel accuracy in performing
image-to-image registration for images that are taken with different sensors and in different
shooting seasons and have different resolution, especially images with large gaps between
shooting times and large differences in color tone as well as coverage and urban structure.
The novelty of the proposed method is that roads, which are artifacts that are widely and
permanently present in cities, are extracted with high accuracy and used as features for
registration. Although roads are often extended and widened as cities grow, their locations
as a whole undergo little change, except for large-scale redevelopment. In addition, since
roads are basically located at the same height as the ground surface, it is reasonable to use
them as features for registration, because the effect of geometric distortion, which is peculiar
to remote sensing, is small. Another feature of the proposed method is the versatility and
accuracy of road extraction by the use of a two-step noise-resistant deep neural network
(DNN) and open data. The training data do not require any manual modification, such as
cleaning, so they can be used immediately for real-world applications.

The proposed method consists of two parts: learning and registration. In the learning
part, a road extraction model is created by deep learning using remote sensing images
and corresponding road vector maps as training data. In the registration part, the road
extraction model described above is first applied to two remote sensing images (reference
and target) to generate road masks for each image. Then, the two resulting road mask
images are divided into grids and the amount of misalignment at the tie points is calculated
by applying template matching to each grid and registration between images is performed
based on the amount of misalignment. There is no problem even if the registration images
for the learning part and the reference/target remote sensing images for the registration
part have different platforms and shooting times, but the spatial resolution should be
consistent to some extent. In addition, although the learning must be performed before
the registration, the road extraction model does not need to run the learning part for every
registration because of its generalization performance. The overall process flow is shown
in Figure 1.

2.1.2. Road Extraction Model

The road extraction model of our method is based on U-Net [37], a type of fully
convolutional network (FCN) [38] that is a deep learning network mainly used in image
segmentation tasks. U-Net was proposed in 2015 for semantic segmentation of medical
images, but is currently applied in various fields.

U-Net is characterized by its symmetrical encoder–decoder configuration: the encoder
path repeats the 3 × 3 convolution and ReLU [39] twice and down-sampling at the max
pool is repeated four times. Each down-sampling halves the size of the feature map
and doubles the number of channels, while the decoder pass repeats the up-sampling
and 3 × 3 convolution four times. For each up-sampling, the size of the feature map is
doubled and the number of channels is halved. Finally, a 1 × 1 convolution is performed
to obtain per-pixel label predictions. A portion of the pre-down-sampled feature map in
the encoder pass is combined with the corresponding feature map in the decoder pass as
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skip connections. This allows the recovery of object location information while retaining
low-dimensional features in the decoder pass.

In this study, the following model based on the U-Net structure was adopted for road
extraction. The network architecture of the model is shown in Figure 2.
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• Input/output image values and size: The size of the input image of the model was
256 × 256. The number of input image channels was three RGB channels, assuming
the use of aerial color photographs from the past. On the other hand, the output
value of the model was the confidence value (0 to 1) for the estimation of the road
area (i.e., the number of channels is 1). Here, a higher value for confidence means a
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higher accuracy for the road. The output image was the same size as the input image
(256 × 256).

• Application of zero padding: The original U-Net reduces the output image size during
convolution and crops the center during skip connections, resulting in missing infor-
mation around the patch image. Therefore, in the road extraction model, zero padding
was applied so that the same size would be obtained before and after convolution.
This process enables feature extraction near the edge of the patch image by increasing
the number of convolutions for that edge.

• Modification of activation function: Since the original U-Net was intended for seg-
mentation, the activation function for the final layer is a pixel-wise soft-max function.
On the other hand, the road extraction model in this study uses a pixel-wise sigmoid
function as the activation function in the final layer, since it classifies two classes, road
and non-road.

• Addition of dropout: To suppress over-learning, dropouts [40] are added at lower
dimensional layers.

• Loss function: The road extraction model of the proposed method classifies each
pixel into two values, road or non-road, and generates a road mask image. Since
the percentage of road pixels in the image is very small, the commonly used mean
squared error (MSE), including the original U-Net, cannot be used as the loss function
in the segmentation task. If MSE were used, the learning would be dominated by the
non-road region, so the road region would not be output nearly as much. Therefore,
the road extraction model of the proposed method differentiates the loss weights
between road and non-road regions in order to be able to detect road regions. That
is, in each pixel of the patch image, a relatively large penalty is imposed on any
misinterpretation of roads by multiplying a weight greater than 1 for the loss when a
road is misinterpreted as non-road, as expressed by:

L =
k ∑m

i=1(1 − Cx)
2 + ∑n

i=1 Cy
2

m + n
(1)

where k is the weight (>0), m and n are the number of road and non-road pixels in the
training image, respectively, and Cx and Cy are the model outputs (confidence, 0–1)
for road and non-road pixels in the training image, respectively.

• Optimizers: Various optimizers have been proposed for finding the minimum loss
function. The simplest and most basic algorithm is stochastic gradient descent (SGD),
which has a constant learning rate and stable convergence results, which requires
heuristically setting the optimal learning rate. Most of the currently proposed opti-
mizers are extensions of SGD and one of the most widely used is adaptive moment
estimation (Adam) [41]. Adam achieves faster convergence by adjusting the learning
rate according to the magnitude and sum of gradients of each parameter. On the
other hand, since the variance of the learning rate becomes too large in the early
stages of learning, resulting in convergence to a local solution, this is mitigated by a
warm-up, which entails a low learning rate in the first few epochs [42–44]. However,
the hyperparameters of the warm-up need to be set heuristically. Therefore, the road
extraction model of the proposed method uses RAdam [45], an extension of Adam
that incorporates a mechanism to automatically suppress the variance of the adap-
tive learning rate. The main feature of RAdam is that it does not require heuristic
hyperparameter settings.

2.1.3. Training the Road Extraction Model

The training data for the road extraction model consisted of a set of remote sensing
images (RGB color images) and road mask images (binary images) in a given area. Here,
the road mask images were generated by raster transformation of a vector map of the road
centerline, which had the same area, size and resolution as the remote sensing image. The
width of the road centerline is constant regardless of the area and size of the road. Road
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boundary vector maps are also available, but unlike road centerline maps there is no open
and widely maintained database for road boundary maps. For this reason, road centerline
maps, which are readily available, were used.

However, road centerline maps that are freely available have many inconsistencies
with remote sensing images due to differences in maintenance periods, registration gaps
and ambiguities in acquisition criteria. In order to efficiently use such incomplete data
without processing, the road extraction model was trained in two steps.

In the first step, the model was trained using the aforementioned U-Net and training
data and in the second step the road mask was predicted and processed using the train-
ing data and the road extraction model learned in the first step and the road extraction
model was trained again using this as training data. In image processing, morphological
transformations (opening and closing) are performed to remove fine noise in road mask
images, and road pixels below a certain confidence level are set to zero. By training the
road extraction model in two steps, the quality of the training data and the accuracy of the
model are raised incrementally.

In order to control over-learning, data augmentation is performed by flipping left and
right, flipping up and down, changing gamma values and changing hue during model
training. In addition to the output value of the loss function described above, the accuracy
of the model was evaluated by the F1 score between pixels of the road mask image of
the validation data randomly separated from the training data and the road mask image
predicted from the remote sensing image of the validation data.

2.1.4. Road Mask Image Generation

Each road mask image is generated by cropping a 256 × 256 pixel chip image from the
two remote sensing images used as reference and target and inputting them into the road
extraction model. In order to suppress misclassification near the boundaries of the chip
images, the images were cropped while sliding them so that the regions would overlap and
the prediction results were assembled in the overlapping regions.

2.1.5. Tie Point Generation and Registration

Using the target and reference road mask images generated by the road extraction
model from two remote sensing images, tie points for image-to-image registration are
generated as follows. First, a sub-image is cropped from the target road mask image with
a fixed size, centered on an arbitrary coordinate (cropping center coordinate). The size
of the sub-image should be set at around 300 pixels square. Next, template matching is
applied to the cropped sub-image and reference road mask image to estimate the amount of
misalignment of the target road mask image in subpixel order (details given below). Then,
the coordinates of the cropping center as well as the cropping center plus the amount of
misalignment are recorded as a tie point. The above process is performed while sliding the
cropping center coordinates so that the sub-images overlap and the tie points are obtained
from the entire road mask image. However, since areas with few roads can generate
wrong tie points, outliers are removed from the obtained tie points using random sample
consensus (RANSAC) (details given below) [46].

Finally, image-to-image registration is performed by feeding the obtained tie point
data to a general geometric transformation method such as affine transformation.

(1) Tie point generation by template matching

The sum of absolute difference (SAD) [47] is used to generate tie points by estimating
the matching position of the target road mask image (sub-image) and the reference road
mask image centered on an arbitrary coordinate:

SAD
(
dx, dy

)
=

w−1

∑
x=0

h−1

∑
y=0

∣∣I(dx + x, dy + y
)
− T(x, y)

∣∣ (2)
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where dx and dy are scanning positions, T(x, y) and I(x, y) are the brightness values of the
target road mask sub-image and reference road mask image and w and h are the width and
height of the template.

For SAD, the scanning position (dx, dy) that shows the smallest value is the matching
point, but the position obtained is in pixel order. Therefore, in order to find the matching
point in subpixel order, equiangular line fitting [48] is performed, as shown in Equation (3):

dsub =


S(−1)− S(1)

2S(−1)− 2S(0)
(S(−1) ≥ S(1))

S(−1)− S(1)
2S(1)− 2S(0)

(S(−1) < S(1))
(3)

where S(0) is the minimum value of SAD, S(−1) and S(1) are similarity values for two
points near the origin in the X- or Y-axis direction and the value of dsub is in the range of
−0.5 to 0.5. By calculating dsub for the X-axis and Y-axis and adding it to dx and dy, the
match points of subpixel order can be obtained.

(2) Outlier removal by RANSAC

RANSAC is a method for extracting correct data from a set of data containing noise [46].
The procedure is as follows:

1. Extract n points at random from all tie points in the reference and target images.
2. Find the coefficients of affine transformation based on the extracted n points.
3. Perform affine transformation on all tie points in the target image using the coefficients

obtained in step 2 and calculate the error between obtained points and tie points in
the reference image; tie points with errors within the threshold and their points are
recorded as inliers.

4. Repeat steps 1 to 3 and adopt the set of inliers with the highest number of points as
the final tie points.

2.2. Study Area and Data Used
2.2.1. Study Area

The study area was selected from parts of Mito City and Hitachinaka City in Ibaraki
Prefecture, Japan (Figure 3). The two cities are located next to each other, about 100 km
northeast of Tokyo. The size of the study area is 202.637 square kilometers in Mito and
2.420 square kilometers in Hitachinaka. Both areas are predominantly residential, but also
include commercial and industrial areas, farmland, forests, rivers and so on.
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2.2.2. Remote Sensing Images

To validate the proposed method, aerial photographs from the Geospatial Information
Authority of Japan (GSI) and images from the WorldView-3 (WV-3) satellite were prepared
as remote sensing images (Table 1). Aerial photographs acquired after 2007 (referred to as
new-period aerial photos) were used for training and aerial photographs acquired from
1979 to 1983, 1984 to 1986 and after 2007 (referred to as old-period aerial photos 1 and 2
and new-period aerial photo, respectively) and WV-3 images acquired in 2019 were used
for testing. The details of each dataset are described below.

Table 1. Remote sensing images used for training and testing.

Image Period of Acquisition Area Used for

New-period aerial photo 2007– Mito
(202.637 km2) Training

Old-period aerial photo 1 1979–1983
Hitachinaka
(2.420 km2)

TestingOld-period aerial photo 2 1984–1986
New-period aerial photo 2007–

WV-3 image 6 June 2019

(1) Aerial photographs

By-period aerial photographs published by GSI as GSI Tiles were used in this study.
These comprise mosaicked and tile-distributed data for a fixed non-continuous period of
time (5-10 years) starting in 1928. Each tile consists of map data in the Mercator projection
system (EPSG 3857), divided into ranges corresponding to the zoom level, with the size
of a single tile being a uniform 256 × 256 pixels. The file format is JPEG or PNG. The
corresponding zoom level is defined within a range of 2 to 18 for each map type.

Old-period aerial photos were taken with analog film cameras and the maximum
zoom level for a tile is 17. New-period aerial photos are taken with digital cameras and the
maximum zoom level for a tile is 18. These images are geo-referenced orthoimages, but the
degree of geometric distortion of buildings varies by location. The zoom level of the old-
and new-period aerial photos used in this study was set to 17 to match the maximum zoom
level of the old-period aerial photos. The pixel spacing at zoom level 17 is about 1.19 m.

Figure 4 shows images of the old- and new-period aerial photos in the Hitachinaka
area and images cropped as samples. As shown in the figure, the two types of photos
have different tints and the resolution differs significantly even at the same zoom level. In
particular, the boundaries of buildings, roads and other structures in the old-period aerial
photos are ambiguous and, since the acquisition dates are more than 21 years before the new-
period aerial photo and 33 years before the WV-3 image, many geographic features have
changed. Therefore, it is not easy to manually obtain exact control points for registration.

(2) Optical satellite images

The WV-3 image used for evaluation was a pan-sharpened image with a resolution
of 0.3 m from the AW3D ortho-ready image product by the Remote Sensing Technology
Center of Japan (RESTEC) and NTT DATA Corp. The image was taken on 6 June 2019. The
viewing angle is 25.5◦ and buildings have some geometric distortion. The entire WV-3
image of the Hitachinaka area and the image cropped as a sample are shown in Figure 4.
Compared to the previously described aerial photos, the color and resolution of these
are similar to those of the new-period aerial photo. Since building boundaries and white
lines on the road can be identified, it is relatively easy to manually acquire control points.
However, care should be taken when using building boundaries as control points, since
AW3D ortho-ready images are not corrected for distorted buildings.
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(d) WV-3 image.

2.2.3. Road Centerline Vector Data

In this study, we used road centerline vector data (gis_osm_roads_free.shp) [49]
published in shapefile format from the Open Street Map (OSM) project as training data.
This road vector data comprises road centerlines, but arterial roads with two or more lanes
may be represented by multiple lines. In many cases, narrow roads are omitted. Note that
since OSM is a volunteer-based project, consistency in data preparation is not ensured.
Figure 5 shows the OSM road centerline vector map overlaid on the new period aerial
photo in the Mito area (an entire image and an enlarged image around the Mito Station).
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2.3. Validation Methodology
2.3.1. Preliminary Evaluation of Location Accuracy of Training Data

Before applying the proposed method, the positional accuracy of the training data was
evaluated in advance. First, the misalignment of the OSM road vector map was evaluated
by superimposing it on the road edges included in the GSI road map, one of the GSI base
maps. Then, the misalignment of the new-period aerial photo compared to the OSM road
vector map was evaluated by superimposing them.

2.3.2. Preliminary Evaluation of Learning Methods and Parameters Used in Road
Extraction Model

(1) Preliminary evaluation of loss function weight

To evaluate the effect of weight k of the loss function in Equation (1), learning was
conducted for 20 cases, from k = 1.0 to k = 20.0, in steps of 1.0 and the results were compared.
Here, for k = 1.0, the losses to detection errors on the road and the non-road are equivalent.
In this comparative evaluation, RAdam was used as the optimizer in all cases, dropout was
enabled and data augmentation was not performed. Table 2 shows the learning conditions.
The same conditions were used in the comparison and evaluations below.

Table 2. Learning conditions for road extraction model.

Condition Value

Number of training images 2848
Number of validation images 500

Batch size 8

(2) Comparison of optimizers

To evaluate the optimizers in learning, we applied three algorithms, SGD, Adam and
RAdam and compared the results. The hyperparameters of each algorithm are given in
Table 3; for Adam, the hyperparameter values from the original paper [41] were adopted.
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Table 3. Hyperparameters given to each optimizer.

Optimizer Hyperparameters

SGD Learning rate = 0.01, momentum = 0.0, decay = 0.0
Adam Learning rate = 0.001, bata1 = 0.9, bata2 = 0.999, decay = 0.0

RAdam N/A

In this comparative evaluation, weight k of the loss function was set to 10.0 for all
optimizers, dropout was enabled and no data augmentation was performed.

(3) Evaluation of the effectiveness of dropout

Dropout is considered effective for suppressing overlearning. Therefore, to evaluate
the effectiveness of dropout in this study, learning was conducted in two patterns, with and
without dropout, and the results were compared. In both cases, weight k of the loss function
was set to 10.0, the optimizer was RAdam and no data augmentation was performed in
the evaluation.

(4) Evaluation of the effectiveness of data augmentation

Data augmentation is also considered effective for suppressing overlearning. To
evaluate its effectiveness in this study, learning was conducted in two patterns, with
and without data augmentation, and the results were compared. In the case of data
augmentation, we randomly applied left-to-right and up-and-down flipping and gamma
value and hue changes to the input data (a new-period aerial photo and a patch image pair
of road mask images) during training. In all evaluations, the loss function weight k was set
to 10.0, the optimizer was RAdam and dropout was enabled.

2.3.3. Application and Evaluation of the Proposed Method

Using the learning methods and parameters that were found to be valid in Section 2.3.2,
the road extraction model was trained. In the Hitachinaka area, roads were extracted by
inputting the new-period aerial photo that was not used for training and the old-period
aerial photos and WV-3 images for testing into the road extraction model and the results
were qualitatively evaluated by visual inspection.

Tie points were generated and registered from the WV-3 image, old-period aerial
photos 1 and 2 and the new-period aerial photo using the proposed method and the results
were visually and qualitatively evaluated.

Using the proposed method, tie points were generated and registered using a combina-
tion of loss function weights (8 cases; 2 steps from 6 to 20) and sub-image sizes for template
matching (21 cases; 20-pixel steps from 100 to 500) and the accuracy was compared, with
accuracy defined as the root mean square difference (RMSD) (pixels) between ground
control points (GCPs), for evaluation of the reference image and registered target image.
The GCP set did not include the tie points used in the registration, but consisted of multiple
points manually obtained from the entire test area (Figure 10).

To compare the accuracy of the proposed method, tie point generation and registration
were performed using the following methods:

• One-step U-Net: This is an optional version of the proposed method that uses only
one step to train the road extraction model.

• One-step ResU-Net: This is another optional version of the proposed method in which
a residual U-Net (ResU-Net) [50] with only one step is used instead of U-Net. ResU-
Net, like ResNet [51], is expected to prevent accuracy loss due to gradient loss and
divergence (Figure 6).

• Phase-only correlation (POC): This is a method that performs Fourier transform on
sub-images cut from target and reference images and uses their phase spectra to match
images [22]. Compared to the method that simply matches brightness values, POC
enables highly accurate matching because the steep solution peaks can be more closely
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measured. In the proposed method, POC can be used instead of template matching
(SAD) for tie point generation.

• Area-based method: This method generates tie points by directly applying template
matching or POC to the image itself (not the road mask). The process after generating
tie points is the same as the proposed method.

• Feature-based method (CFOG): The channel features of oriented gradients (CFOG)
method [29] constructs pixel-by-pixel feature descriptors from images using one-cell
HOG blocks and performs fast local feature point matching using fast Fourier trans-
form (FFT). Compared to conventional feature-based methods, this method supports
multimodal image registration by constructing feature descriptors at high density.
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For the proposed (road-based) method, the loss function weight was set to 10. To
compare the methods, the average of the results (RMSD between GCPs) for different sub-
image sizes (21 sizes, from 100 × 100 to 500 × 500 pixels in 20-pixel steps) during template
matching was used as the accuracy.

3. Results
3.1. Preliminary Evaluation of Location Accuracy of Training Data

Figure 7 shows the superposition of the OSM and GSI maps. It can be seen that the
road centerline of the OSM road vector map is superimposed on the center of the road
edge in the GSI road map. However, in many cases, some of the roads included in GSI
road maps are not included in OSM road vector maps, especially narrow roads in small
residential areas. The total road length in the study area was approximately 3527 km on
the GSI road map, while it was 2822 km on the OSM road vector map. Thus, the OSM map
has good location accuracy, but the maintenance rate is not very high.

Figure 8c shows the superimposition of the OSM road vector map and the new-period
aerial photo; it can be seen that their locations are generally consistent. However, similar to
the results of the comparison with the GSI road map, there are many instances where the
OSM map does not include some of the roads visible in the new-period aerial photo. On
the other hand, as shown in Figure 9a, there are also instances where an excessive number
of roads is obtained. In addition, as shown in Figure 9b, there are several instances where
the roads in the OSM map do not match the roads in the new-period aerial photo, mainly
in suburban areas. These are considered to be due to either human error or roads that were
redeveloped after the OSM road vector map was created.
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Figure 8. Examples of superimposition with OSM road centerline vector map: (a) old-period aerial
photo 1, (b) old-period aerial photo 2, (c) new-period aerial photo and (d) WV-3 image.

Figure 8 shows the superposition of the OSM road vector map, old-period aerial
photos 1 and 2, new-period aerial photo and WV-3 image. All of the remote sensing images
show slight deviations, especially in the old-period aerial photos. The residuals were
calculated by acquiring several visible common points (GCPs) of the four images and the
results show that the RMSD of old-period aerial photos 1 and 2 and the new-period aerial
photo is 4.166, 5.166 and 0.951 pixels, respectively, based on the WV-3 image. The placement
of GCPs and an enlarged view of one of them are shown in Figure 10.
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3.2. Preliminary Evaluation of Learning Methods and Parameters Used in the Road
Extraction Model

(1) Preliminary evaluation of loss function weight

Figure 11 shows the loss and accuracy (F1 score) during learning when k values of
1.0 and 10.0 are given as the loss function weights. As shown in the figure, when k = 1.0,
with the same weight for roads and non-roads, learning did not progress and no roads
were detected, but when k = 10.0, with 10 times the weight given to roads, roads were
properly detected and the transition of loss and accuracy between training and validation
data gradually moved toward convergence according to epoch.

Remote Sens. 2022, 14, x FOR PEER REVIEW 16 of 27 
 

 

3.2. Preliminary evaluation of learning methods and parameters used in the road extraction 

model 

(1) Preliminary evaluation of loss function weight 

Figure 11 shows the loss and accuracy (F1 score) during learning when k values of 

1.0 and 10.0 are given as the loss function weights. As shown in the figure, when k = 1.0, 

with the same weight for roads and non-roads, learning did not progress and no roads 

were detected, but when k = 10.0, with 10 times the weight given to roads, roads were 

properly detected and the transition of loss and accuracy between training and validation 

data gradually moved toward convergence according to epoch. 

 Figure 12 shows examples of the prediction results of the model when the loss 

function weight was given by steps of 1.0 from k = 1.0 to 20.0. The results indicate that 

learning progressed when k = 6.0 and above. It was also confirmed that, as k increased, 

the extracted roads became thicker and even the narrowest roads were extracted. It is also 

noteworthy that roads were extracted without being affected by the shadows of buildings. 

 

 

(a) 

 
(b) 

Figure 11. Transitions of loss and accuracy (F1 score) for different loss function weights: (a) k = 1.0 

(same weight for roads and non-roads) and (b) k = 10.0 (10 times weight against roads). 

 

Figure 12. Examples of prediction results of model with different loss function weights. OSM road 

map and input image are shown on the left. 

(2) Comparison of optimizers 

k=5.0 k=6.0 k=7.0 k=8.0 k=9.0 k=10.0 k=11.0 k=12.0

k=13.0 k=14.0 k=15.0 k=16.0 k=17.0 k=18.0 k=19.0 k=20.0

OSM Road 

Map

Input Image

Figure 11. Transitions of loss and accuracy (F1 score) for different loss function weights: (a) k = 1.0
(same weight for roads and non-roads) and (b) k = 10.0 (10 times weight against roads).

Figure 12 shows examples of the prediction results of the model when the loss function
weight was given by steps of 1.0 from k = 1.0 to 20.0. The results indicate that learning
progressed when k = 6.0 and above. It was also confirmed that, as k increased, the extracted
roads became thicker and even the narrowest roads were extracted. It is also noteworthy
that roads were extracted without being affected by the shadows of buildings.

(2) Comparison of optimizers

Figure 13 shows the learning loss and accuracy when SGD, Adam and RAdam were
used as optimizers. It can be seen that the learning speed of RAdam was more than five
times faster than that of SGD; SGD had a loss of 0.127 and an F1 score of 0.369 at 50 epochs
and RAdam had a loss of 0.093 and an F1 score of 0.468 at 10 epochs, although RAdam
showed a larger discrepancy between training and validation loss after 10 epochs. Note that
Adam fell into a local solution in the early epoch and did not progress properly in learning.
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(3) Evaluation of the effectiveness of dropout

Figure 14 shows the training and validation losses during learning with and without
dropout. In both cases, a deviation between the two losses occurred around epoch 10,
confirming overlearning. However, it can be confirmed that the gap between the two losses
became smaller after epoch 10 when dropout was added to the network.
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Figure 14. Transitions of training and validation losses with and without dropout (k = 10.0, with
RAdam as optimizer and without data augmentation).

(4) Evaluation of the effectiveness of data augmentation

The left panel of Figure 15 shows loss and accuracy during learning with and without
data augmentation. It can be seen that the deviation between training and validation losses,
which occurred after epoch 10 in RAdam, was reduced by data augmentation, indicating
that over-learning was suppressed. The right side of Figure 15 provides examples of the
prediction results of the model at the epoch with the smallest validation loss, showing the
input new-period aerial photo, the roads visually extracted from the input image and the
prediction results without and with data augmentation. It can be seen that the results with
data augmentation include narrow roads that were missed by visual interpretation.
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Figure 15. Transitions of loss and accuracy (F1 score) and examples of prediction results of model
(a) without and (b) with data augmentation (k = 10.0, RAdam used as optimizer, with dropout).
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3.3. Application and Validation of the Proposed Method

Figure 16 shows the predicted images produced by the road extraction model using
the new-period aerial photo, WV-3 image and old-period aerial photos of the test area
as input. The predicted images have the same resolution as the respective input images
and the model’s prediction accuracy of roads is given as a value (0–1). Here, the closer
the prediction accuracy is to 1, the higher the confidence that the road is in fact a road.
It can be seen in the figure that the overall road network is generally consistent across
images. This indicates that the road network in this area did not change significantly in
the nearly 40 years from the oldest aerial photograph to the newest WV-3 image. Some
areas where the differences between images are somewhat large, such as near the upper
center, are mainly due to the development of new residential areas. Road extraction is
somewhat dependent on image quality, and narrower roads were also extracted in the
clearest new-period aerial photo.
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Figure 17 shows the tie points and residuals generated by the proposed method for
the WV-3 image and old-period aerial photo 1, mapped on the latter. Many tie points,
shown by dark red dots, are adopted ones, while other tie points, shown by transparent
red dots, are those excluded by RANSAC. Most of the excluded points are situated around
the vegetation area in the upper center and the harbor area in the lower right.
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Figure 18 shows a mosaic of the reference image (WV-3) and the registered images
(old-period aerial photos 1 and 2 and the new-period aerial photo). In the mosaicked image,
the boundaries between images are consistent and no misalignment can be seen, indicating
that the registration by the method worked as expected.
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Table 4 lists the mean, standard deviation and minimum RMSD of inter-GCP residuals
for different loss function weights (k) for sub-image size (W) from 100 to 500 at 20-pixel
steps using old-period aerial photos 1 and 2 and the new-period aerial photo as target
images. A smaller RMSD value indicates a smaller registration error and a smaller standard
deviation of RMSD indicates a smaller error variance between weights. As shown in the
table, the variation of registration error with weight is small. On the other hand, there is
a large difference in registration error depending on the image used, with smaller errors
for the newer images, probably due to higher consistency in the road network and higher
image quality. The table also shows the mean RMSD for W ≤ 280 and W ≥ 300, indicating
that the sub-image size has no significant effect on the registration error.

Table 4. Mean, standard deviation and minimum values of RMSD of inter-GCP residuals for different
loss function weights (k) for sub-image size (W) from 100 to 500 at 20-pixel steps using (a) old-period
aerial photo 1, (b) old-period aerial photo 2 and (c) new-period aerial photo as target images (unit:
pixel). RMSD means for W ≤ 280 and W ≥ 300 are also shown. Minimum (best) value for each image
in each set of W is shown in bold.

Aerial
Photo k

W = 100 to 500 W ≤ 280 W ≥ 300
Mean σ min (Best) Mean Mean

(a) Old-1

6 0.887 0.041 0.821 0.878 0.889
8 0.903 0.038 0.862 0.890 0.907

10 0.847 0.035 0.799 0.852 0.840
12 0.892 0.041 0.819 0.904 0.885
14 0.876 0.040 0.828 0.865 0.878
16 0.863 0.037 0.819 0.849 0.866
18 0.886 0.061 0.830 0.863 0.894
20 0.874 0.057 0.800 0.888 0.854

(b) Old-2

6 0.589 0.041 0.524 0.594 0.584
8 0.499 0.047 0.403 0.515 0.479

10 0.524 0.065 0.423 0.543 0.503
12 0.550 0.073 0.460 0.552 0.550
14 0.492 0.055 0.422 0.514 0.471
16 0.520 0.059 0.420 0.534 0.512
18 0.522 0.050 0.435 0.514 0.533
20 0.602 0.049 0.525 0.582 0.619

(c) New

6 0.472 0.031 0.423 0.454 0.481
8 0.471 0.064 0.366 0.411 0.524

10 0.463 0.042 0.370 0.430 0.492
12 0.490 0.038 0.440 0.457 0.517
14 0.439 0.065 0.351 0.377 0.490
16 0.441 0.053 0.366 0.396 0.476
18 0.471 0.039 0.393 0.436 0.498
20 0.479 0.038 0.414 0.447 0.508

Table 5 shows the mean and standard deviation of RMSD of inter-GCP residuals by
applying different methods (four road-based methods based on the proposed method, two
area-based methods based on SAD and POC, CFOG and no registration) to old-period
aerial photos 1 and 2 and the new-period aerial photo as target images. The table shows
that the proposed road-based methods have higher mean accuracy than the area-based
methods and CFOG, except for the old-period aerial photo by method 2 (two-step U-Net
with POC), indicating that registration is possible at the subpixel level. The reason for
the larger error seen in the old-period aerial photo by method 2 is likely due to the poor
performance of POC when there are large differences between the two road mask images.
In the comparison of road-based methods, method 1 (two-step U-Net with SAD) had the
highest accuracy.
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Table 5. Mean and standard deviation of RMSD of inter-GCP residuals with different methods
applied (1–4: road-based methods based on proposed method; 5–6: area-based methods based on
SAD and POC; 7: CFOG; 8: no registration) to (a) old-period aerial photo 1, (b) old-period aerial
photo 2 and (c) new-period aerial photo as target images (unit: pixel). Three smallest values for each
image are shown in bold.

No. Method
(a) Old-1 (b) Old-2 (c) New

Mean σ Mean σ Mean σ

1 Road base, 2-step U-Net,
k = 10, SAD 0.847 0.035 0.524 0.065 0.463 0.042

2 Road base, 2-step U-Net,
k = 10, POC 2.638 0.556 0.693 0.221 0.489 0.102

3 Road base, 1-step U-Net,
k = 10, SAD 0.905 0.053 0.553 0.115 0.466 0.060

4 Road base, 1-step ResU-Net,
k = 10, SAD 0.954 0.056 0.570 0.044 0.508 0.053

5 Area base, SAD 1.336 0.072 1.073 0.092 1.051 0.071
6 Area base, POC 1.481 0.366 0.917 0.110 0.917 0.056
7 Feature base, CFOG 1.588 — 1.427 — 1.175 —
8 No registration 4.166 — 5.146 — 0.951 —

Figure 19 shows a comparison of the template matching similarity map and curve
between two-step U-Net with SAD and one-step U-Net with SAD (methods 1 and 2,
respectively, in Table 5) using the road mask image from the WV-3 image as the reference
and the one from old-period aerial photo 1 as the target. Because the contrast of the road
mask image was increased and the noise was reduced by using the two-step method, a
steeper similarity curve can be seen. This may be the main reason why the two-step method
showed higher registration accuracy.
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4. Discussion

The proposed method uses a deep learning road extraction model to generate road
mask images from two images to be used for registration between images and then per-
forms template matching to detect misalignment on a grid basis. To evaluate whether
the proposed method can be applied for registration between remote sensing images that
were taken at different times and are of different quality, we applied it to multitemporal
aerial photographs and high-resolution satellite images with different tints, resolution and
shooting times.

When the reference image was a satellite image (WV-3 image) and the target image was
an aerial photograph, the misalignment before registration was 4.166 pixels, 5.146 pixels
and 0.951 pixels for RMSD in the order of the older aerial photograph. Registration using
the proposed method improved the RMSD to 0.847, 0.524 and 0.463 pixels, which are all
less than one pixel off the RMSD. The more recent the image, the smaller the RMSD value.
This was because the closer the shooting times of the target and reference images were, the
more stable the processing was, because there were fewer differences in the road network
and the image quality was sharper in the newer images.

We then investigated the impact of different loss function weights during road ex-
traction model training and different sizes of sub-images that served as input for template
matching during tie point generation. It was confirmed that the effect of changing these
parameters on the results was less than 0.1 pixel, which is negligible for practical use. In
particular, the loss function weight had a significant impact on the road extraction results,
but the impact was not significant for the end-to-end process with weights greater than 6.
This indicates that the proposed method is robust to parameters during training.

The comparison between the proposed method and other methods shows that the
accuracy of the proposed method is significantly higher than that of common area-based
methods (template matching and POC) and feature-based methods (CFOG), indicating
that this method is superior for registration of images with different time periods and
color tones. Compared with an optional version of the proposed method, in which the
training step of the road extraction model is reduced to one step, the originally proposed
two-step method, with two training steps, has superior performance in accuracy for all
images and the improvement in accuracy is particularly significant for the oldest images.
When comparing the similarity maps obtained during template matching, the two-step
method also produced steeper peaks. This shows the effectiveness of the two-step method.
In addition, in the comparison between ResU-Net and U-Net in the one-step method, the
latter outperformed the former on accuracy for all images, indicating that accuracy can be
achieved even with a simple network architecture.

The difference between the brightness-domain template matching (SAD) and frequency-
domain POC method was minimal for the most recent aerial photographs, but SAD was
superior for the older aerial photographs. The difference was particularly large for the old-
est aerial photograph, with an RMSD value for SAD of 0.847 pixels compared to 2.638 pixels
for POC.

In generating the road extraction model, the OSM road vector map, which is widely
available in many areas, was used as the training data. A comparison between the OSM
road vector map and the GSI base map and new-period aerial photo showed that the OSM
map had sufficient positional accuracy, but in some cases roads in small residential areas
and newly developed suburban areas were not included, or roads were not positioned
correctly. However, even if some errors were included, they were shown to have little effect
on the accuracy of the road extraction model, as long as the data were predominantly of
acceptable quality. This indicates the robustness of the road extraction model. Since the
road extraction model was constructed using only the new-period aerial photo, its accuracy
and robustness may be further improved by including data with image characteristics
similar to those of the old-period aerial photos and the WV-3 image as training data.

In building the road extraction model, we evaluated the loss function, optimizer,
dropout and data augmentation. For the loss function, it was shown that by assigning
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weights to roads, learning progresses and converges appropriately and roads can be
extracted. For the optimizer, it was shown that learning proceeds several times faster
with RAdam than with SGD. This is thought to occur because RAdam dynamically adjusts
the learning rate, resulting in more efficient parameter updating and learning progress. On
the other hand, RAdam also tended to overlearn early, which could be suppressed by using
dropout and data augmentation. Data augmentation can also extract narrow roads that are
not included in the training data, which improves generalization performance.

The proposed method is based on the assumption that the road network has not
changed much between the two images to be registered, so it may not be accurate or
applicable under conditions where this is not the case. For example, in this evaluation, a
large discrepancy was identified in some grids with large proportions of vegetation. This
was due to the absence or small number of roads in these grids. However, the methods
that apply template matching directly to brightness images were affected by seasonal and
secular changes in vegetation and showed larger discrepancies than the proposed method.
Therefore, the proposed method, which uses road mask images, is robust to temporal
variations in vegetation and is also superior in that it does not need to consider aligning
the seasons of the two images. This method is also robust to the shadows of buildings,
which can be an error factor in area-based and feature-based methods, because it uses
deep learning to extract roads without much influence from shadows. This robustness
of the proposed method against vegetation and building shadows shows its superiority.
Even if there are no roads in some grids, the proposed method is still applicable because
outliers are excluded from those grids and misalignment is estimated by interpolation from
surrounding grids.

5. Conclusions

In this study, we propose an image-to-image registration method that can be robustly
and accurately applied to remote sensing images with different sensor characteristics and
acquisition dates, especially for monitoring over time in urban areas. The proposed method
does not directly generate tie points by calculating the misalignment between two remote
sensing images, but rather extracts roads from each image using a deep learning model,
applies template matching to estimate the amount of misalignment and generates tie points.
The evaluation results show that the proposed method is robust to differences in the sensor
characteristics, acquisition time, resolution and color tone of two remote sensing images,
as well as to temporal variations in vegetation and the effects of building shadows. The
accuracy of this method was higher than that of the main conventional area-based and
feature-based methods, especially for older images with large differences in color tone and
texture. The amount of error after registration was also shown to be smaller than the pixel
spacing of the remote sensing images used, regardless of the time of year they were taken.

These results were obtained with a road extraction model trained on images from a
single area, single time period and single platform, demonstrating the high versatility of the
model. In further development, the performance will be improved and stabilized by using
images from different areas, time periods and platforms for training. For cases where the
road structure has changed significantly between the two images, or for non-urban areas
with sparse roads, the proposed method is difficult to apply in principle and a different
approach should be chosen, but the method is expected to contribute to the analyses of
short- and long-term changes using remote sensing data in many urban areas.
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