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Abstract: Estimating the fundamental matrix (FM) using the known corresponding points is a key
step for three-dimensional (3D) scene reconstruction, and its uncertainty directly affects camera
calibration and point-cloud calculation. The symmetric epipolar distance is the most popular error
criterion for estimating FM error, but it depends on the accuracy, number, and distribution of known
corresponding points and is biased. This study mainly focuses on the error quantitative criterion of
FM itself. First, the calculated FM process is reviewed with the known corresponding points. Matrix
differential theory is then used to derive the covariance equation of FMs in detail. Subsequently,
the principal component analysis method is followed to construct the scalar function as a novel
error criterion to measure FM error. Finally, three experiments with different types of stereo images
are performed to verify the rationality of the proposed method. Experiments found that the scalar
function had approximately 90% correlation degree with the Manhattan norm, and greater than 80%
with the epipolar geometric distance. Consequently, the proposed method is also appropriate for
estimating FM error, in which the error ellipse or normal distribution curve is the reasonable error
boundary of FM. When the error criterion value of this method falls into a normal distribution curve
or an error ellipse, its corresponding FM is considered to have less error and be credible. Otherwise,
it may be necessary to recalculate an FM to reconstruct 3D models.

Keywords: fundamental matrix; error; covariance; matrix differential theory; principal component
analysis; Manhattan norm; epipolar geometric distance

1. Introduction

With the development of stereo observation technology, the fundamental matrix (FM),
which describes the geometric relationship between stereo images of the same scene, plays
an increasingly important role in the field of three-dimensional (3D) remote sensing. Using
FM can eliminate false corresponding points [1,2] and compute the internal and external
parameters of uncalibrated images in a camera [3–5] and make adjacent image connections
in object tracking and 3D scene reconstruction [6–8]. Therefore, computing FM using
uncalibrated stereo images is a key step in computer vision and 3D image processing.

FM was first introduced by Longuet–Higgins as a generalization of the essential ma-
trix described in uncalibrated images [9]. A large number of FM-estimation algorithms
then emerged, which are roughly divided into linear, iterative, and robust methods [10,11].
Among them, the robust method obtains higher estimation accuracy even when corresponding
points are stored in false corresponding points (outliers) [12] where the random sample con-
sensus (RANSAC) method for eliminating outliers is widely used for FM estimation [8,13,14].
Subsequently, many scholars have proposed various improved algorithms, e.g., the LMeds
method [12], L-1 method [15], MLESAC method [16], MAPSAC method [17], FSASAC
method [18], PROSAC and Promeds method [2,19], DKF-RANSAC method [20], R-CNN
method [21], and so on.
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The effectiveness of improved algorithms depends on FM error criteria. The main
error criteria [8], e.g., algebraic distance, symmetric epipolar distance, Sampson distance,
and so on, can be used to estimate the FM error. Fathy [22] studied the different FM error
criteria, proved that the symmetric epipolar distance is biased, and proposed the Kanatani
distance as a new error criterion to remove the outliers. Li [23] proposed the 3D metric
distance criterion to estimate the FM quality. However, many recent scholars have retained
the epipolar geometric distance as sufficiently accurate to estimate the quality of FM and
its improved algorithms [24–27]. Although the epipolar geometric distance depends on
the accuracy, number, and distribution of the known corresponding points on the two
uncalibrated images and is biased, it is still the most popular criterion for evaluating
improved FM algorithms.

In addition, the covariance matrix can be calculated and derived by analytical or
statistical methods to measure FM error [8,28,29]. Hartley pointed out that the Monte Carlo
statistical method can be used to calculate the FM covariance matrix [8]. Some scholars
have concretely analyzed the covariance of FMs using the eight-point algorithm [30] and
the random sample consensus algorithm [31]. Combined with the covariance matrix, the
Manhattan distance has been used to measure FM error [32]. There are earlier studies
measuring FM error using the covariance matrix.

It is necessary to develop a novel method to estimate FM error. Principal component
analysis (PCA) is the most widely used method to reduce the dimensionality of such
datasets, increasing interpretability but simultaneously minimizing information loss [33,34].
This paper intends to use the PCA method to reduce the FM dimensionality and construct
a scalar function to measure FM error.

Compared with the epipolar geometric distance, the proposed method may be op-
timized and reduced the influence the accuracy, number, and distribution of the known
corresponding points on FM error. Compared with the covariance matrix, the proposed
method could use a numerical value to directly measure FM error. This study aims to
(1) use FM itself to construct a more direct and less biased error criterion, and (2) determine
whether a certain FM calculated with the known corresponding points on stereo images is
reasonable and credible.

The remainder of this paper is organized as follows. Section 2 mainly introduces the
process of computing FM using two uncalibrated images. Section 3 uses matrix differential
theory to derive the covariance matrix of the PCA FM method to construct a scalar function to
intuitively estimate FM error. Section 4 uses experiments to verify the rationality of the proposed
method. Sections 5 and 6 are the discussion and the conclusions of this work, respectively.

2. Computing FM

In Figure 1, the camera centers C and C’, a three-space point W, and image points x
and x’ lie in a common plane π. A point, x’, in the first image is transferred via the common
plane π to a corresponding point x in the second image. In symbols one may write x = Fx′

where F is the fundamental matrix (FM), and the other is x′ = F−1 x.
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Figure 1. Point-correspondence geometry. 

FM represents the intrinsic projective geometry between two image planes. It is in-
dependent of scene structure and only depends on the cameras’ internal and external 
parameters of calibrated images. However, the FM between two uncalibrated images can 
usually be computed from image-point correspondences alone. Specifically, FM is de-
fined by the equation 

𝐱𝐱′T𝐅𝐅𝐱𝐱 = 0 (1) 

for any pair of corresponding points 𝐱𝐱 ↔  𝐱𝐱’ on two uncalibrated images. Given suffi-
ciently many corresponding points 𝐱𝐱𝒊𝒊 ↔ 𝐱𝐱𝒊𝒊′, Equation (1) can be used to compute the 
unknown matrix F, supposing that the unknown fundamental matrix F in Equation (1), 
which is a 3 × 3 matrix, is 

𝐅𝐅 = �
𝐹𝐹11 𝐹𝐹12 𝐹𝐹13
𝐹𝐹21 𝐹𝐹22 𝐹𝐹23
𝐹𝐹31 𝐹𝐹32 𝐹𝐹33

� (2) 

The coefficients of F in Equation (1) are easily written in terms of the known coor-
dinates x and x′. In particular, writing 𝐱𝐱 = (𝑥𝑥,𝑦𝑦, 1)T  and 𝐱𝐱′ = (𝑥𝑥′,𝑦𝑦′, 1)T , each corre-
sponding point gives rise to one linear Equation (3) in the unknown F entries.  

𝑥𝑥′𝑥𝑥𝐹𝐹11 + 𝑥𝑥′𝑦𝑦𝐹𝐹12 + 𝑥𝑥′𝐹𝐹13 + 𝑦𝑦′𝑥𝑥𝐹𝐹21 + 𝑦𝑦′𝑦𝑦𝐹𝐹22 + 𝑦𝑦′𝐹𝐹23 + 𝑥𝑥𝐹𝐹31 + 𝑦𝑦𝐹𝐹32 + 𝐹𝐹33 = 0 (3) 

Supposing that the nine-vector f is made up of the entries of F in row-major order.  

𝐟𝐟 = [𝐹𝐹11,𝐹𝐹12,𝐹𝐹13,𝐹𝐹21,𝐹𝐹22,𝐹𝐹23,𝐹𝐹31,𝐹𝐹32,𝐹𝐹33]T (4) 

Equation (3) can be expressed as a vector inner product 

[𝑥𝑥′𝑥𝑥, 𝑥𝑥′𝑦𝑦, 𝑥𝑥′,𝑦𝑦′𝑥𝑥,𝑦𝑦′𝑦𝑦,𝑦𝑦′, 𝑥𝑥,𝑦𝑦, 1]𝐟𝐟 = 0 (5) 

Given a set of n corresponding points, a set of linear equations can be obtained. 

𝐌𝐌𝑛𝑛 × 9𝐟𝐟9 × 1 = �
𝑥𝑥1′𝑥𝑥1 𝑥𝑥1′𝑦𝑦1 𝑥𝑥1′ 𝑦𝑦1′𝑥𝑥1 𝑦𝑦1′𝑦𝑦1 𝑦𝑦1′ 𝑥𝑥1 𝑦𝑦1 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑥𝑥𝑛𝑛′𝑥𝑥𝑛𝑛 𝑥𝑥𝑛𝑛′𝑦𝑦𝑛𝑛 𝑥𝑥𝑛𝑛′ 𝑦𝑦𝑛𝑛′𝑥𝑥𝑛𝑛 𝑦𝑦𝑛𝑛′𝑦𝑦𝑛𝑛 𝑦𝑦𝑛𝑛′ 𝑥𝑥𝑛𝑛 𝑦𝑦𝑛𝑛 1
� 𝐟𝐟 = 0 (6) 

Equation (6) is a homogeneous set of equations, and matrix M must have ranked at 
most 8 for a non-zero f to exist. Here, the unknown vector f can only be determined up to 
a scale. If the data are not exact because of noise in the point coordinates, the rank of M is 
equal to 9, and the only solution is f = 0. To solve this question, a solution is to turn the set 
in Equation (6) into an inhomogeneous set of linear equations by imposing the 𝐹𝐹33 = 1 
condition for some entry of the vector f. In this case, Equation (6) can be converted to 

� 𝐀𝐀𝐟𝐟  +  𝐋𝐋 = 𝟎𝟎
𝐋𝐋 =  [1, 1,⋯ ,1]1 × 𝑛𝑛

T  (7) 

where A has n rows and eight columns, and 𝐟𝐟 is an eight-element vector.  
Such an equation may be solved for 𝐟𝐟 using the least-squares techniques. The spe-

cific calculation is 

Figure 1. Point-correspondence geometry.

FM represents the intrinsic projective geometry between two image planes. It is
independent of scene structure and only depends on the cameras’ internal and external
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parameters of calibrated images. However, the FM between two uncalibrated images can
usually be computed from image-point correspondences alone. Specifically, FM is defined
by the equation

x′TFx = 0 (1)

for any pair of corresponding points x ↔ x′ on two uncalibrated images. Given suf-
ficiently many corresponding points xi ↔ x′i , Equation (1) can be used to compute the
unknown matrix F, supposing that the unknown fundamental matrix F in Equation (1),
which is a 3 × 3 matrix, is

F =

F11 F12 F13
F21 F22 F23
F31 F32 F33

 (2)

The coefficients of F in Equation (1) are easily written in terms of the known coordinates
x and x′. In particular, writing x = (x, y, 1)T and x′ = (x′, y′, 1)T, each corresponding point
gives rise to one linear Equation (3) in the unknown F entries.

x′xF11 + x′yF12 + x′F13 + y′xF21 + y′yF22 + y′F23 + xF31 + yF32 + F33 = 0 (3)

Supposing that the nine-vector f is made up of the entries of F in row-major order.

f = [F11, F12, F13, F21, F22, F23, F31, F32, F33]
T (4)

Equation (3) can be expressed as a vector inner product[
x′x, x′y, x′, y′x, y′y, y′, x, y, 1

]
f = 0 (5)

Given a set of n corresponding points, a set of linear equations can be obtained.

Mn×9f9×1 =

x1
′x1 x1

′y1 x1
′ y1

′x1 y1
′y1 y1

′ x1 y1 1
...

...
...

...
...

...
...

...
...

xn
′xn xn

′yn xn
′ yn

′xn yn
′yn yn

′ xn yn 1

f = 0 (6)

Equation (6) is a homogeneous set of equations, and matrix M must have ranked at
most 8 for a non-zero f to exist. Here, the unknown vector f can only be determined up to a
scale. If the data are not exact because of noise in the point coordinates, the rank of M is
equal to 9, and the only solution is f = 0. To solve this question, a solution is to turn the
set in Equation (6) into an inhomogeneous set of linear equations by imposing the F33 = 1
condition for some entry of the vector f. In this case, Equation (6) can be converted to{

A
~
f + L = 0

L = [1, 1, · · · , 1]T1×n

(7)

where A has n rows and eight columns, and
~
f is an eight-element vector.

Such an equation may be solved for
~
f using the least-squares techniques. The specific

calculation is
~
f = −

(
ATA

)−1
ATL. (8)

~
f and F33 can then be combined to form f in Equation (9). Here, f is the nine-element

vector of FM concretely computed between two uncalibrated images.

f =
[

~
f

T
F33

]T
(9)
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3. Quantization of FM Error
3.1. Covariance Matrix of FM

The FMs calculated in Equations (8) and (9) involve numerical calculations and matrix-
theory operations. Therefore, the following section intends to use matrix differential theory
to construct the covariance of FM.

3.1.1. Matrix Differential Theory

Let A ∈ Fm×n be a matrix variable, and A =
(
aij
)

m×n, G(A) = (gkl)p×q be the matrix
function of A. Here, gij (A) is a numerical function of A, and all of them are derivable at A
(i = 1, 2, · · · , m; j = 1, 2, · · · , n; k = 1, 2, · · · , p; l = 1, 2, · · · , q). Thus,[

∂G
∂aij

]
pm×qn

= ∇⊗ ∆ (10)

This is the derivative of G with respect to A, denoted as dG(A)
dA . Among them,

∇ =


∂G

∂a11
∂G

∂a12
· · · ∂G

∂a1n
∂G

∂a21
∂G

∂a22
· · · ∂G

∂a2n
...

...
. . .

...
∂G

∂am1
∂G

∂am2
· · · ∂G

∂amn

, ∆ =



∂g11
∂aij

∂g12
∂aij

· · · ∂g1q
∂aij

∂g21
∂aij

∂g22
∂aij

· · · ∂g2q
∂aij

...
...

. . .
...

∂gp1
∂aij

∂gp2
∂aij

· · · ∂gpq
∂aij

, and the symbol ⊗ is the

Kronecker product of the matrices A and B of m × n and p × q, respectively, namely

A⊗ B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

am1B am2B · · · amnB

 ∈ Fmp×nq.

Let L be a constant matrix, A ∈ Fm×n be a matrix variable, and D(A) ∈ Fl×l ,
G(A) ∈ Fp×q, H(A) ∈ Fq×k be matrix functions. The common rules for the differentia-
tion of the above three types of matrices are as follows:

(1) The derivative of the constant matrix L is a zero matrix, i.e.,

dL
dA

= 0 (11)

(2) The derivative of the inverse matrix D−1 is

d
(
D−1)
dA

= −
(

Im ⊗D−1
)d(D)

d(A)
(In ⊗D−1) (12)

(3) The derivative of the matrix function product G(A)H(A) is

d[G(A)H(A)]

dA
=

dG
dA

[In ⊗ H(A)] + [Im ⊗ G(A)]
dH
dA

(13)

3.1.2. Covariance Matrix Derivation

In Equation (8), L is a constant vector, both A and
~
f are matrix functions of X = [x, y, x′, y′].

Combined with matrix differential theory, the covariance matrix of
~
f can then be derived.

Let B = ATA, Equation (8) can be expressed by

~
f = −B−1ATL. (14)
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The derivatives of
~
f and B are then described by Equation (15).

d(̃f)
dX = − d(B−1)

dX

(
In ⊗ATL

)
−
(
Im ⊗ B−1) d(AT)

dX (In ⊗ L)
dB
dX = dAT

dX (In ⊗A) +
(

Im ⊗AT
)

dA
dX

(15)

Substitute Equation (12) into Equation (15) to obtain further expression of the deriva-

tives of
~
f.

d
(̃

f
)

dX
=
(

Im ⊗ B−1
) dB

dX

(
In ⊗ B−1ATL

)
−
(

Im ⊗ B−1
)dAT

dX
(In ⊗ L) (16)

Moreover, dB
dX is inserted into Equation (16) and the following equation is derived:

d
(̃

f
)

dX
=
(

Im ⊗ B−1
)dAT

dX

(
In ⊗AB−1ATL

)
+
(

Im ⊗ B−1AT
)dA

dX

(
In ⊗ B−1ATL

)
−
(

Im ⊗ B−1
)dAT

dX
(In ⊗ L) (17)

Herein, dAT

dX and dA
dX are calculated by Equation (10).

We know that X is a matrix of one row and four columns from the first paragraph of
this section. Thus, m = 1, n = 4 in Equations (12) and (17). In addition, the subscript d is
used to denote the differential matrix in this article; Equation (17) can be expressed by

f̃d = B−1AT
d

(
I4 ⊗AB−1ATL

)
+ B−1ATAd

(
I4 ⊗ B−1ATL

)
− B−1AT

d (I4 ⊗ L) (18)

Supposing that the variance DX of X is


σ2

x σxy σxx′ σxy′
σyx σ2

y σyx′ σyy′
σx′x σx′y σ2

x′ σx′y′
σy′x σy′y σy′x′ σ2

y′

, the variance of
~
f

can then be obtained by Equation (19) using the guide to the expression of uncertainty in
measurement method [35].

Df̃ = f̃dDX f̃
T
d (19)

The variance of f can then be calculated following Equation (20).

Df =

[
Df̃ 0
0 0

]
(20)

Some studies have pointed out [32,36] that the variance of a matrix is the same as the
variance of its row-first vectors. Therefore, the covariance matrix DF of FM can also be
expressed by the variance Df, i.e., DF = Df.

3.2. Scalar Function of FM Error

The 3 × 3 FM is a multivariate of nine elements, which is difficult to comprehend
the FM error represented by 9 × 9 covariance matrix. Scalar functions in matrix analysis
are often used to describe the one-to-one mapping relationship between matrices and
real-valued functions [36]. Therefore, this paper uses the PCA method to reduce FM
dimensionality and construct a scalar function to measure FM error.

According to the eigen decomposition principle, the covariance matrix DF can be
divided into eigenvalues λi and eigenvectors ui, where i = 1, 2, . . . , 9. Next, the eigen-
values λi are arranged in descending order, and the first m eigenvalues are then used to
calculate the cumulative contribution rate following Equation (21). Herein, the cumulative
contribution rate is the information preservation degree of the original data by the newly
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generated components, which is usually required to be >85%. When η is greater than 85%,
the j value at this time is considered as the m value.

η (m) =
∑m

j=1 λj

∑i=9
i=1 λi

, m ≤ 9 (21)

The eigenvectors corresponding to the first m eigenvalues are extracted to form a
transformation matrix TT:

TT = (u1, u2, . . . , um) (22)

The vector Y, calculated by Equation (23), is composed of the most important m
principal components of FM, and replaces the original nine-element FM.

Y = (Y1, Y2, · · · , Ym)
T = T× f (23)

Herein, the Y1 and Y2 coordinate axis are the original direction with the largest and
the second largest variance of FM, and so on. It is well known for Equation (23) that
the correlation coefficients between Y elements are all 0, the scalar function YF can be
constructed by the weight αi, where αi is the ratio of λi to the sum ∑i=9

i=1 λi of the eigenvalues,
as is shown in Equation (24).

YF = α1Y1 + α2Y2 + . . . + αiYi, αi = λi/ ∑i=9
i=1 λi (24)

The FM describes the mapping relationship between two uncalibrated images, and
its rank is 2 [8]. Therefore, the scale of the FM value is uncertain. In order to unify the
scale of FMs in a pair of stereo images, the min-max normalization method is utilized in
the proposed method to convert the scalar function YF to the ratio RF. Supposing that the
boundary (the lower bound YL

F and the upper bound YU
F ) of YF can be calculated or counted,

the ratio RF can be calculated by Equation (25) to determine the quality of FM. When the
ratio RF is in the range [0, 1], its corresponding FM is considered credible. Otherwise, when
RF > 1, it is considered as a low-quality FM.

RF =
YF −YL

F
YU

F −YL
F

(25)

Alternatively, when the lower bound of Y is known, the FM error direction can be
represented by an vector arrow. In Figure 2b, the difference vector ∆Y between a certain Y
and the lower bound of Y is the FM error direction in 2D space.
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Figure 2. Error value and error direction of FM. (a) describes the FM error value in 1D space, and 
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3.3. Review of the Proposed Method

As we know, FM represents a transformation from the coordinate system centered at
C’ to the other centered at C (Figure 1). Therefore, the FM F in Equation (1) is the linear
transformation function between known corresponding points, and its eigenvectors are FM
directions in 2D image space (Figure 3a). The covariance matrix DF can then be derived
using matrix differentiation theory, which describes the FM error direction in 9D FM space
in Figure 3b; herein, the eigenvector corresponding to the maximum eigenvalue of DF is
the maximum variance direction of FM error. The FM can then be converted into Y or YF
by the PCA method. Figure 3 is the specific conversion process from nine-element FM to
two-element Y in a new 2D space and to one-element YF in a new 1D space.
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When the boundary of Y or YF is counted or calculated, the FM error can be represented
by the ratio RF and the difference vector ∆Y. The calculation process of FM error in the
proposed method is shown in Algorithm 1.

Algorithm 1. The calculated steps of FM error.

1. The FM can be calculated with known corresponding points on two uncalibrated images.
2. The covariance matrix of FM can be calculated by Equation (20), and its eigenvectors can

then be obtained by eigendecomposition.
3. The m-element vector Y can be calculated by Equation (23). Here, m < 9.
4. The scalar function YF can be calculated by Equation (24), which represents the value of the

maximum variance direction of FM.
5. When the boundary of Y or YF is known, the error value and the error direction of FM can

then be measured by calculating the ratio RF and the difference vector ∆Y, respectively.

When the specific ratio RF is within the range of [0, 1], its corresponding FM is
considered reasonable and credible. Conversely, it may be necessary to recalculate an FM
to evaluate the intrinsic projective geometry relationship between two uncalibrated images.

4. Experiment

A large number of experiments found that the cumulative contribution rate of the first
two eigenvalues for FM covariance matrix, which is calculated by Equation (23), accounted
for > 85%. Therefore, the first two principal components Y1 and Y2 are used to form the
vector Y = (Y1, Y2) and to construct the scalar function YF. Therefore, the Y and YF could
be calculated mainly by Equation (26) in the following experiments.

YF = λ1Y1 + λ2Y2
Y1 = u1f
Y2 = u2f

(26)

Herein, f is the nine-vector of FM, λ1 and λ2 are the largest and sublargest eigenvalues
decomposed by the covariance matrix DF. Additionally, u1 and u2 are eigenvectors corre-
sponding to the eigenvalues λ1 and λ2, respectively.

4.1. Data Source

Three groups of stereo images in this work were selected with different image ac-
quisition methods for testing, and their corresponding points were extracted using SURF
and the nearest-neighbor search algorithms. The test1 (Figure 4(a1,b1)) was with normal
close-digital stereo imagery of the Tsinghua School, Beijing, China, which was published by
the Institute of Automation of the Chinese Academy of Sciences, Beijing, China. In addition,
835 pairs of corresponding points are shown in Figure 4(c1) with + symbols, of which about
250 pairs are outliers. The test2 (Figure 4(a2,b2)) was actual digital drone images, which
were taken by measuring using a SONY ILCE-6000 digital camera at an altitude of 300 m.
Consequently, 1962 pairs are shown in Figure 4(c2), of which about 550 pairs are outliers.
The test3 (Figure 4(a3,b3)) are actual digital aerial images, which were taken using the
digital aerial UltraCam camera at an altitude of 3600 m. Figure 4(c3) shows 3656 pairs and
150 pairs are outliers.
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4.2. Correctness of Scalar Function

It is often desirable to use an element or scalar function to refer to multiple variables,
in which the norm is an important method to study least-squares solutions and matrix
perturbations [36]. There are many types of norms, e.g., the Euclidean norm, row addi-
tion norm, column addition norm, spectral norm, and the Mahalanobis norm, in which
Euclidean and Mahalanobis norms are metric functions that measure matrix similarity.
Previous research has pointed out that the Manhattan distance in matrix theory could be
used to evaluate FM error [32] and was expressed as

‖ F ‖Df
=
√

tr
(
FT ×Df × F

)
(27)

Therefore, this paper uses the Mahalanobis norm ‖ F ‖Df
as the truth value to verify

the correctness of the scalar function YF.
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4.2.1. Experiment Process

The Mahalanobis norm computed by Equation (27) can be used as the truth value
to verify the derived value in Equation (26). Figure 5 is a verification flowchart and its
verification process is as follows:
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Figure 5. Verification flowchart of the proposed method.

1. The RANSAC algorithm is run n times to obtain n Ri sets of corresponding points
after eliminating outliers, with which the covariance matrix DFi can then be calculated
by Equation (20), where i = 1, 2, . . . , n.

2. The Mahalanobis norm ‖ F ‖Df
can be calculated following Equation (27), which is

considered the truth value of FM error.
3. The scalar function YF can also be calculated using Equation (26), which is a measured

value of FM error.
4. The correlation of the truth and measured errors can be calculated. When the correlation

coefficient is large enough, the scalar function derived in this article is considered correct.

4.2.2. Experiment Result

The RANSAC algorithm was run 100 times to obtain 100 Ri sets using known corre-
sponding points in Figure 4(c1,c2,c3), and the covariance matrix DFi then was calculated
by Equation (20), here, i = 1, 2, . . . , 100. The scalar function YF and Mahalanobis norm
‖ F ‖Df

of FM were then calculated following Equations (26) and (27), and their distribution
(the first and second) and correlation (the third) scattergrams are shown in Figure 6.
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A linear relationship exists between the scalar function YF and the Mahalanobis norm
‖ F ‖Df

. By linear fitting, the correlation coefficients are 0.951, 0.935, and 0.933 in tests 1,
2, and 3, respectively. Therefore, YF and ‖ F ‖Df

have great correlation, >90% in all three
tests. The Mahalanobis norm as the truth error can represent the difference of FMs, thus,
the scalar function YF derived in Equation (26) can also be utilized in this study.

4.3. Comparison with the Existing Method

In the past few years, although the 3D metric distance was proposed as a new error
criterion to estimate the FM quality, it also has a similar performance in accuracy compared
to the symmetric epipolar distance [23]. Therefore, the symmetric epipolar distance, as the
most popular error criterion, is chosen to verify the proposed method. Specifically, the
symmetric epipolar distance Ed is the squared distance between a point’s epipolar line
and the corresponding point in the other image (computed for both points of the match),
averaged over all N corresponding points.

Ed =
1
N

N

∑
i=1

(d
(
x′i, Fxi

)2
+ d(xi, FTx′i)

2) (28)

where d
(
xi, FTx′i

)
is the distance (in pixels) between a point xi and a line FTx′i.

4.3.1. Experiment Process

The RANSAC algorithm can be run multiple times to obtain many FMs. YF and Ed
could then be calculated with Equations (26) and (28), the correlation of which could also
be fitted by the linear regression method. The comparison flowchart (Figure 7) of YF and
Ed is designed as follows:

1. The RANSAC algorithm is run n times to obtain n Ri sets of corresponding points
after eliminating errors, with which the covariance matrix DFi can then be calculated
by Equation (20), where i = 1, 2, . . . , n.

2. The symmetric epipolar distance Ed can be calculated following Equation (28), which
is considered as the compared value of FM error.

3. The scalar function YF can be calculated using Equation (26), which is a measured
value of FM error.

4. After the correlation of Steps 2 and 3 is calculated, the difference between the proposed
method and the existing method can be analyzed.
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4.3.2. Experiment Result

The RANSAC algorithm was run 100 times to obtain 100 FMs using known corre-
sponding points in Figure 4(c1,c2,c3). Following this, 100 YF and 100 Ed values were
calculated by Equations (26) and (28), respectively. Figure 8 shows the distribution and
correlation scattergrams of YF and Ed.
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In this experiment, three groups of scattergrams in Figure 8(a1,a2,a3) were calculated
with known corresponding points in Figure 4(c1,c2,c3), and in Figure 8(b1,b2,b3) with the
corresponding points after removing the false points. Comparing Figure 8(a1,a2,a3) with
Figure 8(b1,b2,b3), it is found that the linear distribution in Figure 8 (b1,b2,b3) is a part
in Figure 8(a1,a2,a3), as the rectangle in Figure 8(a1,a2,a3) points from Figure 8(b1,b2,b3).
By linear fitting, the correlation coefficients between YF and Ed are 0.274, 0.126, and
0.861 in Figure 8(a1,a2,a3), and 0.842, 0.839, and 0.946 in Figure 8(b1,b2,b3). Relative to
Figure 8(b1,b2,b3), the correlation coefficients of Figure 8(a1,a2,a3) are all lower, especially
those of Figure 8(a1) and Figure 8(a2). The specific reason is as follows: There are about
250 pairs in test1, about 550 pairs in test2, and about 150 pairs of false matches in test3,
and they, respectively, account for about 30%, 28%, and 4% of all corresponding points in
Figure 4(c1,c2,c3). Tests 1 and 2 in Figure 8(a1,a2) contain many false corresponding points,
which makes it difficult to eliminate all the false points using the RANSAC algorithm, so
that the R set in Figure 7 contains several false corresponding points, calculating an outlier
of Ed, and resulting in less correlation between YF and Ed.

Therefore, false corresponding points affect the linear relationship of YF and Ed. When
there are many false points in an R set, the Ed calculated by Equation (28) may be wrong or
a large error, resulting in the incorrect estimation of FM. However, the covariance DF of FM
in this article is calculated with the least-squares principle, which ignores the influence of the
false corresponding points on the whole. Therefore, compared with the symmetric epipolar
distance, the proposed method relies less on the accuracy, number, and distribution of known
corresponding points, and is more robust and more reliable for evaluating FM error.

4.4. Application of This Method

With this proposed method, the FM and its covariance matrix can be calculated with
known corresponding points on uncalibrated stereo images, and the vector Y and scalar
function YF can be calculated by Equation (26). When the boundary of YF or Y can be
counted or calculated for a group of stereo images, the ratio RF and the vector arrow ∆Y
can be calculated to estimate the error value and the error direction of a certain FM in this
group of stereo images.

Figure 9 shows the statistical boundaries (broken lines) of YF and Y based on three
groups of stereo images in Figure 4. In this experiment, the RANSAC algorithm was run
100 times to obtain 100 Y and 100 YF values, most of which are clustered together and
form the normal distribution and the error ellipse. For a certain FM estimated with some
corresponding points in Figure 4(c1,c2,c3), the Y and YF can be calculated.
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Figure 9. Statistical results. (a1,a2,a3) and (b1,b2,b3) are three groups of statistical histograms of YF

and scatter plots of Y, which are calculated and counted from corresponding points removing false
points in Figure 4(c1,c2,c3), respectively. In addition, the yellow triangles are the lower-bound points
of the reasonable boundaries of YF and Y, respectively, and the red dots A and B are two YF or Y
values corresponding to two different FMs.

With the statistical boundaries (broken lines) of YF and Y in Figure 9, the ratio RF
and the vector arrow ∆Y can then be calculated. When the YF or Y falls into the normal
distribution curve or inside the error ellipse, its ratio RF is less than 1 and its vector arrow
is inside the error ellipse, as shown in the red dot A. This means that the FM corresponding
to the red dot A falls into the normal distribution and the error ellipse, and is considered to
have less error and be more credible. On the contrary, the red dot B falls outside the normal
distribution and its vector arrow goes beyond the error ellipse. We can say that the FM
corresponding to the red dot B may be low quality, and it is necessary to recalculate an FM
to evaluate the intrinsic projective geometry relationship between two uncalibrated images.

5. Discussion

FM represents the intrinsic projective geometry between two image planes, and is
a multivariate matrix of nine elements, in which is difficult to measure the FM error
represented by 9 × 9 covariance matrix. The PCA is the most widely used method to
reduce the dimensionality of such datasets. Therefore, this study used the PCA method to
reduce FM dimensionality and constructed the scalar function YF to measure FM error.

In matrix theory, the Manhattan distance as a standard can be used to measure the
difference of FMs. This study used the Mahalanobis norm ‖ F ‖Df

as the truth value to verify
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the correctness of the scalar function YF. The experiment in Section 4.2 found that there was a
linear relationship between YF and ‖ F ‖Df

, and there was a high linear correlation in three
groups of tests. The Mahalanobis norm, as the truth value, can represent the difference of
FMs, the scalar function YF derived in Equation (26) can also be used to measure the FM error.

The symmetric epipolar distance is the most popular error criterion. This study ana-
lyzed the relationship between the scalar function YF and the symmetric epipolar distance
Ed in Section 4.3. Compared with tests 1 and 2, test 3 had a higher linear relationship in
Figure 8. The reason may be that there are many false corresponding points in tests 1 and 2,
the Ed calculated with these corresponding points may be wrong or involve a large error,
resulting in the incorrect estimation of FM. Therefore, false corresponding points affect
Ed and the linear correlation coefficient of YF and Ed. Compared with Ed, the proposed
method relies less on the accuracy, location, and number of known corresponding points,
and is more robust and more reliable to evaluate FM error.

It is worth noting that both the Mahalanobis norm ‖ F ‖Df
and the symmetric epipolar

distance Ed are error criteria greater than 0. When ‖ F ‖Df
or Ed is larger than 0, it means

the FM error is larger. However, the experiments in this article found that the ranges of
YF calculated in the three tests were different in Figures 6 and 8, in which some YF values
were less than 0. Although YF is linear with respect to ‖ F ‖Df

or Ed, the minimum value
of YF is uncertain. Therefore, it is difficult to measure the FM error for a specific YF. In
order to solve this problem, the min-max normalization method is utilized to transform the
scalar function YF to the ratio RF. In Section 4.4, the boundary of YF or Y can be counted
using the different corresponding points of the same stereo images multiple times. As is
shown in Figure 9, the boundary of YF is a normally distributed curve in 1D space, and the
boundary of Y is an error ellipse in 2D space. When the YF or Y corresponding to a specific
FM falls into a normal distribution curve or inside an error ellipse, the ratio RF is less than
1, and the FM corresponds to the YF, Y and RF are then considered to have less error and
be credible. Otherwise, the FM corresponding to the ratio RF > 1 may be low quality.

In summary, three groups of experiments verified the rationality of the proposed
method and obtained results as follows: (1) The proposed method is highly fitted to the
Mahalanobis norm of FM and can be used to replace the nine-element FM. (2) Compared
with the symmetric epipolar distance, the proposed method relies less on the accuracy,
location, and number of known corresponding points, and is more robust and more reliable
in evaluating FM error. (3) Through statistical analysis, it was found that the FM error is
normally distributed and forms an error ellipse. When counted or calculated, the boundary
of YF or Y, the ratio RF, and the vector ∆Y can be calculated to estimate the error value and
error direction of FM. When the ratio RF is within [0, 1], the FM corresponding to RF is
considered reasonable. Conversely, it may be a low-quality FM.

6. Conclusions

This study accomplished two main objectives: one was to derive the covariance matrix
by matrix differential theory and covariance-propagation theory, and the second was to use
the PCA method to construct the scalar function to estimate FM error. Specifically, the FM
error in this paper was estimated as follows:

• Compute the covariance matrix using the known corresponding points extracted from
two uncalibrated images.

• Following the PCA method, decompose the covariance matrix and then construct the
vector Y and the scalar function YF.

• Count or calculate the boundary of Y and YF, and then calculate the ratio RF to estimate
FM error. Here, the FM corresponding to RF ∈ [0, 1] is considered reasonable. When
RF > 1, it is considered a low-quality FM.

The main significance of the proposed method is to determine whether a specific FM
falls into a normal distribution or inside an error ellipse by calculating the ratio RF. When
the RF is in the range [0, 1], FM is then considered to be inside a normal distribution or an
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error ellipse, and it is credible to describe the intrinsic projective geometry between the two
uncalibrated images. Conversely, it may be necessary to recalculate an FM for computing
camera parameters, making adjacent image connections, and reconstructing 3D models.

The boundary of the error criterion in this paper was obtained by statistical methods
in experimental application. They will be studied and calculated by theoretical methods in
the future.
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