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Abstract: Agricultural drought is a major problem facing China’s agricultural production. In
this study, the cash crop ‘peanut’ was used as an example to explore vulnerability. Through the
atmosphere–plant–soil continuum system, a single index that could represent different types of
droughts affecting peanuts was selected and weighted using the CRITIC weighting method to con-
struct a multi-source data fusion drought index (MFDI). Then, Pearson correlation analysis between
the comprehensive drought index and relative meteorological yield and the Mann–Kendall trend test
for different growth periods of peanuts were used to verify MFDI and analyze the variation over time.
A three-dimensional vulnerability assessment method of drought intensity–drought duration–yield
reduction rate was established based on the run theory and trend surface analysis. The results show
that the constructed multi-source data fusion drought index (MFDI) can more accurately characterize
the actual drought conditions of peanuts in Shandong Province. The MFDI results showed that the
drought severity in the coastal areas of the study area decreased with the growth and development of
peanuts, while the drought became more severe in the western and northern parts during the late
growth period of peanuts. The vulnerability surface of the drought intensity–drought duration–yield
reduction rate showed that when the drought intensity was <0.8 and the duration was <3.5 months,
the vulnerability of peanut crops was low, and then with the increase in drought intensity or duration,
the vulnerability increased. The impact of drought duration cannot be ignored. In contrast to tradi-
tional vulnerability assessment methods, this study established a three-dimensional vulnerability
surface, which provides a new approach for agricultural drought vulnerability assessment. The
research results are helpful for a deeper understanding of the relationship between drought and crop
vulnerability and provide scientific support for local governments in formulating disaster prevention
and mitigation policies.

Keywords: vulnerability surface; CRITIC; multi-source data fusion drought index; peanut; agricultural
drought vulnerability

1. Introduction

Currently, global warming is a serious problem facing humankind [1–3]. The impacts
of climate change are unprecedented and irreversible [4]. An increase in temperature will
lead to changes in precipitation and evapotranspiration, and then increase the frequency
and intensity of drought, seriously threatening crop growth and affecting the development
of the agricultural economy [5–7]. China is a country seriously affected by climate warming
due to its variable terrain and complex geographical environment. Food security and
agricultural economic development are significantly affected by drought disasters [8–10].
Consequently, it is a good strategy to identify the causes of drought vulnerability and
evaluate it effectively to mitigate its impact on agriculture [11,12].
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Peanut production is one of the pillar industries of agriculture, with significant
economic benefits compared with other grains and oilseeds in the field. It is the best
choice for agricultural structural adjustment and is crucial for agricultural economic de-
velopment [13,14]. Shandong Province is a leading peanut-producing region in China in
terms of planting area and production, with peanuts grown in all districts throughout
the province [15]. However, in the context of climate change, the climate in the region
tends to be warm and dry, with an evident increase in drought events. Drought leads
to a reduction in photosynthetic leaf area, number of flowers per plant, effective flower
number, and dry matter accumulation of peanuts, which suppresses peanut growth and
significantly reduces economic output [16–18]. Due to the large fluctuations in peanut
yield caused by drought, the stability of peanut production has been reduced, which has
negatively impacted the economic development of Shandong Province. Therefore, it is
imperative to strengthen the drought vulnerability assessment of peanuts and provide
disaster prevention and mitigation policies to relevant local departments to maintain stable
peanut production in Shandong Province.

In recent years, research into the drought effects on peanut crops has become increas-
ingly detailed. Jiang et al. selected the precipitation anomaly percentage indicator to
identify and explore drought effects on peanut crops and their distribution pattern. Based
on this, they applied the natural disaster risk theory to assess the risk of peanut drought
in Shandong Province [19]. Njouenwet et al. evaluated peanut drought in the Sudano–
Sahelian region of Cameroon using a three-month standardized precipitation index in
combination with peanut phenology [20]. Zhang et al. used the crop water deficit index
considering the water demand of peanuts to identify drought in summer peanuts in Henan
Province, clarified the temporal and spatial distribution characteristics of drought disasters
in summer peanuts, and further evaluated the risk of peanut drought disasters [21]. How-
ever, the above indicators only focus on a single type of drought, without considering the
growth characteristics of peanuts, which is not sufficient to characterize the real drought
situation of peanuts in terms of comprehensiveness and accuracy. Therefore, it is neces-
sary to construct a comprehensive drought index suitable for peanut drought based on a
single index, from meteorological drought, soil drought, and the response of vegetation to
drought, by integrating biological environment information and surface meteorological
observation data [22] to achieve accurate identification of peanut droughts.

As a measure of the ability of a system to resist disasters, vulnerability assessment is
a frequent focus of agrometeorological disaster risk assessment [23,24] and is an impor-
tant link to determine the degree of damage to agricultural systems subject to disaster.
Currently, there are three main methods of crop vulnerability assessment: (1) Vulnerabil-
ity assessment based on an index system. When the vulnerability formation mechanism
is not clear, indicators are selected based on sensitivity and adaptability to evaluate the
crop vulnerability [25]. Wang et al. constructed an evaluation model of maize drought
vulnerability by combining environmental sensitivity, exposure degree, crop sensitivity,
and adaptability, and evaluated and analyzed maize drought vulnerability in the semi-arid
areas of northwest China [26]. However, crop growth is a complex dynamic process and
drought has different effects on crops at different growth stages. Therefore, this method
cannot be used for vulnerability research at different growth stages. (2) Vulnerability as-
sessment based on crop model. The crop model can simulate the growth and development
processes of crops and quantify the effects on crop physiological indices caused by disasters
more accurately. This method represents a new research direction for vulnerability assess-
ment [27–29]. Pang et al. proposed a vulnerability curve calculation method based on the
drought disaster intensity index combined with the CERES model and evaluated and zoned
corn vulnerability in western Jilin [30]. However, owing to the different natural conditions
in different regions, further research is needed to realize the transformation of vulnerability
assessment from the field scale to the regional scale. (3) Vulnerability assessment based
on vulnerability curves. Considering disaster intensity and crop loss rate, the most widely
used vulnerability assessment method is to build a vulnerability curve [31–33]. Yang et al.
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used the drought intensity and yield loss rate of millet to construct drought vulnerability
curves of millet at different growth stages to dynamically evaluate the drought risk of millet
in Liaoning Province [34]. However, the disaster loss rate is not a simple binary relationship
with the disaster itself but is also related to many factors. Therefore, an increasing number
of researchers are focusing on the characteristics of disasters and using the trend surface
analysis method to build vulnerability surfaces to evaluate the vulnerability of crops. They
aim to achieve regional vulnerability assessment, improve the accuracy of vulnerability
assessment results, and narrow the gap with reality, which is a widely discussed topic in
current vulnerability research [35].

In summary, the current indicators used to identify peanut droughts are relatively
singular. Most of them use meteorological drought indicators as peanut drought iden-
tification indicators, which cannot accurately represent the actual drought stress of the
peanut crop. In addition, research on the vulnerability to agrometeorological disasters is
mostly focused on field food crops, using one- and two-dimensional perspectives. There is
a lack of three-dimensional vulnerability assessment research on peanuts. Therefore, the
objectives of this study are: (1) to combine peanut characteristics, select different types
of drought indexes based on the atmosphere–crop–soil continuum theory, determine the
weights of the these indexes using the CRITIC weighting method, construct a multi-source
data fusion drought index, and judge the applicability of the index to peanuts; and (2) to
determine the characteristics of peanut drought disaster by using run theory, construct a
three-dimensional vulnerability surface based on the drought intensity–drought duration–
yield reduction rate, and evaluate the drought vulnerability of peanut crops in Shandong
Province. This study added remote sensing data to the calculation of peanut drought identi-
fication indicators and conducted a three-dimensional vulnerability assessment of regional
peanut crops based on multi-data integration to better illustrate the relationship between
drought and peanut crop vulnerability. The research results can help to understand the
relationship between drought and peanut vulnerability more intuitively, provide a scientific
basis for local governments to designate disaster prevention and mitigation policies, and
provide new ideas for peanut vulnerability assessment.

2. Materials and Methods
Study Area and Data Sources

As a coastal province in eastern China, Shandong extends between 34◦22.9′–38◦24.01′N
and 114◦47.5′–122◦42.3′E. It covers an area of 1.56 × 105 km2. The area of agricultural land
in Shandong Province is 1.16 × 105 km2, accounting for 73.6% of the total land area. The
study area has a warm temperate monsoon climate, with an annual average temperature
of 11–14 ◦C, and annual precipitation of 550–950 mm, which decreases from southeast to
northwest. An overview of the research area is shown in Figure 1. The planting area of
peanuts is approximately 7 × 103 km2. The crop is usually sown in May and harvested in
September [36].

The data used in this research include meteorological, remote sensing, soil, agricultural,
and disaster data. Specific information is shown in Table 1. The daily precipitation,
temperature, sunshine duration, wind speed, and average relative humidity of 22 stations
from 1991–2020 were used to calculate the standardized precipitation evapotranspiration
index (SPEI). Ten-day NDVI data were used to calculate vegetation condition index (VCI).
The monthly soil water content data were used to calculate the soil moisture status index
(SMCI). All the above calculations were carried out using MATLAB 2018. Meteorological
data were used to calculate the SPEI, and the inverse distance weight (IDW) method in
ArcGIS was used for interpolation to obtain a spatial distribution map of the SPEI with an
average of 30 years in the study area. Remote sensing data were used to calculate the VCI
and SMCI, and the raster calculator and mask extraction method in ArcGIS were used to
obtain the spatial distribution map of the VCI and SMCI with an average of 30 years in the
study area.
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Table 1. Data type and sources used in this study.

Data Type Data Contents Resolution Data Sources (1991–2020)

Daily meteorological data

Daily precipitation,
Temperature,

sunshine duration,
wind speed and

average relative humidity

22 meteorological stations in
Shandong Province

Meteorological Data Center of China
Meteorological Administration

(http://data.cma.cn/site/index.html,
accessed on 10 May 2021)

Remote sensing data Ten-day NDVI 500 m

Computer Network Information Center
International Scientific Data Mirror Website

(http://www.gscloud.cn,
accessed on 10 May 2021)

Soil data Monthly soil moisture 4 km × 4 km
Terra climate data sets

(http://www.climatologylab.org,
accessed on 10 May 2021)

Agricultural data

Peanut yield
and sown area Districts in Shandong Province

Institute of Meteorology, Department of
Planting Management, Ministry of

Agriculture, China
(http://www.moa.gov.cn/,
accessed on 10 May 2021)

Data of peanut
development period

Other data
Historical disaster data

Districts in Shandong Province
Disaster Occurrence and China’s

agricultural statistics

Basic data of research area China Statistical Yearbook

3. Methodology
3.1. Construction of Comprehensive Drought Index Based on the Atmosphere–Plant–
Soil Continuum

Peanut, as a typical temperate and high-water-demand crop, faces different types
of droughts in the process of growth and development, such as meteorological and soil
droughts [19]. Crops respond differently to different types of droughts; therefore, it
is essential to select indexes that can better characterize various droughts. From the
perspective of the atmosphere–plant–soil continuum, this paper selects SPEI, VCI, and
SMCI to construct a comprehensive drought index (MFDI) in order to describe the drought
effects on peanut crops. According to previous research [37], the growth period can be
divided into three stages: the early growth period (May), middle growth period (June), and
late growth period (July–September).

3.1.1. Standardized Precipitation Evapotranspiration Index

SPEI is a drought index proposed by Vicente-Serrano et al. that considers precipitation
and evapotranspiration [38]. It can reflect the drought situation due to differences in

http://data.cma.cn/site/index.html
http://www.gscloud.cn
http://www.climatologylab.org
http://www.moa.gov.cn/


Remote Sens. 2022, 14, 5359 5 of 17

precipitation and evapotranspiration in different areas during different periods. The
calculation of SPEI mainly uses meteorological data, such as monthly precipitation and
average temperature, and is obtained by calculating the difference between precipitation
and evapotranspiration and normalizing the difference [39]. The specific calculation steps
are as follows.

(1) Calculate the difference between precipitation and potential evapotranspiration:

Di = Pi − PETi (1)

where Di is the difference between precipitation and evapotranspiration in the ith growth
period (mm), Pi is the precipitation in the ith growth period (mm), and PETi is the potential
evapotranspiration (mm) in the ith growth period, which is calculated by the Penman–
Monteith method recommended by the FAO (Food and Agriculture Organization of the
United Nations, Rome, Italy) [40].

(2) The log-logistic probability distribution function is used to normalize the D data
series, and the SPEI value corresponding to each numerical value is calculated:

SPEI = w− c0 + c1w + c1w2

1 + d1w + d2w2 + d3w3 (2)

w =
√
−2lnP (3)

where p is the cumulative probability of exceeding the undetermined D value, and when
p > 0.5, the sign of the SPEI value is reversed; c0 = 2.515517, c1 = 0.802853, c2 = 0.010328,
d1 = 1.432788, d2 = 0.189269, and d3 = 0.001308.

3.1.2. Vegetation Condition Index

VCI reflects the impact of drought disasters on vegetation at different growth stages
of peanuts [41]. The formula used is as follows:

VCIi =
NDVIi − NDVImin

NDVImax − NDVImin
(4)

where VCI represents the vegetation growth status and NDVIi is the index value of each
pixel. NDVImax and NDVImin are the maximum and minimum NDVI of each pixel in each
growth period over the last 30 years, respectively.

3.1.3. Soil Moisture Condition Index

In order to quantify the profit and loss of soil moisture in the peanut crop root zone,
the following formula is suggested for SMCI [42]:

SMCIi =
SMi − SMmin

SMmax − SMmin
(5)

where SMCI stands for the standardized soil moisture status index, and SMi is the pixel
value of soil moisture in the root zone during the same month of the last 30 years. SMmax
and SMmin represent the maximum and minimum values of soil moisture in each pixel of
each growth stage over the last 30 years, respectively.

3.2. CRITIC Weighting Method

In comparison with the entropy and standard deviation methods, the CRITIC weight-
ing method is a more objective weighting method. According to this method, the objective
weights of the indicators are measured by the contrast strength and conflict. It considers
the variability of indicators and the correlation between indicators, and makes full use of
the objective attributes of the data [43]. The contrast intensity is expressed in the form of
the standard deviation. The greater the standard deviation, the greater the fluctuation and
the higher the weight. The conflict between the indicators is expressed using the correlation
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coefficient. A strong positive correlation between the two indicators implies a lower weight
if the conflict is smaller [44].

The specific method is as follows [45]:
Assuming n = evaluation samples and m = evaluation indicators, the original indicator

data matrix is formed as:

X =

x11 · · · x1m
...

. . .
...

xn1 · · · xnm

 (6)

where Xij represents the value of the ith sample and the jth evaluation index.
(1) Dimensionless treatment
To eliminate the influence of different dimensions on the evaluation results, it is

necessary to perform a dimensionless treatment on each index. In this study, a smaller
index value indicates drier conditions; therefore, the dimensionless treatment is carried out
using the following formula:

X′ =
xmax − xj

xmax − xmin
(7)

(2) Index variability
The index variability is expressed as a form of the standard deviation: xj =

1
n ∑n

i=1 xij

Sj =

√
∑n

i=1(xij−xj)
2

n−1

(8)

where, Sj represents the standard deviation of the jth index.
The standard deviation of the CRITIC weight method measures the fluctuation of

the internal values of each index. By increasing the standard deviation, the numerical
difference in the index increases, revealing greater information and increasing the level of
evaluation intensity. Therefore, more weights were assigned to the index.

(3) Index conflict
The index conflict is expressed by the correlation coefficient:

Rj =
m

∑
i=1

(
1− rij

)
(9)

where, Rij represents the correlation coefficient between evaluation indices i and j.
The correlation coefficient measures the relationship between two indicators. When

the two indicators are highly correlated, there is little conflict between them. In other
words, the weights assigned to the indicators should be reduced because they reflect the
same information.

(4) Quantity of information

Cj = Sj

m

∑
i=1

(
1− rij

)
= Sj × Rj (10)

The larger the value of Cj, the greater the role of the jth evaluation index in the entire
evaluation index system, and the more weight that should be assigned to it.

(5) Objective weight
The objective weight Wj of the jth index is:

Wj =
Cj

∑m
j=1 Cj

(11)
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3.3. Construction of Multi-Source Data Fusion Drought Index

Because the spatial resolution was different among the indicators, resampling was
performed first to change the spatial resolution of each dataset to 4 km × 4 km. MFDI was
constructed using the CRITIC weighting method, and the calculation method is as follows:

MFDIi = w1 × SPEIi + w2 ×VCIi + w3 × SMCIi (12)

where w1, w2, and w3 are the weight values of the three indices.

3.4. Relative Meteorological Yield Reduction Rate

Generally, three main categories of factors affect crop yield formation: meteorologi-
cal conditions, agronomic and technological measures, and stochastic factors. Technical
measures of agricultural production are a measure of the level of development of social
production over time. Short-term technology trends are referred to as trend outputs, and
meteorological production reflects the components of short-term yields affected by meteo-
rological factors. A small proportion of calculations is affected by stochastic factors, which
are often ignored [46,47] so that:

Y = Yt + Yw (13)

where, Y is the actual yield (single production) of the crop, Yt is the trend yield, and Yw is
the meteorological yield.

In this study, the trend yield was simulated using the straight-line sliding average
method. It is a method of modeling yield which considers the change in yield within a
given stage as a linear function, depicting a straight line. As the stage continually slides,
the straight line constantly changes positions, and the backward slip represents continuous
changes in the yield evolution trend. A regression model was obtained at each stage, and
its trend yield value was considered as the mean of the linear sliding regression simulations
at each time point [38]. The linear trend equation at a given stage is:

Yi(t) = ai + bit (14)

where i = n − k + 1 and is the number of equations, k is the sliding step, n is the number
of sample sequences, and t is the time serial number. Yi(t) is the function value of each
equation at point t with q function values at point t. The number of q is related to n and k.
To calculate the average value of each function value at each point:

Yi(t) =
1
q

q

∑
j=1

Yi(t) (15)

The historical evolution trend of production can be observed by connecting the Yi(t)
value of each point. These characteristics differ depending on the value of k. Trend
production can only eliminate the effects of short-term fluctuations at a large value of
k. In this study, we take k to be five, based on the length of the production series after
comparison.

After the yield trend was obtained, the meteorological yield was calculated using
Equation (16), and the relative meteorological production is:

Yr =
Yw

Yt
(16)

Relative meteorological yields indicate that the variability in yield fluctuations that
deviate from the trend (i.e., the amplitude of yield fluctuations) is not affected by time and
space. On the other hand, a negative value indicates unfavorable meteorological conditions
for crop production, that is, crop yield reductions.
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3.5. Mann–Kendall Trend Test

The Mann–Kendall trend test is a method of diagnosing and predicting climate change
by identifying when a climate mutation occurs in a series of climate data [48]. The World
Meteorological Organization (WMO) recommends this as a nonparametric statistical test
method. Additionally, the test can be used to test the significance of a long time series.
Unlike conventional methods, this method requires no sample distribution and does not
consider outliers. Meanwhile, sequence and type variables can be quantified, detected, and
calculated easily [49,50]. For time series x with n samples, we constructed an order column:

Sk =
k

∑
i=1

ri, k = 2, 3, . . . , n (17)

The value of ri in the formula is as follows:

ri =

{
+1 xi > xj
+0 xi ≤ xj

j = 1, 2, . . . , i (18)

The order column Sk is the cumulative number of values at moment i that is greater
than the value at moment j. When x1, x2, . . . , xn are independent of each other and
have the same continuous distribution, the mean value E(Sk) and variance var(Sk) of Sk
are calculated: 

E(Sk) =
k(k− 1)

4
var(Sk) =

k(k− 1)(2k + 5)
72

k = 2, 3, . . . , n (19)

Statistics are defined under the assumption of random independence of the time series:

UFk =
[Sk − E(Sk)]√

var(Sk)
k = 1, 2, . . . , n (20)

where UF1 = 0, and UFk is the standard normal distribution, which is the statistical sequence
calculated according to the time series sequence x1, x2, . . . xn. Then, according to the reverse
order of the time series xn, xn−1, . . . x1, the above process is repeated, and UBk = −UFk ×
(k = n, n − 1, . . . ,1), UB1 = 0. Given the significance level α, if α = 0.05, the critical value
µ0.05 = ±1.96.

If the UFk line changed to the critical line in the test curve, and the trend and mutation
of the change curve were not obvious. The value of UFk was greater than zero, which indi-
cated that the sequence exhibited an upward trend, whereas it exhibited a downward trend.
When it exceeded the critical line, it indicated a significant upward or downward trend. If
the two curves UFk and UBk intersected at the critical line, the moment corresponding to
the intersection was the time at which mutation began.

3.6. Run Theory

“Run-length” refers to a series of the same variable satisfying certain conditions in a
sequence with finite values. The number of times the same variable appears is called the
run length. At present, run theory is widely used in research on meteorological droughts.
Figure 2 shows a conceptual diagram of event recognition based on the run theory.

When using run theory to identify drought and flood events, first, an interception
level is given according to the grading standard of drought indicators, and the discrete
series changing with time is intercepted. When the disaster index is lower than a certain
threshold and the duration exceeds a certain length, a disaster event is considered to have
occurred [51]. When the random variable is continuously greater than the interception
level one or more times, a positive run occurs, and vice versa, a negative run occurs. In
the process of identifying drought runs, the length of the negative run is called drought
duration, and drought intensity is the area covered by the drought duration and interception



Remote Sens. 2022, 14, 5359 9 of 17

level [52]. According to the grade of drought indicators, the index in the time series is
separated into two characteristic variables, the duration and intensity of drought events,
using run theory.
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3.7. Vulnerability Surface Theory

Vulnerability is a dynamic quantity, and a key physiological indicator of crop changes
through changes in disaster intensity and duration. To evaluate vulnerability effectively,
we need not only regular evaluations but also multifaceted approaches using constant
processes and real-time monitoring. Research objectives in most vulnerability assessments
are centered on establishing vulnerability curves, and the establishment of vulnerability
curves is generally limited to two dimensions: damage intensity and loss. However, in
reality, vulnerability is affected by different scales, so it is difficult for the two-dimensional
vulnerability curve to express the continuous spatial variability of vulnerability. Based
on the above aspects, building a three-dimensional vulnerability surface, considering
the disaster duration, can express the continuous spatial variability of vulnerability and
improve the spatial accuracy of assessment.

A vulnerability surface which simulates the changes in disaster intensity, disaster
duration, and loss rate was generated by trend surface analysis. The construction of the
vulnerability surface was based on a binary nonlinear regression analysis, and the basic
equation is as follows [34,35]:

f (x, y) = f̃ (x, y) + ε (21)

f̃ (x, y) = a + bx + cy + dx2 + exy + f y2 (22)

where a, b, c, d, e, and f are the coefficients estimated using the least-squares method. The
fitting function is then used as the analytical expression for the vulnerability surface model:

Z = V(x, y) = f̃ (x, y) (23)

where Z is the yield reduction rate and X and Y represent the disaster intensity and disaster
duration, respectively.

The vulnerability surface was drawn by a curve-fitting module in MATLAB, where the
X, Y, and Z axes represent drought intensity, drought duration, and peanut yield reduction
rate, respectively. The average drought index of farmland in each city was chosen as the
drought intensity, and the vulnerability surface was constructed according to the peanut
yield reduction rate and drought duration in the city.

4. Results and Discussion
4.1. Single Drought Index Analysis

The 30-year average SPEI, VCI, and SMCI of the peanuts during each growth period
are shown in Figure 3. Over the entire development stage of peanuts, the SPEI in the
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study area is distributed in the range of −0.21–0.22, which indicates that the meteorological
conditions in the study area were generally favorable for the growth and development of
crops. Within this range, the spatial distributions of SPEI in the early and middle growth
periods of peanut were found to follow a similar pattern. Dezhou, Weifang, and Linyi
were wet, whereas some areas in Yantai and Jinan were slightly dry. The distribution of
the VCI at each growth stage was different. In the early growth period, it was humid in
the west but turned humid in the east during the middle growth stage. At a later stage of
growth, the entire study area showed a relatively humid trend. For SMCI, Dezhou, Yantai,
and Qingdao were relatively wetter during the early growth stage of peanuts, and the
northwest of the entire research area was in a wet state during the middle growth stage.
The difference is that, in the late growth period of peanuts, the humid areas seemed to be
concentrated in the southeastern part of the study area.
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Many studies on crop drought in earlier years used the SPEI as an evaluation standard
and assumed that meteorological drought would lead to crop drought [53,54]. However,
meteorological drought does not reflect the drought situation of the crops themselves;
rather, it reflects the meteorological situation of this region, and the crops themselves may
be affected by more factors. It is a widely accepted method to use VCI as an index to
evaluate drought when assessing the condition of the crops themselves. Under water stress,
crops change the opening degree of stomata to cope with water gain and loss. At this time,
NDVI can capture such situations. Vegetation cover also affects crop conditions. Vegetation
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cover may affect the light area, and the light area changes the soil temperature, which
affects the evapotranspiration of crops. [55,56]. In this regard, the ability of NDVI to capture
vegetation cover is also an important reason why it is often selected. Soil is a direct channel
for crops to grow and obtain nutrients through the roots. The soil provides direct access to
nutrients and aids in the growth of crops; therefore, the influence of soil moisture on crops
is self-evident [57,58]. When peanuts, a crop whose fruit grows in the ground, begin to
grow, the soil is constantly in contact with the fruit until harvest. Therefore, it is reasonable
to choose the SMCI as an index to judge the degree of drought.

Through spatial and temporal analysis of the single drought index, the spatial drought
distributions of the three single drought indices seem to be different. This shows that,
regardless of the meteorological drought, crop drought, or soil drought alone, when evalu-
ating the long-term drought situation in a region, the results obtained may not accurately
reflect the real state of crops.

4.2. Establishment and Analysis of a Drought Index Based on Multi-Source Data Fusion

The comprehensive drought index weights obtained using the CRITIC evaluation
method are listed in Table 2.

Table 2. Weight of each single index in different growth stages of peanut.

Comprehensive Drought Index
Peanut Growth Period

Early Growth Period Middle Growth Period Late Growth Period

Meteorological drought (SPEI) 0.31 0.33 0.17
Vegetation drought (VCI) 0.34 0.32 0.37

Soil drought (SMCI) 0.35 0.35 0.46

4.2.1. Drought Index Verification

The Pearson correlation coefficients between MFDI and meteorological yield during
the peanut growing season in major peanut-producing areas of the study area during
1991–2020 are shown in Figure 4. In the time distribution, the correlation between MDFI
and meteorological yield seems to have significantly improved with the growth and devel-
opment of peanuts. Except for a few districts, MFDI in the middle and late growth stages
of peanuts was positively correlated with meteorological yield in most districts. Figure 4
shows that the correlation degree between MFDI and the meteorological yield of peanuts
in Jinan, Taian, and Weifang at the late growth stage is high, with values passing the signifi-
cance test (p ≤ 0.01). In summary, the MFDI index has a good ability to characterize the
relative meteorological yield of peanuts; that is, MFDI index can characterize the drought
characteristics of peanuts in this area.
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4.2.2. MFDI Time Series Analysis

Figure 5 shows the trend of MFDI in the study area over the past 30 years, along
with the results of the M–K test. Early in the peanut growth stage, the UF and UB curves
crossed in 2002, which was considered a mutation year, but the mutation was not significant.
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As shown in the UF curve, before 2005, the index was less than zero, indicating that the
regional crops were arid. Subsequently, the index was greater than 0, indicating an upward
trend and wetting. According to historical records, 2005 was the third highest rainfall year
in Shandong since 1999 owing to heavy rain and was a typical flood year [59]. During
the middle period of peanut growth, from 2008–2016, the index increased. In 2008, the
summer temperature was low and there was high precipitation; in 2016, the average annual
temperature was the highest since 1951 [60,61]. As peanut crops grew, the UF curve was
usually higher than 0, indicating that they were wet in many years. In general, through
linear regression, peanuts showed drought effects at different growth stages, with rates of
−0.012 units/10a, −0.072 units/10a, and −0.014 units/10a, respectively.
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4.2.3. MFDI Spatial Distribution

The MFDI of peanuts at different growth stages in the study area is shown in Figure 6.
During the early stages of peanut growth, drought was severe in the northern part of the
study area (Weihai and Rizhao). During the middle growth period of peanuts, the entire
coastal area became arid, except for scattered places in the northern part of the study area.
During the later stage of peanut growth, the drought trend appeared to reverse, with a
wide range of drought in the northwest of the study area, but a humid situation in the area
centered on Rizhao.
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In summary, the spatial distribution of MFDI during the entire growth stage of peanuts
was consistent with the results of Jiang et al. [19]. Drought effects on peanuts occurred
mainly in the northwest of Shandong Province and the Jiaodong Peninsula. In addition,
the M–K test for MFDI could also identify the mutation of drought in Shandong Province,
indicating that the MFDI index could accurately characterize the effects of drought on
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peanut crops in Shandong Province and could provide guidance for future studies on
peanut drought.

As previously discussed, a single crop drought index may not adequately reflect the
actual drought situation across the entire growth stage of crops. Some researchers have also
attempted to evaluate the drought situation more precisely by developing a comprehensive
drought index [23,62], but there are generally two problems: the selection of indicators and
methods of empowerment. At present, the concept of the atmosphere–plant–soil continuum
is widely used in agricultural drought research; therefore, three different indicators, namely,
atmosphere-SPEI, plant-VCI and soil-SMCI, were selected to characterize the drought
situation of peanut crops, which is more rigorous from the perspective of index selection.
For a comprehensive drought index, the weighting of each index is always the most crucial
factor. Initially, some studies adopted a subjective analytic hierarchy process. In this process,
different experts’ views on the same situation may differ significantly. In addition, the
degree of expertise and number of experts also have a significant influence on the weighting.
Later, some researchers began to examine objective evaluation methods, such as the entropy
weight method or a combination of several weighting methods [24,25]. However, owing to
objective problems in statistics, the results may be quite different from the real situation.
Based on a large number of comparative analyses, this study chose the CRITIC weighting
method to weigh the different drought indicators. The CRITIC weighting method is better
than the entropy weighting method because it comprehensively measures the contrast and
conflict intensities of each indicator, makes full use of the objectivity between indicators,
and minimizes deviation from the real situation. This method is rarely used in agricultural
index weighting but should be further investigated.

4.3. Analysis of Drought Characteristics Based on Run Theory

Using run theory, the duration, intensity, and frequency of drought in the study area
over the past 30 years were obtained (Figure 7). The drought characteristics in different
areas were clearly seen. As shown in Figure 7a, the areas with long drought durations were
concentrated in the west of the study area, among which Binzhou, Liaocheng, and Jining
had the longest drought durations. Figure 7b shows that the overall drought intensity
in the eastern part of the study area was low, and Yantai and Qingdao had the lowest
drought intensity. Areas with high drought intensity were Jining, Binzhou, and Weifang.
Figure 7c shows the distribution of the drought frequency. The areas with the highest
drought frequency were Weifang and Weihai, and the drought frequency in the western
part of the study area was also high, whereas the drought frequency in Linyi, Jinan, and
Binzhou was low.
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4.4. Vulnerability Surface Analysis

Based on the drought duration, drought intensity, and relative meteorological yield
reduction rate of peanuts in different areas over 30 years, a vulnerability surface map of
peanuts during the growth and development stages in the study area was constructed.
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According to the vulnerability surface (Figure 8), the peanut vulnerability seems low when
the drought intensity is < 0.8 and the duration is < 3.5 months. With an increase in drought
intensity or duration, the peanut crop vulnerability increased. At this time, when the
drought intensity remained the same, the peanut yield loss rate gradually increased with
increasing drought duration. Similarly, when the duration of drought remained the same,
the increase in drought intensity significantly increased peanut crop vulnerability. These
results indicate that the influence of drought duration cannot be ignored. Based on the
vulnerability surface, the specific vulnerability can be intuitively visualized in relation to
the duration and intensity of droughts.
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Researchers have found a correlation between the crop yield loss rate and drought
intensity through changes in water status [31]. These curves can enable managers and
researchers to obtain drought information and provide a reference for assessing crop
drought risks. However, it is pertinent to note that crop yield loss is not only influenced
by the intensity of the drought but also by the duration of the drought. As a result,
establishing a relationship surface between drought intensity, drought duration, and crop
yield loss rate provides managers with more comprehensive information to adjust irrigation
policies accordingly.

5. Conclusions

This study presented a three-dimensional vulnerability evaluation method based on
the disaster intensity–disaster duration–yield reduction rate for the first time in the drought
risk assessment of peanut crops, which reflected the spatial variability of vulnerability
and greatly improved the accuracy of evaluation. By rationally selecting the atmosphere–
plant–soil index and applying the CIRTIC weighting method to create a comprehensive
drought index, the accuracy of the vulnerability evaluation was further improved, which
provides a novel concept of agricultural vulnerability evaluation. In future studies, we
may be able to make more accurate predictions by combining crop models and machine
learning. From the research results, we can observe the following: (1) In the study area,
soil drought was the most important factor affecting peanut growth and development.
(2) The constructed multi-source data fusion drought index was superior to each single
index (SPEI, VCI, and SMCI) in identifying peanut drought and could more accurately
represent the actual situation of peanut drought in Shandong Province. (3) The variation
over time in MFDI showed that drought severity was aggravated with the passage of time
in different growth stages of peanut crops. (4) The MFDI identification results revealed
that the degree of peanut drought in the coastal areas of the study area reduces with the
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development of peanuts, whereas the western and northern parts of Shandong Province
tend to experience drought during the late growth period of peanuts. (5) The vulnerability
surface based on the drought intensity–drought duration–yield reduction rate considered
the compound relationship between drought intensity and duration, which overcomes the
limitations of traditional vulnerability evaluation methods (i.e., one-dimensional index
systems and two-dimensional vulnerability curve evaluation methods). Considering the
vulnerability surface, it can be seen that when the drought intensity was < 0.8 and the
duration was < 3.5 months, the vulnerability of peanuts was low, and then with the increase
in drought intensity or duration, the vulnerability of peanuts increased. At the same time,
drought intensity and drought duration were considered as the influencing factors of
peanut crop vulnerability. Trend surface analysis was used to construct a peanut drought
vulnerability surface, which is a novel idea and method for vulnerability assessment and
has great potential for application in other research fields or other crops. However, it
is worth noting that when this method is applied to other research fields or crops, it is
necessary to re-select the indicators, calculate the weights according to the actual situation,
and verify them to evaluate the vulnerability of crops more accurately and comprehensively.
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