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Abstract: This study investigates the potential of L- and C- bands Polarimetric Synthetic Aperture
Radar (PolSAR) data to monitor soil moisture over the forested sites of SMAP Validation Experiment
2012 (SMAPVEX12). The optimal backscattering coefficients and polarimetric parameters to char-
acterize the soil moisture were determined based on L-band Uninhabited Aerial Vehicle Synthetic
Aperture Radar (UAVSAR), C-band RADARSAT-2, and ground measurements composed of soil
and vegetation parameters collected during SMAPVEX12. Linear and circular backscattering coeffi-
cients (σ0) and polarimetric parameters such as correlation coefficients (ρHHVV) and phase difference
(ϕHHVV) between HH and VV, pedestal height (PH), entropy (H), anisotropy (A), α angle, surface
(Ps), and double bounce (Pd) powers were used to develop the relationships with soil moisture. The
analysis of these relationships shows that over the forested sites of SMAPVEX12: (a) at L-band several
optimal backscattering coefficients and polarimetric parameters allow the monitoring of soil moisture,
particularly the linear and circular σ0 (r = 0.60–0.96), Ps (r = 0.59–0.84), Pd (r = 0.60–0.82), ρHHHV_30◦,
ρVVHV_30◦, ϕHHHV_30◦ and ϕHHVV_30◦ (r = 0.56–0.81). However, compared to the results obtained
with σ0, there is no added value of the polarimetric parameters for soil moisture retrievals. (b) at
C-band, only a few polarimetric parameters ϕHHHV, ϕVVHV, and ϕHHVV are correlated with soil
moisture (r = ~0.90). They can contribute to soil moisture retrievals over forested sites when L-band
data are not available.

Keywords: SAR; L-band; C-band; polarimetry; soil moisture; forested sites; SMAPVEX12

1. Introduction

Soil moisture is a key parameter in environmental and hydrological processes related to
runoff and evapotranspiration [1]. By controlling the distribution of precipitation between
infiltration and runoff, soil moisture also influences soil erosion processes [2–4], weather,
and climate events [5]. Due to these determining roles in the water cycle and global energy,
soil moisture is recognized as an essential climate variable by the Global Climate Observing
System [6]. Over the forest cover which represents 30% of Earth’s surface, an extreme
increase in soil moisture can produce paludification [7], while an extreme decrease in soil
moisture can cause the risk of forest fires [8]. Therefore, the knowledge of soil moisture is
very important for the protection and management of forested resources.

Due to high cost, in-situ soil moisture measurements are limited in space and time.
With the launch of L-band passive microwave satellites Soil Moisture and Ocean Salinity
(SMOS) in 2009 and Soil Moisture Active and Passive (SMAP) in 2015, considerable ad-
vances were made in soil moisture monitoring on a global scale. However, few results
were obtained over areas covered by dense forests, as a result of their strong attenu-
ation and scattering effects on microwave signals [9]. Based on the SMAP Validation

Remote Sens. 2022, 14, 5317. https://doi.org/10.3390/rs14215317 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14215317
https://doi.org/10.3390/rs14215317
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs14215317
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14215317?type=check_update&version=2


Remote Sens. 2022, 14, 5317 2 of 19

Experiment 2019–2021 (SMAPVEX19-21), Colliander, et al. [10] used a two-layer radia-
tive transfer model [11] to retrieve soil moisture with RMSE of 0.047–0.057 m3/m3 over
temperate forest sites from SMAP brightness temperature. During the summer of 2022,
SMAP Validation Experiment 2022 (SMAPVEX22) and SMAPVEX 2022 in Boreal forests
(SMAPVEX22-Boreal) were respectively conducted over temperate forests located in the
USA and over the boreal forested sites of the Boreal Ecosystem Research and Monitoring
Sites (BERMS) located in Saskatchewan (Canada). A huge amount of data (including soil
moisture at organic/mineral layers, depths of these layers, tree trunk/branch moisture
contents and sizes, L-band airborne and satellite remote sensing data) was collected in order
to investigate new avenues in microwave remote sensing of the forest, develop microwave
remote sensing applications of forest such as fires monitoring, improve and validate soil
moisture retrieval algorithms over dense vegetation conditions (e.g., Vegetation Water
Content—VWC > 5 kg/m2) from SMAP and SMOS signatures [12]. The literature showed
further improvement in soil moisture products by combining these passive microwave sig-
natures with Synthetic aperture radar (SAR) [13,14]. In contrast to passive microwave, SAR
is characterized by fine spatial resolution but low temporal resolutions (e.g., 24 days for
RADARSAT-2). Furthermore, SAR data is more affected by surface properties such as sur-
face roughness and vegetation, which make soil moisture estimation difficult particularly
over forested areas [15,16]. For such dense vegetated areas, the radar signal’s sensitivity
to soil moisture decreases due to the scattering by vegetation biomass, which reduces the
contribution of the soil in the measured signal [17,18]. In addition, forested areas represent a
complex scattering environment [19] with several unknowns in the soil moisture estimation
algorithms, such as the permittivity of tree components (trunk, branches, leaves) and soil
layers. Polarimetric decomposition of P-band (long-wavelength) airborne radar data was
used to estimate forest soil moisture [20]. Kurum, et al. [21] estimated soil moisture with
RMSE of 0.044 m3/m3 for SMAP Validation Experiment 2012 (SMAPVEX12) forest sites,
characterized by vegetation water content ranging from 7.3 to 25.6 kg/m2, using L-band
Uninhabited Aerial Vehicle SAR (UAVSAR) data acquired with wide ranges of incidence
angles (an angle between radar beam and the normal direction of the land surface). They
found that VV-polarized backscattering power provides robust retrieval results, while the
inclusion of HH-polarization did not improve the retrieval. At C-band, the radar signal
is affected by the structure and the water content of vegetation. The degree of interaction
with the vegetation depends on the incidence angle and the polarization [22].

Over forested areas, most of the research works have focused on the estimation of
biomass [23] and few investigations have attempted to estimate soil moisture in boreal
forests [24,25]. The obtained results were sites specific and were limited by the use of
single-polarization C-band SAR such as ERS-1 and RADARSAT-1. To reduce the influ-
ence of vegetation on the radar signal and thus for a better access to soil parameters, a
low incidence angle (<30◦) or low frequency (L-band) can be used [22,26]. With fully
polarimetric SAR (PolSAR) data, several investigations focused on target classification
using polarimetric discriminators [27,28] and target decomposition approaches [22,29–31].
Despite the additional information provided by the PolSAR data on the structural change
of vegetation and surface roughness as well as on the scattering contributions of these
parameters [17,18,32], it is a great challenge to estimate soil moisture from polarimetric
parameters. Studies found in the literature were primarily focused on burned forest areas
with low biomass [17,18].

This paper aims to analyze the potential of L- and C- bands fully PolSAR signatures
for monitoring soil moisture over the SMAPVEX12 forested sites. During the SMAPVEX12
campaign, soil (soil moisture, roughness) and vegetation (Diameter at Breast Height—DBH
of trees and floor cover) parameters were collected over four forested sites along with
L-band UAVSAR data at 25–65◦ incidence angles and C-band RADARSAT-2 data. In
this paper, the relationships between L- and C- bands SAR parameters and soil moisture
were first developed. They were interpreted using statistical analyses (linear correlation
coefficient and significance test) to identify the optimal backscattering coefficients and
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polarimetric parameters for soil moisture monitoring over forested sites. The added value
of the polarimetric parameters for soil moisture retrieval was also discussed. The results
obtained will be of great interest in using the recently collected SMAPVEX (SMAPVEX19-21,
SMAPVEX22, SMAPVEX22-Boreal) datasets to develop improved soil moisture retrieval
algorithms for forest sites. This paper is organized as follows: Section 2 presents a brief
review of backscattering coefficients and polarimetric parameters which have the potential
to characterize forest soil moisture, followed by the study site and the dataset description in
Section 3. The methodology and the results are presented in Sections 4 and 5, respectively.
Finally, Section 6 provides the conclusion.

2. SAR Scattering Parameters

In radar remote sensing, the strength of the scattering mechanisms (surface, volume,
double-bounce) can be evaluated from the backscattering coefficients and polarimetric
parameters (Table 1) which are extracted from the covariance and or the coherency ma-
trices [32]. The knowledge of the predominant scattering mechanism is useful to assess
the potential of the signal for retrieving soil or vegetation parameters [33]. The linear
(σ0

HH, σ0
VV, and σ0

HV) and circular (σ0
RR, σ0

LL, and σ0
RL) are considered in this pa-

per due to their relative potential for soil moisture monitoring highlighted by previous
studies [1,14,15,34,35]. As for the polarimetric parameters, the focus is on the correla-
tion coefficient between two channels through its amplitude (ρ) and its phase (ϕ), the
parameters extracted from the target decompositions of Cloude-Pottier (entropy H, angle
α, anisotropy A) and Freeman-Durden (surface and dihedral scattering powers Ps and Pd,
respectively) and the pedestal height. Table 1 presents the list of backscattering coefficients
and polarimetric parameters used in this study.

Table 1. Backscattering coefficients and selected polarimetric parameters.

Backscattering Coefficients Selected Polarimetric Parameters

σ0
HH, σ0

VV, σ0
HV

Backscattering
coefficients (dB) in
linear polarizations
HH, VV, and HV

ϕHHVV , ϕHHHV , ϕVVHV

Phase differences
between two channels
HH-VV, HH-HV, and
VV-HV

σ0
RR, σ0

LL, σ0
RL

Backscattering
coefficients (dB) in
circular polarizations
RR, LL, and RL

ρHHVV , ρHHHV , ρVVHV

Correlation
coefficients between
two channels HH-VV,
HH-HV, and VV-HV

PH Pedestal height

H, A, α
Entropy, Anisotropy,
alpha

Ps, Pd

Surface and volume
scattering powers
(dB)

2.1. Backscattering Coefficients

The sensitivity of the backscattering coefficient to the target characteristics is highly
dependent on the amount of these characteristics, particularly that of the moisture content,
biomass and the geometrical structure (roughness, vegetation architecture such as scatterer
size and orientation) as well as on the sensor frequency, polarization, and incidence an-
gles [34]. Indeed, a study conducted with ERS-1 (C-band, VV polarization, 23◦) and JERS-1
(L-band, HH polarization, 35◦) showed that the sensitivity of the backscattering coefficient
to biomass is influenced by soil moisture [35]. Several studies pointed out that at C-band
SAR signature comes mainly from the upper layer of trees and it quickly saturates with
vegetation density [33]. In contrast, at lower frequencies (L- and P-bands), the vegetation
effect is less important (less attenuation and more penetration in the vegetation cover), so
that they allow better monitoring of soil moisture.
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In this context airborne data (AIRSAR, UAVSAR) collected in the framework of several
research programs played a significant role in the understanding of low-frequency SAR
data and the development of soil moisture retrieval algorithms over forested sites. Using
P-band AIRSAR data collected over tropical forests, Truong-Loï, et al. [36] developed
analytical formulations of σ0

HH, σ0
VV, and σ0

HV to estimate soil moisture, soil roughness and
vegetation biomass. For soil moisture retrieval, they obtained an RMSE less than 4 (%vol.)
which increased with the sensor incidence angle. In a study conducted with AIRSAR data
collected over the Boreal Ecosystem-Atmosphere Study (BOREAS) forest [37], the double-
bounce of old jack pine (OJP) site is found to be predominant for L- and P-bands horizontal
polarization (L-HH and P-HH) and P-band vertical polarization (P-VV). Based on these
results, soil moisture was retrieved over the OJP site from parametric models developed
for only the double-bounce scattering [33]. Using L-band UAVSAR data and a forward
scattering model, Tabatabaeenejad, et al. [26] investigated the soil moisture retrieval over the
forest sites of the CanEx-SM10 experiment [38]. In accordance with Moghaddam, et al. [33],
they found a good potential of L-band radar to retrieve soil moisture under forests, such
as the abovementioned OJP site and the young jack pine (YJP) site with trunk-ground
double-bounce as a predominant scattering mechanism. On the contrary, large retrieval
errors were obtained over the old black spruce site, characterized by a complex forest
floor (understory, moss) which can attenuate the soil scattering mechanisms containing the
soil moisture information [39]. While most of the soil moisture investigations conducted
with low-frequency SAR over forested sites used airborne data, at the satellite scale the
focus is generally on the biomass estimation from higher frequencies. Bourgeau-Chavez,
et al. [18] conducted a rare sensitivity study of C-band SAR data to soil moisture under
forested sites. They obtained a correlation of about 0.68–0.78 between the soil moisture
and the RADARSAT-2 HH, VV, and HV polarization signals acquired at 19–21◦ incidence
angle over burned boreal forest sites (shrub, sparse, and moderately dense) in Alaska. To
discriminate between dry and wet soil conditions, a study conducted over forested sites
with biomass varying from low to high showed the great potential of RADARSAT-2 HH
and LR polarizations [18].

2.2. Polarimetric Parameters

Soil moisture estimation from polarimetric parameters is relatively recent [40–44].
Similar to the use of backscattering coefficients, high vegetation amount negatively impacts
the algorithm accuracies [43]. However, over forested areas characterized by high biomass
and complex scattering environments, the investigations using polarimetric parameters
for soil moisture retrieval are limited. Since the polarimetric decomposition provides
the strength of individual scattering mechanisms, the decomposition parameters related
to the dominant surface or double-bounce scattering could be used for soil moisture
estimation. Without focusing on the theoretical aspects of the polarimetric parameters
listed in Table 1, Sections 2.2.1–2.2.3 briefly present the results of previous investigations
about the contribution of the correlation coefficient (amplitude and phase), the pedestal
height, and the parameters of two polarimetric decompositions (Freeman-Durden and
Cloude-Pottier) to soil moisture retrieval.

2.2.1. Amplitude and Phase of the Correlation Coefficient

The amplitude of the correlation coefficient between two channels indicates the degree
of correlation of these channels while its phase measures their phase difference. Using the
P-band airborne polarimetric data of NASA/JPL data, Le Toan, et al. [45] showed that the
amplitude and the phase of the correlation coefficient between HH and VV polarizations
(ρHHVV and ϕHHVV) can be used for the biomass estimation over the Landes pine forest, in
France. No attempt was made by Le Toan, et al. [45] for soil moisture estimation. Compared
to the backscattering coefficients acquired over bare soils at P-, L-, and C- bands, Borgeaud
and Noll [46] showed the supplementary information contained in ρHHVV and ϕHHVV for
the retrieval of geophysical parameters. Later, Skriver, et al. [47] showed that at L- and C-
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bands, both the magnitude and the behavior (angular and temporal) of ρHHVV and ϕHHVV
are related to the scattering mechanisms of crops. Indeed, for a surface scattering ρHHVV is
high with a value close to 1 (it is smaller for volume scattering) while small values near
0◦ are found for ϕHHVV [46–48]. Mitigated results were obtained about the sensitivity of
ρHHVV to soil roughness [46,49], while several studies showed that ρ HHVV and ϕHHVV are
not sensitive to soil moisture [50]. Over low biomass boreal forested sites, no correlation
was obtained at C-band between ϕHHVV and the soil moisture [17].

2.2.2. Pedestal Height

The pedestal height can be used as an indicator of non-polarized signals [28]. Low
pedestal height expresses a polarized signal; and conversely, high pedestal height character-
izes a depolarized signal due to volume scattering [47]. Therefore, the low pedestal height
values which are characteristic of the surface scattering mechanism can be used for soil
moisture monitoring. Over bare soil, Sokol, et al. [1] obtained a good correlation (r = 0.82)
between the pedestal height and the soil moisture. This correlation value decreases to 0.74
and 0.61, over burned and unburned boreal forested sites, respectively [17]. However, the
increasing relationship between the pedestal height and the surface roughness found in
McNairn, et al. [48] will affect the observed correlations between the soil moisture and the
pedestal height.

2.2.3. Polarimetric Decomposition Parameters

The two widely used decompositions are the model-based decomposition of Freeman-
Durden and the eigenvectors/eigenvalues decomposition of Cloude-Pottier [22,29]. They
allow us to evaluate three scattering mechanisms [44,51] which can be used individually or
together for the monitoring of the surface parameter(s) of interest [43,51,52].Considering
the soil moisture estimation, these two decompositions approaches were seldom used over
forested areas [17,18].

Freeman-Durden decomposition [22]: It partitions the signal into a surface (Ps), a vol-
ume (Pv), and a double bounce (Pd) scattering. The first and the second components
come from the ground surface and the vegetation, respectively. The third one resulted
from the interaction between the ground surface and the vegetation [22]. Based on the
rationale of Freeman-Durden decomposition, other model-based decompositions have
been developed by considering the scattering mechanisms in different ways [31,40,53]. Due
to the complementarity between the soil moisture inversion results obtained from Ps and
Pd, the main advantage of the simultaneous use of Ps and Pd is the increase of the re-
trieval rate [40]. Using low incidence angle (19–21◦) RADARSAT-2 data, Bourgeau-Chavez,
et al. [18] and Bourgeau-Chavez, et al. [17] showed the potential of Ps and Pd to monitor
the soil moisture over low biomass boreal forested sites. However, a study conducted
over a tropical forest with L-band high incidence angles (63–70◦) airborne data showed a
good correlation (r = 0.63) between Pd and the stem volume [54]. Through a model-based
polarimetric decomposition adapted for the first time to P-band airborne data, Jagdhuber,
et al. [20] used the dominant scattering component between Ps and Pd to estimate soil
moisture over forest sites.

Cloude-Pottier decomposition [29]: It provides three relevant polarimetric parame-
ters which are the entropy (H), the anisotropy (A), and the alpha angle (α). They were
widely used to distinguish the scattering mechanisms involved in a given signal [43,49].
Furthermore, Cloude-Pottier decomposition is used for soil moisture retrieval over bare
soils [52,53] or to improve soil moisture retrieval over vegetated areas [31,55]. It was shown
by Baghdadi, et al. [41] that the alpha angle (α1) associated with the first eigenvector can be
used for the detection of very wet soils (>0.3 m3/m3). Nevertheless, the weak correlation
observed at C-band between H, α, and soil moisture shows that the sensitivity of these
polarimetric parameters to soil moisture is not clear. Over low biomass boreal forested
sites, Bourgeau-Chavez, et al. [18] found low correlations between the soil moisture and
the parameters H, A, and α.
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The limitations of the C-band backscattering coefficient for soil moisture retrieval are
presented in Section 2.1. In the present paper, we analyzed the added-value of C-band
polarimetric parameters to estimate soil moisture over SMAPVEX12 forested sites which
are different from tree and floor characteristics. Similar analyses are conducted at L-band in
order to determine the optimal PolSAR parameters (backscattering coefficients, polarimetric
parameters) or a set of optimal PolSAR parameters for that topic. Investigations which
are close to ours are those of Bourgeau Chavez et al. [14,15] with however two main
differences: (1) we conducted at two frequencies (instead of one frequency) sensitivity
studies of backscattering coefficients and polarimetric parameters to soil moisture over
forested sites; (2) these sites are characterized by different floor characteristics and biomass
varying from low to high (instead of low biomass forested sites only).

3. Study Area

This study focused on the forested sites of the SMAPVEX12 campaign ([56], https:
//smapvex12.espaceweb.usherbrooke.ca (accessed on 17 October 2022)) which took place
in the southwest of Winnipeg (98◦0′23”W, 49◦40′48”N), Manitoba in Canada during the
summer of 2012. Figure 1 delineates the location (red rectangles) of four forested sampling
sites, namely F1, F2, F3, and F5, which are dominated by forest/grassland with the Trem-
pling Aspen as the main tree species. The area is flat with an elevation of about 315 m
(http://fr-ca.topographic-map.com/places/Manitoba-437295/ (accessed on 17 October
2022)). The annual precipitation is around 520 mm (https://weather-and-climate.com/)
(accessed on 17 October 2022).
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Figure 1. Location of (a) SMAPVEX12 area and (b) four forested sampling sites of SMAPVEX12.

4. Data

The SMAPVEX12 experiment was conducted for 6 weeks between 6 June and 17 July
2012, to capture variable soil and vegetation conditions. More details about SMAPVEX12
data collection can be found in [56]. The data consisted of ground measurements of soil
and vegetation characteristics, satellite and airborne SAR, and auxiliary data.

https://smapvex12.espaceweb.usherbrooke.ca
https://smapvex12.espaceweb.usherbrooke.ca
http://fr-ca.topographic-map.com/places/Manitoba-437295/
https://weather-and-climate.com/
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4.1. Ground Measurements and Processing

For each forested site which is approximately 800 m × 800 m, a random circular area
of 200 m diameter was selected. Within this area, measurements characterizing soil (soil
moisture and surface roughness) and vegetation (diameter at breast height-DBH, water
content, density of the trunk, cover floor) were collected.

Soil moisture: Volumetric soil moisture was manually measured with Hydra probe
sensors. In addition, we make use of 5 cm depth hourly soil moisture measurements
collected by temporary stations installed over the sites F1, F2, and F3 by Manitoba Agricul-
ture, Food and Rural Initiatives (MAFRI) and the United States Department of Agriculture
(USDA). Over the F1 site, the manually measured soil moisture values were lower than
the soil moisture measured by the USDA station. Also, due to the high amount of organic
matter covering the soils of the forested sites, issues of calibration occurred with the man-
ual soil moisture measurements. Therefore, measurements by temporary stations will be
considered for the F1, F2, and F3 sites. Since no station has been installed over the F5 site,
the manually measured soil moisture will be considered for this site. For each date, soil
moisture values taken between 6:30 am to 12 am were averaged. Figure 2 presents the
temporal evolution of soil moisture measurements along with precipitation over F1, F2,
F3, and F5 sites. It shows that for the four sites, soil moisture goes relatively through three
phases according to precipitation. It is high from 7 June (DOY 159) to 22 June (DOY 174)
2012 and then decreases from 6 June (DOY 158) to 12 July (DOY 164) 2012 due to the lack of
precipitation. At the end of the field campaign, it increases with some rain events.
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Figure 2. Temporal profile of soil moisture and precipitation over F1, F2, F3, and F5 forest sites.

Surface roughness: Soil surface roughness parameters (rms height, correlation length)
were measured at two locations over the F1, F2, and F3 sites and at one location over the F5
site in the look directions of RADARSAT-2 and UAVSAR sensors. For each location and
each look direction, the measurements result from a 3-m profile obtained by combining
three measurements of a 1-m long pin profilometer with a sample resolution of 0.5 cm.
Table 2 shows the average values of the surface rms height and correlation length obtained
over each forested site. The values of rms and correlation length vary from 0.7 to 1.7 cm and
10.5 to 22.75 cm, respectively. Over site F2, the surface roughness expresses heterogeneity,
resulting in a larger difference when observed from the RADARSAT-2 and UAVSAR look
directions.



Remote Sens. 2022, 14, 5317 8 of 19

Table 2. Surface roughness measurements over SMAPVEX12 forested sites in the look direction of
RADARSAT-2 and UAVSAR sensors.

Forest Site

UAVSAR RADARSAT-2

RMS (cm) Correlation
Length (cm) RMS (cm) Correlation

Length (cm)

F1 0.93 18.75 1.05 15.5
F2 1.63 22.75 1.04 10.5
F3 1.46 17 1.61 14
F5 0.85 13 0.77 15.5

Vegetation data: DBH was measured and then used to estimate the biomass of the
dominant tree species (Trembling Aspen) with an error of 7.2 kg/m2 [57]. In this calculation,
only trees with DBH≥ 0.02 m are considered, while those with smaller DBH are considered
as floor cover. The estimated tree biomass is subsequently used to calculate the total biomass
(biomass × tree trunk density). Results show that F3 is the densest site with biomass
of 138.39 kg/m2 while F1, F2, and F5 presents similar biomass values of 34.12 kg/m2,
39.69 kg/m2, and 37.7 kg/m2 respectively (Table 3).

Table 3. Characteristics of forested sites.

F1 F2 F3 F5

Forest type The majority of species are Trembling Aspen
DHP (m) 0.25 0.21 0.28 0.15
Tree VWC
(kg/m2) 15.39 25.63 7.34 14.10

Trunk density
(nb/m2) 0.14 0.25 0.43 0.54

Floor fractional
cover (%)

Mainly grass
(44)

Mixed (herbs, shrub
dead wood, and

litter) (49)

Grass and litter
(69.5) Grass (67)

Floor cover
depth (m) 0.04 1.13 1.15 0.71

Biomass
(kg/m2) 34.12 39.69 138.39 37.7

The type of floor cover (undergrowth, litter, grasses, shrubs) and its depth are also
determined. As shown in Table 3, F1 presents the lowest floor cover, with 44% of grass
coverage and a depth of about 0.04 m. The floor fractional covers over F3 and F5 sites are
very similar and higher than those of F1 and F2. F2 and F3 present very similar floor cover
depth which is higher than those of F1 and F5.

Precipitation: The precipitation data were downloaded from the Environment Canada
website (http://www.ec.gc.ca/ (accessed on 17 October 2022)). For F1, F2, and F3 sites,
precipitation data were acquired from the Portage Southport station. The precipitation data
used for the F5 site were acquired from the Wingham Farm station (Figure 1).

4.2. SAR Data and Processing

UAVSAR data: UAVSAR onboard NASA Gulfstream-III aircraft acquired fully polari-
metric L-band (1.26 GHz) SAR data at 25–65◦ incidence angles, with a spatial resolution of
4.5 m × 5 m. The images were acquired from 17 June to 17 July during the SMAPVEX12
field campaign (http://uavsar.jpl.nasa.gov (accessed on 17 October 2022)). These images
were acquired simultaneously with manual measurements of soil moisture. Table 4 shows
the availability of UAVSAR data over the study area. To optimize the soil moisture moni-
toring over the forested sites, the flight lines providing the smallest incidence angles are
considered. They are identified as winnip_31603 and winnip_31604 with incidence angles
of 30◦ and 40◦, respectively.

http://www.ec.gc.ca/
http://uavsar.jpl.nasa.gov
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Table 4. Characteristics of UAVSAR data over the study area.

DOY 2012 Incidence Angle DOY 2012 Incidence Angle

169 30◦, 40◦ 187 30◦, 40◦

171 30◦, 40◦ 190 30◦, 40◦

174 40◦ 192 30◦, 40◦

175 30◦, 40◦ 195 30◦, 40◦

177 30◦, 40◦ 196 40◦

179 30◦, 40◦ 199 30◦, 40◦

181 30◦, 40◦

RADARSAT-2 data: The project also benefits from C-band fully polarimetric RADARSAT-
2 images acquired at incidence angles between 20 and 30◦. Table 5 shows the characteristics
of the seven Wide Quad-Polarimetric RADARSAT-2 acquisitions during the SMAPVEX12
field campaign. Since F5 is not covered with RADARSAT-2 images on the same dates
as ground soil moisture measurements, soil moisture monitoring at C-band cannot be
conducted over this site. PolSARpro (version 5) and PCI Geomatica (version 2013) software
were used for the processing of both UAVSAR and RADARSAT-2 images and the extrac-
tion/computation of the backscattering coefficients and polarimetric parameters through
the following steps:

• Extraction of the covariance matrix (C) and coherency matrix (T);
• Applying a Boxcar filter 7 × 7 [58,59] to the images;
• Extraction and computation of the backscattering coefficients and polarimetric param-

eters;
• Images orthorectification using a road network map created with QuantumGIS and

Orthoengine to remove geometric distortions.

Table 5. Characteristics of Wide mode Quad-pol RADARSAT-2 data. The ascending (A) and descend-
ing (D) directions correspond to the 7:10 PM and the 7:50 AM overpasses, respectively.

DOY 2012 Flight Direction Beam Mode Incidence Angle (◦)

164 D FQ8W 26.1–29.4
165 A FQ10W 28.4–31.6
172 A FQ6W 23.7–27.2
179 A FQ2W 19.0–22.7
188 D FQ8W 26.1–29.4
189 A FQ10W 28.4–31.6
196 A FQ6W 23.7–27.2

5. Methodology

Figure 3 presents the schematic diagram of the methodology. The backscattering
coefficients and polarimetric parameters were extracted from the covariance matrix (C) and
the coherency matrix (T). They are related to ground soil moisture measurements using
linear relationships which are statistically interpreted from the correlation coefficients and
the significance tests (p-value). Finally, the optimal PolSAR parameters (backscattering
coefficients, polarimetric parameters) for soil moisture monitoring over the forested sites
were identified based on the statistical analyses.
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5.1. Extraction of the Backscattering Coefficients and the Polarimetric Parameters

For each forest site, for each frequency, and for each SAR image acquisition date,
the backscattering coefficients and the polarimetric parameters are extracted within the
same polygon for which the number of pixels depends on the spatial resolution of the
images (Table 6). The average values of the backscattering coefficients and the polarimetric
parameters were computed over the polygons and subsequently used in this paper.

Table 6. Pixels number of each polygon for the forested sites F1, F2, F3, and F5.

F1 F2 F3 F5

L-band images 597 596 511 715
C-band images 359 357 306 431

5.2. Linear Regressions and Statistical Analyses

For each frequency and each forested site, linear regressions were developed between
ground soil moisture measurements and the mean values of the backscattering coefficients
and the polarimetric parameters. These linear regressions, obtained at L- and C- bands, were
interpreted for soil moisture monitoring over the forested sites using statistical analyses
(linear correlation coefficient and significance test). For each regression, the correlation
coefficient (r) is computed and a significance test (p-value) is conducted for statistical
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analyses of the regressions [17,18]. For a given risk b, the null hypothesis H0 that the
radar data (backscattering coefficients, polarimetric parameters) and the soil moisture are
independent is tested against the alternative hypothesis H1 that the radar data and the
soil moisture are significantly correlated. If the p-value is less than b (here it is considered
equal to 5%), the null hypothesis is rejected in favor of the alternative hypothesis and the
correlation coefficient of the regression is considered statistically significant.

The magnitudes of the significant correlation coefficients were used to compare the
potentials of L- and C- bands fully PolSAR data for soil moisture monitoring over forested
sites with different characteristics (biomass, tree water content, floor cover, etc.). For each
frequency, we determine the added value of polarimetric parameters vs. the backscattering
coefficients for soil moisture monitoring over forest sites. We also identify the optimal
PolSAR parameters (backscattering coefficients, polarimetric parameters) to characterize
the soil moisture over the forested sites.

6. Results and Discussion

Qualitative analysis is first conducted with the temporal profiles of L- and C- bands
linear and circular backscattering coefficients and those of soil moisture measurements
over the least dense site F1 and the densest site F3. It is followed by the analyses of the
regression results developed in Section 6.2.

6.1. Temporal Profiles of the Linear and Circular Backscattering Coefficients
6.1.1. At L-Band Using UAVSAR Data at 30 and 40◦

At L-band, at 30 and 40◦ incidence angles, the temporal profiles of the linear and
circular backscatter coefficients for all polarizations (HH, VV, HV, RR, RL, and LL) follow
those of soil moisture, and particularly over F1. For both 40 and 30◦, HH remains higher
than VV over all the sites. Figures 4a and 5a showed that the difference between HH
and VV decreases with an increase in vegetation from F1 to F3 sites. This is mainly due
to the depolarization process which occurs with an increasing volume scattering. While
the signals of linear polarizations are well contrasted

(
σ0

HH > σ0
VV > σ0

HV
)
, the signals of

circular polarizations are close to each other (Figures 4 and 5). For F1 and F3 sites, there is
almost no difference between the 30 and 40◦ linear and circular backscattering coefficients.
For this reason, L-band parameters will be subsequently analyzed at only 30◦.
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Figure 5. Temporal profiles of L-band (a) linear (HH, VV, and HV) and (b) circular (RR, LL, and RL)
polarizations at θ = 30 and 40◦, along with soil moisture measurements over F3. F3_SM_MAFRI is
the soil moisture measured by the MAFRI station.

6.1.2. At C-Band Using RADARSAT-2 Data at 20, 25 and 30◦

In contrast to L-band, all linear and circular backscattering coefficients at C-band
showed small variations with soil moisture (Figure 6). Over the F1 site, the variations in the
temporal profiles are due to the difference in the incidence angles of RADARSAT-2 images
(20, 25, and 30◦, Table 5). However, over the F3 site, due to a high volume contribution,
the sensitivity of the signal to the incidence angle decreased. At C-band, unlike what was
observed at L-band, HH and VV are superimposed even over the F1 site. This is a sign
of depolarization resulting from a high volume contribution at the C-band [60–62] which
reduces the contribution of the interaction term [34]. The circular polarizations present
different behavior than in L-band. RL is higher than RR and LL. The latter (RR and LL)
are superimposed and close to HV, while RL is close to HH and VV (Figure 6). According
to Baronti, et al. [60], these behaviors are mainly related to vegetation characteristics that
govern the volume scattering.
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Figure 6. Temporal profile of C-band linear (HH, VV, and HV) and circular (RR, LL, and RL) polarized
backscattering along with soil moisture measurements (F1_SM_USDA and F3_SM_MAFRI) over
(a) F1 and (b) F3 sites.
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6.2. Potential of PolSAR Parameters for Soil Moisture Retrievals over Forested Sites
6.2.1. From L- and C- bands Backscattering Coefficients

Table 7 shows the correlation coefficients between soil moisture and the L-band linear
and circular backscattering coefficients acquired at 30◦ over F1, F2, F3, and F5 sites. In most
cases, significant correlations are observed (p-value lower than 0.05). Compared to the
results obtained over the 3 other sites, F2 presents the low correlation values and cases of
non-significant correlations. This can be explained by the characteristics of the F2 site which
combine high tree water content value and about 50% of mixed floor cover composed of
litter and shrubs (Table 3). In addition, Table 2 shows that in the UAVSAR look direction,
the F2 site presents high values of surface rms height, which will degrade the potential of
soil moisture monitoring.

Table 7. Correlation coefficients of σ0 vs. soil moisture at L-band (θ = 30◦) for F1, F2, F3, and F5 sites.
significant correlations (p-value < 0.05) are denoted with ‘*’.

F1 F2 F3 F5

σ0
HH_30◦ 0.60 * 0.50 0.62 * 0.82 *

σ0
VV_30◦ 0.78 * 0.77 * 0.77 * 0.96 *

σ0
HV_30◦ 0.80 * 0.65 * 0.85 * 0.94 *

σ0
RR_30◦ 0.64 * 0.56 0.66 * 0.84 *

σ0
LL_30◦ 0.68 * 0.64 * 0.81 * 0.88 *

σ0
RL_30◦ 0.69 * 0.66 * 0.70 * 0.92 *

These results are in agreement with Wang, et al. [61] who studied the sensitivity of
L- and C- bands backscattering coefficients to ground surface over forested regions. The
parameters of their model are the litter depth, the litter volumetric moisture, the surface
roughness (rms height and correlation length), and the soil moisture. They concluded
that at L-band, HH and VV acquisitions between 20 to 40◦ incidence angles allow the
monitoring of soil moisture. At this frequency, the surface rms height acts more on the
radar signal than the correlation length which almost doesn’t affect the signal. Unlike our
results, they showed slight sensitivity of HV polarization to soil moisture for only low
forest biomass observed between 20 and 30◦ incidence angles. Indeed, in Table 7, at L-band,
HV leads to good and significant correlations with soil moisture even over the forest with
dense biomass.

Compared to L-band, the correlations of C-band RADARSAT-2 data at 20, 25, and
30◦ are low and not significant (Table 8) over the F1, F2, and F3, forested sites (recall that
F5 is not covered with RADARSAT-2 images at the same dates as ground soil moisture
measurements, Section 5.2). Therefore, the C-band backscattered signal in linear or circular
polarizations is not suitable to monitor the soil moisture even over the F1 site characterized
by low biomass. In accord with several authors [22,61], the low C-band signal penetration
into the canopy and the volume contribution from the biomass reduce the sensitivity of the
signal to soil parameters.

Table 8. Correlation coefficients of σ0 vs. soil moisture at C-band for F1, F2, and F3 sites.

F1 F2 F3

σ0
HH 0.74 0.55 0.30

σ0
VV 0.56 0.58 0.30

σ0
HV 0.31 0.01 0.69

σ0
RR 0.31 0.76 0.84

σ0
LL 0.53 0.21 0.74

σ0
RL 0.63 0.62 0.16
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6.2.2. From L and C- bands Polarimetric Parameters

Freeman-Durden decomposition: Over F1, F2, F3, and F5 sites, Figure 7 shows in-
creasing relationships between soil moisture and soil contribution (Ps) and soil-vegetation
double bounce contribution (Pd) at L-band. The slope and the correlation coefficient values
of these relationships decrease with the increase in forest biomass. Table 9 shows low and
non-significant correlations between soil moisture and Ps over F2 and F3 sites, and between
soil moisture and Pd over F3. Indeed, over forest sites with high biomass and high tree
water content values (Table 3), a high volume scattering prevents Ps and Pd to monitor soil
moisture.
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Table 9. Correlation coefficients between the soil moisture and the mean values of Ps and Pd at L and
C- bands over F1, F2, F3, and F5 sites. Significant correlations (p-value < 0.05) are denoted with ‘*’.

F1 F2 F3 F5

Ps_L_30◦ 0.59 * 0.55 0.46 0.84 *
Pd_L_30◦ 0.60 * 0.61 * 0.57 0.82 *
Ps_C 0.65 0.74 0.56
Pd_C 0.83 * 0.88 * 0.95 *

At C-band, while Pd presents significant correlations with soil moisture over F1, F2,
and F3 sites (Table 9), Ps doesn’t show any potential for soil moisture monitoring (no
significant correlation). However, these C-band results should be interpreted with caution
due to the limitation in the dataset used and in the distribution of soil moisture values
over the sites. Indeed, two and three point clouds appear in Figure 8 for F1 and F3 sites,
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respectively. They are not enough to account for the high variability (standard deviation)
observed in Ps and Pd over a given forested site (Figure 8).
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Cloude–Pottier decomposition: For both L- and C- bands, Cloude-Pottier decompo-
sition parameters (H, A, α) do not provide any significant correlation with soil moisture
over all the forested sites (Table 10). In fact, in the H/α plan, the scattering mechanisms
are mainly located in the volume scattering zone, leading to the low sensitivity of Cloude-
Pottier parameters to soil moisture. These results are in agreement with those obtained
by [17,18] over boreal forests.

Table 10. Correlation coefficients of the mean values of polarimetric parameters to the soil moisture
at L-band (θ = 30◦) for F1, F2, F3, and F5 sites and at C-band for F1, F2, and F3 sites. Significant
correlations (p-value < 0.05) are shown with ‘*’.

F1 F2 F3 F5

L-band Pedestal Height 0.31 0.11 0.32 0.44
ρHHHV 0.56 0.61 * 0.57 0.02
ρVVHV 0.65 * 0.38 0.03 0.53
ρHHVV 0.39 0.28 0.40 0.06
ϕHHHV 0.29 0.33 0.81 * 0.30
ϕVVHV 0.03 0.46 0.25 0.06
ϕHHVV 0.26 0.33 0.60 * 0.47
Entropy 0.35 0.14 0.29 0.48
Alpha 0.24 0.16 0.55 0.07
Anisotropy 0.12 0.12 0.38 0.27

C-band Pedestal Height 0.53 0.65 0.14
ρHHHV 0.07 0.73 0.16
ρVVHV 0.15 0.33 0.15
ρHHVV 0.21 0.73 0.58
ϕHHHV 0.17 0.08 0.96 *
ϕVVHV 0.85 * 0.06 0.00
ϕHHVV 0.90 * 0.03 0.90 *
Entropy 0.39 0.69 0.14
Alpha 0.37 0.71 0.17
Anisotropy 0.68 0.01 0.30

Pedestal height: While Bourgeau-Chavez, et al. [17] found a significant correlation
(p-value < 0.05) between the pedestal height and the soil moisture, Table 10 shows that
for both L- and C- bands, the pedestal height is independent of soil moisture over all the
forested sites.

Correlation coefficient: In some cases, at L-band (ρHHHV_30◦ in F2; ρVVHV_30◦ in
F1, ϕHHHV_30◦ and ϕHHVV_30◦ in F3) and C-band (ϕVVHV, ϕHHVV in F1 and ϕHHHV,
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ϕHHVV in F3), the amplitude of the correlation coefficient (ρ) and the phase (ϕ) showed a
significant correlation with soil moisture (Table 10). However, the results in C-band should
be considered with caution due to the same reason already mentioned about the limitation
in the dataset used.

7. Conclusions

In this work, a comparative study was conducted to evaluate the potential of po-
larimetric L-band UAVSAR and C-band RADARSAT-2 data for soil moisture monitoring
over SAMPVEX12 forested sites (Manitoba, Canada). Prior to data analysis, PolSAR data
was processed including boxcar filtering and geometric corrections. Then the relation-
ships between soil moisture, σ0, and some polarimetric parameters are analyzed. Results
showed that: (1) At C-band, soil moisture cannot be monitored using linear or circular
backscattering coefficients over SMAPVEX12 forested sites even for the low-biomass site.
At L-band, linear or circular backscattering coefficients were in most cases significantly
correlated to soil moisture over the forested sites. Therefore, with respect to the C-band,
this comparative study confirmed the higher potential of the L-band linear and circular
backscattering coefficients for soil moisture monitoring over forested sites. (2) While at
L-band (θ = 30◦) Ps and Pd showed great potential for soil moisture monitoring over the
less dense forested sites (F1 and F5), at the C-band the observed weak potential of Ps and
the high potential of Pd should be interpreted with caution due to the limitation in the
dataset used and in the distribution of soil moisture values over the sites. (3) For both C-
and L-bands, Cloude-Pottier decomposition parameters (H, A, and α) and the pedestal
height show no potential for soil moisture monitoring over SMAPVEX12 forested sites.
(4) For the amplitude and the phase of the correlation coefficient, in some cases, they give
significant correlations with soil moisture for both L- and C- bands. At C-band, the dataset
used showed significant relationships between some polarimetric parameters (ϕVVHV,
ϕHHVV in F1 and ϕHHVV, ϕHHHV in F3) and soil moisture.

Compared to σ0, the C-band polarimetric parameters provided an added value for
soil moisture monitoring. This result is interesting since σ0 at the C-band saturates quickly
over forested areas. Although the phases (ϕHHHV, ϕVVHV, and ϕHHVV) of the correlation
coefficients between multi-polarized channels are found to be significantly correlated to soil
moisture (r~0.90), the developed relationships at C-band must be tested over others sites
and other datasets. However, compared to σ0, the results obtained with the L-band polari-
metric parameters did not show any additional or significant contributions to soil moisture
monitoring. Based on the results obtained in this study, future works will be devoted
to the development of empirical soil moisture retrieval models for forested sites, using
the identified optimal PolSAR parameters (backscattering coefficients and polarimetric
parameters most strongly correlated with soil moisture).
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