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Abstract: Continuous and accurate acquisitions of surface water distribution are important for water
resources evaluation, especially high-precision flood monitoring. During surface water extraction,
optical imagery is strongly affected by clouds, while synthetic aperture radar (SAR) imagery is easily
influenced by numerous physical factors; thus, the water extraction method based on single-sensor
imagery cannot obtain high-precision water range under multiple scenarios. Here, we integrated
the radar backscattering coefficient of ground objects into the Normalized Difference Water Index
to construct a novel SAR and Optical Imagery Water Index (SOWI), and the water ranges of five
study areas were extracted. We compared two previous automatic extraction methods based on
single-sensor imagery and evaluated the accuracy of the extraction results. Compared with using
optical and SAR imagery alone, the accuracy of all five regions was improved by up to 1–18%. The
fusion-derived products resulted in user accuracies ranging 95–99% and Kappa coefficients varying
by 85–97%. SOWI was then applied to monitor the 2021 heavy rainfall-induced Henan Province flood
disaster, obtaining a time-series change diagram of flood inundation range. Our results verify SOWI’s
continuous high-precision monitoring capability to accurately identify waterbodies beneath clouds
and algal blooms. By reducing random noise, the defects of SAR are improved and the roughness
of water boundaries is overcome. SOWI is suitable for high-precision water extraction in myriad
scenarios, and has great potential for use in flood disaster monitoring and water resources statistics.

Keywords: SAR; optical imagery; flood monitoring; water distribution; data fusion; NDWI; SOWI

1. Introduction

Water is the basic resource of human production and life [1]. It is, therefore, critical
to quickly and accurately obtain data on the distribution of surface waterbodies in the
fields of natural disaster monitoring and assessment, ecological environment protection,
and macro-control of water resources [2,3]. With the successful launch of the European
Sentinel series [4,5], the United States’ Landsat series [6,7], and China’s Gaofen (GF) series
satellites [8,9], remote sensing data of multi-temporal scales and types within the same area
can be obtained [10]. Various types of remote sensing data can be utilized to comprehen-
sively and effectively monitor the distribution of surface waterbodies [11]. In the past few
decades, researchers have proposed a variety of optical or synthetic aperture radar (SAR)
imagery-based methods to extract the water distribution [12–15].

To obtain the surface water distribution from optical remote sensing imagery, object-
based approaches and pixel-based thresholding methods can be used [16,17]. In the object-
based approach, mainly the spectral, shape, structure, and textural features of ground
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objects are used to extract waterbody information [18]. The pixel-based threshold approach
is mainly based on the spectral characteristics of ground objects and spectral information,
which is utilized to construct various classification models and waterbody indices to extract
waterbodies [19]. Among the pixel-based threshold methods, the spectral water index
method has the advantages of high computational efficiency, low computational cost, sim-
plicity, and wide generalization; thus, it is currently the most widely used technique [20].
Water indices based on optical images mainly include the Normalized Difference Water
Index (NDWI) [21], Modified Normalized Difference Water Index (MNDWI) [22], Auto-
mated Water Extraction Index (AWEI) [15], and Superfine Water Index (SWI) [14]. Because
the water index is constructed by using the spectral characteristics of the waterbody within
optical imagery [23], the accuracy of the waterbody recognition based on the water index
can be significantly affected if weather and/or light conditions interfere with the optical
image [24]. In addition, optical imagery cannot penetrate vegetation; thus, it is difficult to
detect waterbodies covered by vegetation [25].

SAR data are obtained with active sensors at longer wavelengths, which can pene-
trate clouds and vegetation to varying degrees; thus, ground object information can be
obtained throughout the day [26]. The waterbody has a high dielectric constant, while its
surface is smooth; thus, because the backscattering method is mainly specular scattering,
the backscattering coefficient of the waterbody in SAR imagery is small [27]. Therefore,
researchers have proposed many SAR image waterbody segmentation methods [28]. The
use of SAR imagery to obtain the distribution of waterbodies has advantages. For example,
the distribution of surface waterbodies can be monitored under all weather conditions.
However, the side-view imaging of SAR imagery leads to radar shadows in areas with
large terrain fluctuations, which affect the accuracy of waterbody extraction [29]. Windy
weather tends to generate waves on the surface of the waterbody, increasing the backscat-
tering coefficient of the waterbody, and causes the omission of waterbody extraction [30,31].
Moreover, the planktonic algae represented by algal blooms can release biosurfactants
which reduce the backscattering of radar waves [32], and the backscattering ability is close
to that of water, so it will not interfere with the water extraction process. However, the
surface roughness of emergent vegetation such as water hyacinth is relatively large; thus,
it can produce a high amount of volume scattering, resulting in missing the extraction of
water underneath such vegetation.

While SAR images tend to have lower spatial resolution and more noise, they can
provide valuable information in cloud-covered and shadowed areas. In contrast, optical
images have higher spatial resolution and rich spectral information, but are greatly affected
by clouds and vegetation in waterbody identification. Therefore, when using only one
type of data (either optical or SAR) to extract a surface waterbody, it is difficult to obtain
a continuous and complete distribution if the area is covered by clouds for an extended
period of time or if the terrain greatly fluctuates [33]. Considering the advantages and
disadvantages of both optical and SAR imagery, researchers have proposed multiple
methods to extract surface waterbodies by combining the two image types. Hong et al. [34]
used optical data to generate land cover maps and determine the thresholds of SAR
and digital elevation model (DEM) data for water extraction, which improved the water
extraction accuracy. Irwin et al. [2] adopted a multi-level decision tree model to achieve
the high-precision extraction of waterbodies from SAR imagery, optical satellite-based
imagery, and airborne light detection and ranging (LiDAR). Shahryar et al. [27] fused
optical (Landsat-8, Sentinel-2) and SAR (Sentinel-1) data to obtain the distribution of
waterbodies in South Asia using a decision tree model. A series of water extraction models
that integrate SAR and optical imagery has also been established, but most were constructed
using multi-level decision tree models based on three or more data types [2,4,11,27,34,35].
A complex decision tree model is required and three types of remote sensing data must be
obtained for the same area at similar times, making it difficult to simply or quickly obtain
the distribution of surface waterbodies.
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In order to fully combine the complementary advantages of SAR and optical imagery,
fast water extraction can be realized in complex scenes, so as to provide a correct water
distribution range for water resources statistics, flood disaster monitoring, and water
environment protection. This study attempts to establish an all-weather, automated water
extraction method with high accuracy. To achieve this, first, the optical and SAR imagery
of the study area were obtained, and the NDWI based on optical imagery was modified by
the SAR imagery ground object backscattering coefficient to obtain the SOWI. Then, the
threshold method was used to obtain the water range. Finally, the results were compared
with the water extraction method based on a single remote sensing image, and SOWI
was applied to flood disaster monitoring in Xunxian County, Henan Province to verify
its applicability.

2. Study Area and Data
2.1. Study Area

Multiple waterbody types were selected under different climatic and different geo-
graphical conditions to test the accuracy and robustness of SOWI. These include: Xunxian
County in Henan Province, the Dongming Section of the Yellow River in Shandong Province,
Junshan Lake, Taihu Lake, Yangzhou in Jiangsu Province, and Ulan-Ula Lake in Xinjiang,
covering the eastern, central, and western regions of China (Figure 1). The overall study
area includes rivers, large lakes, and urban waterbodies. Different types of waterbodies
differ in terms of depth, transparency, shape, and vegetation coverage. The weather con-
ditions during the image data collection period included windy, cloudy, and cloudless
(Table 1). From the combination of the overall study area and the weather conditions at the
time of image acquisition, the sub-scene contains complex surface features. The terrain of
Xunxian County, Henan Province fluctuates greatly, and there was a high amount of cloud
cover during the image collection period. Wulan Wula Lake, which is semi-annular, is the
largest lake in the Hoh Xil region. The lake topography consists of mostly gentle slopes and
hilly areas, while the surrounding landscape is mainly Gobi Desert, and the water quality
is relatively pure, with no phytoplankton cover. The surface elevation of the lake is 4854 m,
and the surface area of the lake is 612 km2. Due to the strong wind speed in that area, a
large number of waves were generated on the lake surface. Taihu Lake is the second largest
freshwater lake in China, with an area of 2338 km2. In recent years, the eutrophication
problem in Taihu Lake has become increasingly serious, and the explosive growth of algae
has accelerated the deterioration of the water environment. During the image collection
period in the Taihu Lake area, an algal bloom erupted. Junshan Lake is 25 km in length
from north to south, typically about 5 km wide from east to west, and 16 km wide at
its widest part, with a surface area of 320,000 km2 and a drainage area of 616 km2. The
main aquatic plants in Junshan Lake include black algae, bitter grass, wild water chestnut,
lotus, Maleophil, and others. The phytoplankton mainly include microcystis, Streptomyces,
chattering algae, anabaena, and others. There was cloud occlusion in the optical image of
the surrounding Junshan Lake area, which also contains many smaller waterbodies. The
study area in Yangzhou, Jiangsu mainly features a large number of urban buildings.

Table 1. Description of Sentinel-1/2 scenes.

Test Site
Acquisition Date

Interference
Sentinel-1 Sentinel-2

Dongming section of the Yellow River in Shandong 27 July 2021 26 July 2021 Cloud
Junshan Lake 9 June 2021 5 June 2021 Small waterbody, Cloud

Yangzhou, Jiangsu 1 August 2021 2 August 2021 Small waterbody
Taihu Lake 15 August 2019 17 August 2019 Algal blooms, Radar shadow

Ulan-Ula Lake 6 October 2021 7 October 2021 Windy, Smooth terrain
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Figure 1. Spatial distribution of the research areas over China used for testing the SAR and Optical
Imagery Water Index (SOWI) in this study.

2.2. Satellite Data Collection and Preprocessing

In the study area, Sentinel-2/Multispectral Imagery (MSI) data and GF6/Wide Field
of View (WFV) imagery data were used for optical images and Sentinel-1 Single Look
Complex (SLC) and GF-3 FSII data were used for SAR images.

(1) Sentinel-1 SLC data: Interferometric Wide Swath (IW) and Sentinel-1 data have a
wide-ranging resolution of 5 m, azimuth resolution of 20 m, and revisit period of 6 days.
The data are mainly processed by the SNAP 9.0.0(SeNtinel Applications Platform) software.
Multi-polar SAR data are corrected by using the precise orbit file. Subsequently, the thermal
noise in the image is removed and the backscattering coefficient of the ground object is
obtained by radiometric calibration. Multi-look processing is then performed and the
speckle noise in the image is weakened with a refined Lee filter [35]. Finally, DEM data are
used for the geometric correction of the image to eliminate the geometric distortion of the
image [36]. In general, co-polarization (VV, HH) is more effective for surface scatterers, such
as waterbodies, while cross-polarization (VH, HV) is more effective for volume scatterers,
such as forests [37]. Previous results proved that co-polarization is more suitable for surface
water detection than cross-polarization [38]. The VV polarization of Sentinel-1 data was
selected for the SAR data of the study area.

(2) Sentinel-2 MSI data: For this type of data, the total radiance value of the ground
objects collected by the sensor is not the real reflectivity of the ground surface. It needs to be
processed by atmospheric correction to obtain the real reflectivity of the ground target [39,40];
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thus, the images processed in this study were Level 2-A. Pre-processed Sentinel-2 L2A data
can be directly downloaded from the official European Space Agency website.

(3) GF-3 FS II data: GF-3 has a variety of image modes. In this study, FS II data with a
standard spatial resolution of 10 m were used. First, the data were multi-look-processed
and refined Lee filtering was used to eliminate speckle noise. Subsequently, DEM data
were used for the geometric correction. The HH polarization of GF-3 data was selected for
the SAR data of the study area.

(4) GF6-WFV data. The multispectral medium-resolution wide-format camera carried
by GF-6 has a standard spatial resolution of 16 m and observation width of 800 km. The GF-6
WFV L1A level data must be processed by orthophoto, radiation, and atmospheric corrections.

3. Methods
3.1. Technical Framework

The framework in which SOWI was used to obtain the distribution of surface wa-
terbodies in this study is shown in Figure 2 and can be described as follows. First, the
preprocessed SAR and optical images are registered and then resampled to the same reso-
lution. Based on certain rules, a threshold T1 is determined for each SAR image, the SAR
image is preliminarily segmented according to T1, different coefficients K are assigned to
the preliminary segmentation results, and the SOWI value is calculated. The threshold
value method is used to determine the threshold of the operation result to obtain the
distribution of the surface waterbody and the accuracy of the result is evaluated.
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3.2. SOWI Model Building

The absorption of 0.4 to 2.5-µm electromagnetic waves by waterbodies is significantly
higher than that of most ground objects, so the reflectivity of waterbodies in multispectral
remote sensing images tends to be low. In the visible light range, the reflection of water is
mainly concentrated in the blue-green band and gradually decreases with the increase of
wavelength. In the near-infrared and mid-infrared bands, the waterbody absorbs almost all
the incident energy, while vegetation, soil, and other ground objects have higher reflectivity,
which makes the pure waterbody distinct from the vegetation and soil in these two bands.
The waterbody index method is based on the analysis of the spectral characteristics of the
waterbody; it selects the bands closely related to the waterbody identification, analyzes
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the relationship between the waterbody and the spectral value by building a waterbody
index model, and gives the corresponding threshold value to realize the extraction of
waterbody information.

NDWI (Equation (1)), as a classic waterbody index model, uses the spectral characteris-
tics of the waterbody to select the green light and near-infrared bands for band calculation.
The index can effectively distinguish the waterbody from vegetation and the shadow of
mountains [20,41]. When the NDWI of an area is greater than the appropriate threshold
(TNDWI), this area is identified as waterbody as follows:

NDWI = (Green − NIR)/(Green + NIR). (1)

The magnitude of the backscattering intensity of SAR images is closely related to the
surface roughness of the ground objects; furthermore, the smooth surface of the waterbody
is dominated by specular scattering. Compared with the land dominated by volume
scattering, the backscattering ability of the waterbody to the radar signal is weaker. The
waterbody with an approximately smooth surface has a low gray value in the SAR image,
which is characterized by a dark area. The waterbody segmentation threshold is usually
obtained by solving the extreme points of the grayscale histogram of the image, and the
part of the image that is smaller than the threshold value is marked as a waterbody [27].
When the backscattering coefficient of the ground objects (σ) in the SAR image is smaller
than the appropriate threshold (Tσ), this area is considered to be a waterbody.

To sum up, the equations for the identification of ground objects as waterbodies from
optical and SAR images are as follows.

SAR data:
σ < Tσ. (2)

Optical data:
NDWI > TNDWI . (3)

Equations (2) and (3) are used to obtain the equation for jointly identifying ground
objects as waterbodies in optical and SAR images:

σ−NDWI < Tσ −TNDWI (4)

Because Tσ and TNDWI are both constants, Tσ − TNDWI can be simplified as constant
T, and thus, Equation (4) can be simplified as follows:

σ − NDWI < T. (5)

The NDWI and σ significantly differ. When σ is used to directly subtract the NDWI,
σ—NDWI is approximately equal to the NDWI because the latter is much larger than σ,
which mainly reflects the optical properties of ground objects. To accurately reflect the
spectral and backscattering characteristics of ground objects when σ is subtracted from
NDWI, it is necessary to multiply the NDWI by the coefficient K to compensate for the data
difference between the NDWI and σ. The equation for the identification of ground objects
as waterbodies based on the combination of SAR and optical images is as follows:

σ − K × NDWI < T. (6)

The initial SOWI equation is as follows:

SOWI = σ − K × NDWI. (7)

The purpose of this study is to combine the advantages of SAR image and optical
image to realize high-precision automatic water extraction in various scenes, such as cloud,
radar shadow, and wind waves. SAR image can obtain the water area under clouds, so as
to overcome the defects of optical image. However, SAR image are difficult to obtain the
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accurate water extraction from the area with small backscattering coefficient, which usually
include radar shadows, uneven water surfaces, and smooth ground objects [42,43]. When
extracting water from the above ground objects, it is necessary to make a comprehensive
judgment based on the spectral characteristics of the ground objects. Therefore, the main
area for comprehensive analysis combined with optical images and SAR images is the
area with a small backscattering coefficient of the ground objects. The process should
therefore be to calculate the average value of backscatter coefficient and NDWI in this area
(MNDWI , MHH), and divide the two to obtain the coefficient K value. The coefficient K can
balance the difference between the NDWI value and the backscattering coefficient value
in this area, and the water distribution range can then be obtained by comprehensively
analyzing the spectral characteristics and backscattering characteristics of ground objects.
Figure 3 shows that the area with small backscattering coefficients in the SAR image is
obtained (blue area in Figure 3) based on the frequency distribution histogram of the SAR
image. By calculating the mean values of the NDWI and backscatter coefficients in the blue
area and dividing the two, the coefficient K of the SOWI algorithm of the image is obtained.
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Since optical images and SAR images have different advantages, the coefficient K
should be scaled for different situations. This process can be described as follows. Firstly,
the initial threshold value T1 for water extraction is set for the SAR image. The area
with the backscattering coefficient less than T1 in the SAR image is the area that can
be accurately judged as the waterbody according to the backscattering coefficient of the
ground objects. At this time, the coefficient K of the NDWI is reduced to weaken the
influence of the optical image on the judgment of ground objects in this area. If the area
contains clouds or vegetation, then the identification of ground objects is mainly based
on the SAR image information due to the small proportion of optical images, and in this
way, the distribution of waterbodies in this area can be determined. In the area where the
backscattering coefficient of the ground object is greater than T1, it is difficult to obtain the
correct water distribution from the SAR image. That area often includes radar shadows,
uneven water surfaces affected by strong winds, smooth bare soil, and other ground objects
with similar backscattering coefficients. Therefore, it is necessary to increase the coefficient
K in that area to enhance the effects of optical images on the identification of ground objects
and use the spectral characteristics of ground objects for the evaluation.

It is difficult to determine the threshold T1 only from SAR images, so this study uses
optical images to assist SAR images to determine the threshold T1. First, use the waterbody
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index to obtain the accurate waterbody area. Refer to the dynamic range of the NDWI
threshold for waterbody extraction found by Zhang, i.e., −0.184 to 0.228 [44], and the larger
the NDWI value, the greater the possibility that the pixel is a waterbody. Therefore, take
0.228 and reserve one decimal place as the threshold value, and the pixel value greater
than 0.2 is classified as a waterbody pixel. Then, since this area is only determined by the
waterbody index, it is randomly distributed in the water area of the SAR image. Finally,
the average value of backscattering coefficients in the above regions is counted as the
final threshold T1. As shown in Figure 4, when 0.2 is chosen as the threshold, an accurate
waterbody range can be obtained even if there is a large amount of cloud occlusion in the
image; furthermore, there is no situation in which non-waterbody pixels can be identified
as waterbody. These pixels determined as water are relatively uniformly distributed in
the water area (blue area in Figure 4) of the SAR image. The average backscattering
coefficient of the points where the pixels are located is counted as the threshold T1, and the
water area (green area in Figure 4) of the SAR image can be correctly extracted, with few
commission errors.
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Figure 4. Threshold T1 calculation example: (a) Normalized Difference Water Index (NDWI). (b) His-
togram of NDWI (red line represents the threshold). (c) Determined as waterbody according to the
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(e) Preliminary determination of the water area in SAR images according to T1 (green area).

The SOWI calculation equation of the subregion can be obtained as follows. When ar-
eas are preliminarily identified as waterbodies from SAR images (σ < T1), the calculation is:

SOWI = σ − 0.5 × K × NDWI, (8)

When areas are preliminarily identified as non-waterbodies from SAR images (σ > T1),
the calculation is:

SOWI = σ − 2 × K × NDWI. (9)

The scaling factor before the K value is an empirical result determined from the
reflectivity patterns observed on pure pixel datasets of different land cover types. The
iterative method is used to obtain parameters for the purpose of maximizing the separability
of reflectivity between water and non-water objects. In the final indexing process, for the
convenience of use, after rounding the coefficients, it is finally determined that the optimal
result can be obtained when K is scaled by a factor of 2.

3.3. Extraction of Water Based on Visual Interpretation

Manual visual interpretation (also known as visual interpretation), a type of remote
sensing image interpretation, is the inverse process of remote sensing imaging. It refers to
the process of obtaining specific target ground object information on remote sensing images
by professionals either through direct observation or assisted by interpretation instruments.
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Manual visual interpretation refers to the extraction of useful information from remote
sensing images through brain analysis, reasoning, and judgment by relying on human eyes
and the knowledge, experience, and relevant information mastered by the interpreter, and
this technique is characterized by high accuracy [10].

Waterbodies in remote sensing images have distinct features in terms of color, bright-
ness, texture, and shape. For example, clear or deep water is blue-green, and the water color
changes from blue to green and yellow with the increase of turbidity. When the sediment
content in the water is close to saturation, the water color is also close to the color spectrum
of the sediment itself. Compared with other ground objects, the overall reflectance of
water body is low, mainly concentrated in the visible band. Above 0.7 µm, due to the
serious absorption of infrared light by water, the reflectance of water is very low. Owing
to the low reflectance of water, sometimes, the brightness of its image is relatively low,
which is close to the brightness of the shadow in the image. With an increase of suspended
sediment concentration (i.e., turbidity) in the water, the volume reflection brightness of the
waterbody in the whole visible spectral segment increases, especially in the yellow and red
light areas [16], and the water image becomes increasingly brighter compared to the dark
areas. The surface of calm water is very smooth, and thus, its internal texture and structure
are clearly different from that of land and vegetation. Moreover, the shape of the waterbody
formed in a natural state has obvious irregularity. Rivers often have branches and form
tree-like structures, while the boundaries of lakes are highly irregular and random. These
characteristics give waterbodies a strong identification function compared to many other
types of ground object in nature. Therefore, the water area as interpreted by manual visual
interpretation is usually regarded as the true value, and thus, it is usually used as a basis
for the accuracy evaluation of later experimental results [15,45,46].

In this study, the surface water distribution was obtained by manual visual interpre-
tation as the basis for accuracy evaluation. First, Sentinel-2 images and artificial visual
interpretation were used to obtain real water distribution data in the study area. Then, to de-
termine the area of the waterbody under cloud occlusion in the Sentinel-2 image, Sentinel-1
and -2 images without cloud occlusion in a similar period were used. Next, Sentinel-1 and
Google Earth images of the same period were then used to identify ground objects that
were difficult to recognize in the Sentinel-2 images. Finally, the water distribution range of
five study areas was obtained.

3.4. Accuracy Evaluation

The overall accuracy, producer accuracy, user accuracy, and Kappa coefficient were
obtained from the distribution range of surface waterbodies obtained by various algorithms
and the distribution range of real waterbodies, which were used to evaluate the accuracy
of the algorithm waterbody extraction results. The producer accuracy characterizes the
probability of missing classification results, while the user accuracy represents the proba-
bility of misclassification in the classification results, and the overall precision represents
the percentage of correctly classified areas in the total area. Finally, the Kappa coefficient
represents the difference between the classification results and random classification. The
equations are as follows:

OA =
TP + TN

TP + FP + FN + TN
(10)

UA =
TP

TP + FP
(11)

PA =
TP

TP + FN
(12)

Kappa =
P0 − Pe

1 − Pe
(13)

where OA, UA, PA, and Kappa represent the overall accuracy, user accuracy, producer
accuracy, and Kappa coefficient, respectively; TP is the number of pixels that are correctly
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predicted as positive examples; TN represents the number of pixels that are correctly
predicted to be negative examples; FP represents the number of pixels that are incorrectly
predicted to be positive examples; FN is the number of pixels that are incorrectly predicted
to be negative examples; P0 is the overall classification accuracy; and Pe is the product of
the total number of real reference pixels in each category and the total number of classified
pixels in that category.

4. Results and Analysis
4.1. Overview

In this study, the NDWI and SOWI were calculated from Sentinel-1 and -2 images of
Yangzhou, the Shandong Dongming Section of Yellow River, Taihu Lake, Ulan-Ula Lake,
and Junshan Lake obtained at similar times. The bimodal threshold method was used to
obtain the water distribution from the NDWI, VV polarization, and SOWI and the result of
the manual visual interpretation was used as the true value for the accuracy evaluation
and analysis. Note that optical images cannot obtain the spectral features of ground objects
under cloud occlusion, and the water extraction algorithm based on optical images cannot
solve this problem for the time being. Therefore, this study only uses NDWI for comparison.
In order to test the application potential of the algorithm, this study selected Sentinel-1,
Sentinel-2, and GF-3 images during the heavy rainfall on 20 July 2021 in Henan province to
continuously monitor the changes of flood inundation area by the SOWI algorithm.

4.2. Precision Analysis and Evaluation

The accuracy evaluation results of the five study areas are shown in Table 2. Overall,
the extraction results of the SOWI algorithm combining optical images and SAR images
are better than those based on optical images or radar images. Compared with NDWI, the
extraction results of SOWI algorithm in Taihu Lake covered by the bloom showed that the
producer accuracy increased by 9%, the overall accuracy increased by 6%, and the Kappa
coefficient increased by 14%. The SOWI algorithm better obtained the waterbody scope
covered by the algal bloom. Using only SAR imagery, the interference of urban buildings
and mountains around the Taihu Lake area will cause the image to identify that area as
a waterbody. Therefore, compared with the waterbody extraction results of SAR images,
the user accuracy of the SOWI algorithm increased by 3%, the overall accuracy increased
by 1%, and the Kappa coefficient increased by 4%. In the Ula-Ula Lake area where strong
winds frequently occur, the surface of the ground objects is relatively smooth. Therefore,
a large number of waterbodies were misclassified as land. Using only SAR imagery, the
producer accuracy of waterbody extraction was only 7%, the overall accuracy was 70%,
and the Kappa coefficient was 9%. In contrast, as the SOWI algorithm incorporates optical
images, its producer accuracy was increased to 97%, the overall accuracy was increased to
98%, and the Kappa coefficient was increased to 97%.

When the SAR image or optical image suffers less interference, the extraction accuracy
is not better than that obtained by using the SOWI algorithm. For example, there was no
interference from algal blooms and clouds in Yangzhou, Jiangsu. Compared with optical
images, the extraction by the SOWI algorithm improved the producer accuracy by 3%, while
the user accuracy was the same, the overall accuracy was increased by 1%, and the Kappa
coefficient increased by 2%. The extraction error of the optical image in that area is mainly
due to the misidentification of the shallow water area of the river channel as land, while the
SAR image performed well in the shallow water area. However, the speckle noise in the
SAR image was difficult to eliminate. Compared with the SOWI algorithm, the producer
accuracy was reduced by 9%, and the extraction of small waterbodies was omitted.

Overall, the experimental surface water area in this study covers the eastern, central,
and western regions of China and includes rivers, lakes, urban waterbodies, and small
inland waters in northwestern China. The interferences due to clouds, wind, and other
weather conditions were also considered. The SOWI yielded a complete water extraction,
reflecting the wide applicability of the SOWI algorithm.
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Table 2. Summary of accuracy assessments at the five main test sites including various accu-
racy measurements.

Site Approach Overall
Accuracy

User
Accuracy

Producer
Accuracy

Kappa
Coefficient

Yangzhou, Jiangsu
NDWI 0.9670 0.9888 0.7902 0.8596

VV 0.9513 0.9535 0.7120 0.7878
SOWI 0.9708 0.9806 0.8231 0.8782

Junshan Lake
NDWI 0.9646 0.9854 0.8227 0.8756

VV 0.9733 0.9736 0.8810 0.9088
SOWI 0.9773 0.9781 0.8984 0.9288

Dongming section of the
Yellow River in Shandong

NDWI 0.9743 0.8368 0.0823 0.1457
VV 0.9920 0.9614 0.7381 0.8311

SOWI 0.9929 0.9547 0.7796 0.8547

Taihu Lake
NDWI 0.9233 0.9919 0.8912 0.8366

VV 0.9707 0.9680 0.9884 0.9340
SOWI 0.9874 0.9977 0.9832 0.9721

Ulan-Ula Lake
NDWI 0.9900 0.9934 0.9746 0.9766

VV 0.7075 0.9562 0.0727 0.0949
SOWI 0.9891 0.9939 0.9721 0.9747

4.3. Case Study

In July 2021, the Henan Province, especially the Xunxian County of Hebi City, received
extremely heavy rainfall. After 20 July, the water levels of the Communist Canal and Wei
River near Xunxian County increased and water seepage and overflow occurred in many
embankments. Eventually, several embankments burst, causing widespread damage.

In this study, GF-3, GF-6, Sentinel-1, and Sentinel-2 remote sensing data obtained
during the torrential rain period from July to August 2021 in Xunxian County, Henan
Province were used with the SOWI algorithm and SAR image thresholding algorithm
to create time series diagrams of flood changes from July to August (Figure 5). The
figure shows that the flood submerged large tracts of farmland and villages due to the
embankment of the Wei River in Xunxian County on 23 July 2021. Therefore, the flood area
along the Wei River notably increased, as is confirmed in the data from 25 and 27 July. On
29 July, flood discharge started in Wangzhuang Town, Xunxian County. The waterbody
extraction results obtained on July 31 show that the flood area in Xunxian County had
reached the maximum. Due to the flood discharge from the downstream, the width of
the upstream river significantly decreased. Since August, large-scale heavy rainfall has
not occurred in Xunxian County and its upstream area. Based on the water extraction
results obtained on 8 August, the flood gradually receded along the Wei River, although
the amount of water in the flood discharge area of Xunxian County remained large. The
image taken on August 18 shows that the area of the waterbody in the flood discharge area
further decreased. By 22 August, the flood in Xunxian County had receded.

4.3.1. Accuracy Evaluation of the Long Time Series Frequency Map Level

The flood area obtained by the three algorithms in each period was calculated in order
to verify the effectiveness each algorithm for flood distribution monitoring. As can be seen
from Figure 6, the areas extracted by the SOWI and SAR image threshold algorithms held
the same trend over time, while that extracted by the NDWI algorithm based on optical
imagery indicates that the water area changed greatly around 8 August. Most of the water
areas in the optical image of 8 August were covered by clouds, resulting in a much lower
flood area extracted by the optical image than by the other two algorithms. The water area
extracted by the SAR image was higher than that extracted by the SOWI algorithm in each
period. This is because the northwest terrain of this region is mainly mountainous and has
great relief, which is represented as radar shadow in the SAR image, and so that region was
mistakenly categorized as waterbody (Figure 5). However, the optical image is disturbed
by clouds and fog, and thus, the water area was relatively small. It can also be seen from
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the figure that on 31 July, the difference between the water area extracted by the NDWI and
SOWI algorithms is small. There is no cloud occlusion in the optical image on 31 July, and
the water extraction accuracy was high, which is consistent with the water area extracted
by the SOWI algorithm. By comparing the results of the different algorithms, it can be
seen that the spatial and temporal distribution of the flood range extracted by the SOWI
algorithm is consistent with the actual changes. The algorithm successfully used optical
images to correctly identify radar shadows and reduce commission error, and utilized
the SAR images to correctly obtain the range of water under the cloud and fog occlusion,
thereby reducing omission error. This demonstrates that the SOWI algorithm is suitable for
monitoring the distribution of flood waters during a flood outbreak.
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4.3.2. Accuracy Evaluation on the Pixel Level

It is difficult to obtain ground measured data during a flood outbreak period. Mean-
while, due to the influence of cloud occlusion in the optical image during the flood image
outbreak period, it is also difficult to use the manual visual interpretation method to com-
prehensively judge the water distribution range of the whole image by SAR image and
optical image. Therefore, this study randomly generated 200 feature points in the image,
and then used manual visual interpretation to determine whether the feature points were
water pixels. If it was too difficult to accurately determine whether the feature points
were water pixels through SAR images and optical images, a different feature point was
randomly selected. At the same time, in order to evaluate the accuracy of SOWI in different
scenarios, 200 feature points were selected from images on 31 July (without cloud occlusion)
and 8 August (with a large amount of cloud occlusion).
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According to the accuracy evaluation index based on feature points (Table 3), the cloud
and fog coverage in the image on 31 July was less, and the accuracy evaluation index of
NDWI and SOWI was close to and above 80%, indicating a high accuracy. The SAR image
misclassified the radar shadow in the northwestern mountainous area as water, resulting in
a user accuracy of only 75.9%. In the optical images on 8 August, for which there was a large
amount of cloud occlusion, the accuracy of the generator of NDWI extraction results was
only 14.5%, and a large number of waterbodies under cloud occlusion were omitted from
extraction. In the northwest mountainous area with low cloud coverage, SOWI reduced
the error of radar shadow extraction with the help of optical images. Compared with SAR
images, its user accuracy was improved by 9.7%.

Table 3. Summary of accuracy assessments for different dates in the case area, including various
accuracy measurements.

Date Approach Overall
Accuracy

User
Accuracy

Producer
Accuracy

Kappa
Coefficient

7.31
NDWI 0.910 0.936 0.880 0.820

VV 0.78 0.759 0.820 0.56
SOWI 0.905 0.935 0.870 0.81

8.08
NDWI 0.590 0.990 0.145 0.151

VV 0.820 0.794 0.843 0.642
SOWI 0.880 0.891 0.854 0.759

5. Discussion

The new water extraction index proposed in this study improves the accuracy of
surface water mapping and change analysis for various environmental studies and appli-
cations. SOWI has the characteristics of simplicity and convenience, and shows strong
robustness in various environmental conditions and different types of waterbodies.

5.1. Waterbodies Covered by Clouds

Although optical images can be used for accurate extraction of waterbodies, the
presence of clouds in the images can severely limit the field of application. For example,
in the optical images of the Junshan Lake and Xunxian areas of Henan, there are different
degrees of cloud coverage. In the optical image extraction results shown in Figure 7, a large
number of omissions and extraction errors occurred in the waterbody range obtained by
NDWI, which seriously limited its application in terms of water resource change monitoring
and flood disaster monitoring. With the help of the ability of SAR images to penetrate
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through clouds and fog, the SWOI algorithm can obtain relatively accurate extraction results
under different cloud conditions (Figures 7 and 8), which verifies its strong robustness. The
SOWI algorithm performs well in the cloud cover area, filling the gap caused by high cloud
cover in the long-term monitoring of optical images.
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Figure 7. Results of the water extraction in Xunxian County, Henan Province, under the occlusion
of clouds and fog: (a) Optical image. (b) NDWI. (c) Water extraction results based on the NDWI.
(d) SAR image. (e) SOWI. (f) Water extraction results based on the SOWI.
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Figure 8. Results of the water extraction in the Junshan Lake area under the occlusion of clouds and
fog: (a) Optical image. (b) Water extraction based on the NDWI. (c) SAR image. (d) Water extraction
based on the SOWI.

5.2. Waterbodies Covered by Algal Blooms

In the visible light band, the spectral characteristics of water are very complex, and
thus, its reflectivity mainly depends on the reflection of the water surface and substances
in the water. If the surface of the waterbody is covered by dense vegetation, such as
algal blooms, the reflectance of the waterbody’s near-infrared band will be abnormally
high and the water index based on the spectral characteristics of the waterbody will
be seriously disturbed, and thus, the bloom-covered portion of the waterbody will be
mistakenly classified as a non-water surface, resulting in omission. In recent years, with the
intensification of human interference to the ecological environment, the temporal frequency
and spatial scope of algal bloom outbreaks are on the rise, while a typical bloom can last for
6–8 months, covering the surface of the waterbody, thereby causing great interference to
the statistics and estimation of water resources. As shown in Figure 9, when algal blooms
erupted in the Taihu Lake area, the optical image could only extract the waterbody in the
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area without algal blooms, so it was difficult to monitor the changes of the Taihu Lake
waterbody area over a long period of time. SAR images, on the other hand, have strong
penetrating ability and can penetrate a certain degree of blooms, thereby more accurately
reflecting the backscattering characteristics of waterbodies covered by blooms. Therefore,
the SOWI algorithm integrated with SAR images could correctly obtain the distribution of
waterbodies in Taihu Lake under the coverage of algal blooms, thus providing a reliable
reference for water resource monitoring and waterbody protection in the Taihu Lake region.
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5.3. Uneven Water and Smooth Terrain

Strong winds increase the roughness of the water surface, which interferes with the
SAR sensor signal and reduces the retroreflection gap between water and land [47]. In
the inland areas of northwest China, the ground objects are mainly deserts with smooth
surface, and the backward coefficient of non-water objects in SAR images is small. At the
same time, the windy weather in these areas is frequent, and the backscattering mode of
the waterbody is changed, which shows a higher gray value in the SAR image. For the
studied area, the backscattering coefficients between land and water in SAR images were
relatively close, making it difficult to extract water. As shown in Figure 10, Ulan-Ula Lake
could not be identified as a waterbody by the SAR image, and only a small area of lakes
surrounding it could be normally identified as such. Moreover, the larger the waterbody
is, the easier it is to generate waves under the effect of strong wind, and Ulan-Ula Lake
has a vast area. Thus, when the wind speed on the lake surface was high, a large number
of waves were generated, increasing its backscattering coefficient in the SAR images. In
contrast, the lakes around Ulan-Ula Lake have a smaller area, and thus, wave generation
is difficult. Those water surfaces were relatively stable and the backscattering coefficient
of the waterbody remained unchanged. Therefore, in contrast to the small surrounding
lakes, Ulan-Ula Lake could not be correctly identified as a waterbody in the SAR images.
Even with the effects of strong wind, the spectral characteristics of pure water do not
generally change significantly. Wulan Wula Lake is generally less affected by human
activities, and the waterbody is relatively pure because of the low content of planktic algae
and sediment [48]. Therefore, the spectral characteristics of the waterbody of this lake
did not change significantly due to the influence of wind and waves, and the extraction
accuracy of NDWI and SOWI were both high. Since the SAR image in this area had high
interference, there was no obvious double peak in the grayscale histogram. As shown in
Figures 10 and 11, different thresholds were set for the waterbody extracted from the SAR
image. Compared with Figure 10, the threshold range was expanded during the process of
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waterbody extraction from the SAR image in Figure 11, yet there remained a high number
of waterbodies in Ulan-Ula Lake that could not be extracted. At the same time, due to
the expansion of the threshold range, smooth ground objects, such as the Gobi Desert and
sediment in the Ulan-Ula Lake area, were mistakenly identified as waterbodies, and it was
difficult to obtain the correct distribution range of waterbodies by using SAR images in this
area. Overall, it is demonstrated that the SOWI algorithm can distinguish uneven water
and smooth terrain in the conditions of strong wind by using the spectral features of the
surface features.
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extraction based on the SOWI. (g) NDWI histogram. (h) VV histogram. (i) SOWI histogram. The red
lines in (g–i) represents the threshold.
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Figure 11. Waterbody extraction map for the for the Ulan-Ula Lake area under strong wind: (a) Optical
image. (b) SAR image. (c) Water extraction based on the SOWI. (d) SOWI histogram. (e) Water
extraction based on VV. (f) VV histogram. The red lines in (d,f) represent the threshold.
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5.4. Radar Shadow

The principle of side-view imaging of SAR images causes radar beams to be blocked by
tall objects, such as mountains or buildings, and the resulting shadows in the images have
a huge impact on SAR image data extraction, making it highly challenging to accurately
extract waterbodies. Moreover, the backscatter value of the radar shadow area is located
very close to the waterbody, and thus, the SAR image can easily mistake that area as the
waterbody itself.

The imaging mode of optical images differs from that of SAR images [46]. Therefore,
optical images tend to correctly reflect the spectral characteristics of ground objects in the
radar shadow area. As shown in Figure 12, due to the occlusion of the mountain, the SAR
image incorrectly extracts a large number of radar shadow areas as waterbodies, which
would seriously affect the judgment of a disaster situation during flood monitoring, and
thereby, limits its application in that field. In contrast, the SOWI algorithm can effectively
reduce the misidentification of radar shadow areas as waterbodies and can accurately
identify the distribution range of waterbodies during flood outbreaks.
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Figure 12. Waterbody extraction map for Xunxian County, Henan Province, under radar shadow
interference: (a) Optical image. (b) Water extraction based on the SOWI. (c) Partially enlarged view
of the SOWI water extraction results. (d) SAR image. (e) Water extraction based on HH. (f) Partially
enlarged view of the HH water extraction.

5.5. Small Waterbodies

SAR images have lower spatial resolution and more noise, resulting in poor extraction
of small waterbodies [10,46]. To date, most of the waterbody information extraction
methods for SAR images have been developed for medium- and low-resolution images
for large-area applications, and are not suitable for high-accuracy waterbody extraction.
In addition, the asphalt pavement and building shadows in urban areas are similar to
the backscattering characteristics of waterbodies, resulting in a serious decline in the
accuracy of waterbody extraction from SAR images. Optical images have a higher spatial
resolution and are richer in spectral information, therefore they can more effectively extract
small waterbodies. Figures 13 and 14 show the extraction of waterbodies under two
different surface coverage conditions of lake waterbodies and urban waterbodies. The
SOWI algorithm can effectively extract small rivers and pools that are difficult to identify
in SAR images.
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Figure 14. Waterbody extraction map for Yangzhou, Jiangsu: (a) Optical image. (b) Water extraction
based on the SOWI. (c) SAR image. (d) Water extraction based on VV.

5.6. Histogram

The spectral characteristics of the waterbody are greatly disturbed by the substances
on the surface and at the bottom of the water. Different suspended matter content in the
waterbody, as well as different vegetation coverage on the water surface and different
freezing conditions, surface backgrounds, and sediment contents all tend to lead to large
spectral differences in waterbodies. The optimal threshold of the water index based on
the spectral characteristics of water varies greatly. In the process of using the waterbody
index to obtain the waterbody range, it has long been difficult to determine the optimal
threshold [49]. SAR images are affected by speckle noise and uneven grayscale information
throughout the image. At the same time, radar shadows are also present and the grayscale
of smooth ground objects tends to be similar or identical to that of waterbodies. Thus, it
is difficult to obtain accurate threshold points. The SOWI algorithm takes advantage of
the different imaging mechanisms of both optical and SAR images, and uses the spectral
characteristics and backscattering characteristics of ground objects to increase the differ-
ence between water and non-water objects. Compared with the frequency distribution
histograms of NDWI and SAR images, the SOWI histogram exhibits notable peaks and
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valleys, as shown in Figure 15, which make it easier to identify a suitable threshold for the
water extraction, and thus, greatly simplify the water extraction.
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5.7. Precision Analysis of Different SOWI Types

When the data meet the requirements of SOWI, the MNDWI or NDWI are selected
according to the requirements and combined with the VV or HH polarization of the
SAR image to extract the waterbody. In general, the water extraction accuracy of SOWI
combined with MNDWI or NDWI is generally close, and in most cases, its effect combined
with MNDWI is slightly better. Figure 16 shows that the water extraction accuracy of the
SOWI algorithm combined with MNDWI is better than that of SOWI combined with NDWI
in Yangzhou, the Dongming section of the Yellow River in Shandong, and Taihu Lake. The
Ulan-Ula Lake area contains a large amount of snow, which leads to a larger absorption
minimum close to the 1400 nm band [50]. The MNDWI calculated based on Sentinel-2 data
misjudges snow as waterbody, resulting in a significantly weaker extraction accuracy of
the SOWI algorithm combined with MNDWI compared with that of the SOWI algorithm
combined with NDWI.
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5.8. Limitations of SOWI

The SOWI algorithm has two main limitations. First, the construction of SOWI algo-
rithm requires the SAR image and optical image with close dates. When the date difference
between the two is more than 30 days, the water range of the two may change significantly,
which reduces the accuracy of the extraction results. Fortunately, as more satellites are
launched and satellite data from various regions become more abundant, it will be increas-
ingly easier to obtain optical and SAR images of the same area with similar dates. Second,
although the SOWI algorithm makes use of the complementary advantages of the two
data types to improve the accuracy of water extraction, if neither of them can obtain water
information in a given area, the extraction accuracy is low. For example, when there is
disturbance of both wind waves and algal blooms at the same time on the lake surface, or
if the radar shadow area is blocked by clouds and fog, the results of water extraction may
be inaccurate.

6. Conclusions

This paper develops a novel waterbody index (SOWI) combining SAR and optical
imagery to classify waterbody and non-waterbody areas. The proposed waterbody index
utilizes the advantages and disadvantages of each sensor, and can perform high-precision
waterbody extraction in a variety of scenarios by increasing the difference between water-
body and non-waterbody pixels and reducing the difficulty of threshold determination.
The SOWI uses the principles of the optical image water index and SAR image thresholding
method to extract waterbody distribution; fusing NDWI, MNDWI, and other waterbody
indices with SAR image co-polarization bands to perform calculations. Moreover, it com-
bines different features of the two image types to better highlight waterbody information
for quicker and more accurate determination of the distribution of waterbodies.

In this study, the SOWI algorithm combining NDWI and VV polarization bands was
tested in five research areas. The average producer accuracy of the water extraction results
in the five areas was 89%, the average user accuracy was 98%, the average overall accuracy
was 97%, and the average Kappa coefficient was 91%, all of which were better than the
extraction methods based on SAR image or optical image. In addition, based on the SOWI
algorithm, a time series map of waterbody distribution during the 2021 flood outbreak in
Xunxian County, Henan Province was drawn. When the SOWI algorithm was used to form
the sequence observations, the change detection method was successful in automatically
and accurately extracting the flood range. Based on this performance, we conclude that the
SOWI algorithm can be used as a method of flood disaster monitoring, as it automatically
and accurately obtains the distribution range of flood waters, thereby providing effective
information for rescue and relief after a flood outbreak. Moreover, the SOWI algorithm can
also be used to accurately determine regional waterbody distribution, as well as to create
a long-term regional water distribution map. It is of great significance for water resource
statistics and water environmental protection in areas that are affected by monsoon climate
and long-term cloud and fog coverage.
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