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Abstract: Fine particulate matter (PM) significantly affects visibility, a sensitive indicator of air
pollution. Despite a continuous decrease in the PM concentrations in South Korea, the public
generally believes that PM air pollution has worsened over the past years. To explain this disparity,
we analyzed the characteristics of recent visibility changes using observations of visibility and PM
component data observed in Seoul, South Korea, from 2012 to 2018. A significant negative correlation
(R = −0.96) existed between visibility and concentrations of PM, with an aerodynamic diameter
≤ 2.5 µm (PM2.5); a high PM2.5 concentration was the most important contributor to poor visibility.
Annual mean PM2.5 concentrations in Seoul decreased by −5.1% yr−1 during 2012–2018, whereas
annual mean visibility improved by 2.1% yr−1. We found that a lower improvement in visibility
was associated with changes in the PM component. Among the PM components affecting poor
visibility, contributions of ammonium nitrate (NH4NO3) significantly increased during 2012–2018
(from 48% in 2012 to 59% in 2018). Increases in NO3

− aerosol concentrations were owing to SOx

emission reduction and the resulting decreases in SO4
2− aerosol concentrations, which led to an

increase in NH3 available for additional NH4NO3 production in the atmosphere. Despite decreased
PM concentrations in Seoul, the change of PM components has compromised visibility improvement;
thus, NO3

− concentrations need to be reduced.

Keywords: visibility; PM2.5; nitrate; air quality; South Korea

1. Introduction

In 2013, the World Health Organization (WHO) declared particulate matter (PM) as
a first-class carcinogen. In the past, PM was known to cause respiratory or eye diseases;
however, recently, it has been a significant cause of myocardial infarction, pneumonia,
and bronchitis [1,2]. In South Korea, high PM concentrations have been one of the most
serious public concerns [3–6]. Consequently, PM forecasting and warning systems were
implemented in early 2014 in South Korea. Since March 2018, the government has issued
stringent PM air quality standards in South Korea (i.e., daily mean PM2.5 should be less
than 35 µg m−3). Strict PM2.5 regulation has resulted in frequent warnings, which has also
contributed to raising public awareness of the issues associated with PM. In particular,
public awareness of air quality degradation is closely related to the poor visibility caused
by large amounts of PM in the atmosphere [7–9].

Visibility degradation refers to decreased visible distance due to light scattering and
absorption by particles or gases in the atmosphere [10–13]. Therefore, a visibility change is
significantly related to factors including solar radiation, clouds, precipitation, and atmo-
spheric chemical concentration and compositions (including gases and particles) [14–17]. In
recent years, due to the strengthening of emission-reduction policies, concentrations of PM
with an aerodynamic diameter ≤ 10 µm (PM10) and PM2.5 in South Korea have continuously
decreased over the past years and, as a result, visibility has also improved [18–21]. Never-
theless, anxiety regarding air pollution continues to persist, indicating that the improvement
in visibility may not be as apparent as the degree of the change in PM concentrations.
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Several studies were conducted in South Korea on the long-term trends, spatial and
temporal characteristics, and degradation factors related to visibility changes to understand
the effects of PM’s chemical and optical properties on visibility degradation [22–24]. They
mainly relied on visibility observations with a traditional method, which measured a maxi-
mum distance with the naked eye and was naturally prone to considerable uncertainty. As
the visibility measured by maximum visible distances increases, the associated uncertainty
of the observation significantly increases because the naked eye is insensitive to changes in
visibility over long distances [25].

Since 2017, visibility has been measured based on the light intensity changes, using the
transmitter to overcome the problem mentioned above [25–27]. However, the traditional
eye and recent instrument-measurement methods show large discrepancies in visibility
observations, depending on the environmental conditions [25]. Such discrepancies limit the
analysis of continuous visibility trends in South Korea. This study used PM components and
a light-extinction-coefficient equation to reconstruct visibility data, which were consistent
with visibility observations from the two methods. We use this reconstructed dataset to
analyze the visibility trends from 2012 to 2018 and to investigate the cause of the recent
gap between visibility and PM2.5 concentration changes in South Korea. Moreover, these
reconstructed visibility datasets not only suggest how to utilize both eye and instrumental
observations in the long-term analysis of visibility, but also suggest directions for changes
in the chemical environment in South Korea.

2. Materials and Methods
2.1. Observations

Our analysis used observations of meteorological variables, PM10, PM2.5, and PM2.5
chemical components, and NO2 concentrations in Seoul, South Korea (Table 1). Meteoro-
logical observations were conducted by the Korea Meteorological Administration (KMA;
https://www.kma.go.kr/eng/ (accessed on 13 October 2022)) during 2012–2018, including
observations of hourly precipitation and relative humidity (RH), which were measured
by the Automated Synoptic Observing System (ASOS). Visibility observations with the
naked eye were conducted every hour during the daytime and every 3 h at nighttime
(1800–0300 LST). Eye observation is determined based on the clarity and color of the target
after recognizing the distance to the surrounding buildings or terrain in advance. As of
1 January 2017, the KMA changed the visibility observation method from eye observation
to instrument observation and measured visibility every hour. The instrument observation
was produced by PWD22 (Vaisala Inc., Vantaa, Finland) and VPF-730 (Biral Ltd., Portishead,
UK) and, basically, the observation techniques of the two instruments are similar. Hourly
PM10 and PM2.5 concentrations, PM2.5 chemical components (SO4

2−, NO3
−, NH4

+, Ca2+,
Fe2+, organic carbon (OC), and elemental carbon (EC)), and NO2 were observed by the Na-
tional Institute of Environmental Research (NIER; https://nier.go.kr/NIER/eng/index.do
(accessed on 13 October 2022)). The PM2.5 and PM10 concentrations were measured with
BAM 1020 (MetOne Ins., Grants Pass, OR, USA) using the β-ray absorption method, and
the concentrations of ions, carbon, and metal components in PM2.5 were measured with
MARGA (Monitor for Aerosols and Gases in Ambient Air, Applikon Analytical, NED),
Semi-continuous OCEC analyzer (Sunset Lab., Portland, OR, USA), and Xact-620 (XRF,
Cooper Co., San Ramon, CA, USA), respectively. Although the NIER data were quality-
controlled, the sum of PM2.5 components was 19% lower than the PM2.5 concentration due
to unidentified substances, such as ions, crustal elements, and trace metals, as shown in
previous studies [28–30]. However, the sum of PM2.5 components and PM2.5 showed a high
correlation coefficient (R = 0.96), which improves the reliability of the PM2.5 component data
we used. We also used domestic SOx, NOx, and NH3 emissions for 2012–2018 from the Na-
tional Air Emission Inventory and Research Center (https://www.air.go.kr/eng/main.do
(accessed on 13 October 2022)).

https://www.kma.go.kr/eng/
https://nier.go.kr/NIER/eng/index.do
https://www.air.go.kr/eng/main.do
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Table 1. Aerosol, gas, weather, and emission data used in this study.

Sources Variables Period

National Institute of Environmental
Research

PM2.5, PM10, SO4
2−, NO3

−, NH4
+,

Ca2+, Fe2+, OC, EC, and NO2
2012–2018

Korea Meteorological
Administration

Visibility, precipitation, relative
humidity, and yellow dust events 2012–2018

National Air Emission Inventory and
Research Center SOx, NOx, and NH3 emissions 2012–2018

2.2. Visibility Data Reconstruction

Visibility observations may differ depending on the measurement methods. In par-
ticular, extreme meteorological conditions (e.g., cloud, precipitation, or fog) significantly
affect visual observation [9,31,32], which creates a discrepancy from instrument obser-
vations [25,33]. Therefore, it is crucial to calibrate visibility observations by removing
spurious signals. Precipitation is a typical meteorological phenomenon that causes poor
visibility [15]. For example, in Seoul, the annual mean visibility when precipitation oc-
curred during 2012–2018 was 5.0 km lower than that on a clear day. Another cause of
visibility deterioration is yellow dust events [34–36], which decreases annual mean visibility
by 0.05 km in Seoul compared to those with no yellow dust. The small effect of yellow
dust on annual mean visibility compared to precipitation is because relatively large soil
particles have low scattering efficiency and occur in fewer cases. Fog (i.e., visibility < 1 km
and RH ~100%) is another crucial factor for poor visibility. Excluding fog may remove
some polluted PM days together, but in a very humid environment, the scattering cross
section of hygroscopic particles is more than five times higher than that of dry particles [37].
This can be a degradation factor in visibility analysis. Although these natural factors play
essential roles in visibility changes, they were not the main focus of this study. Therefore,
we excluded visibility observations in the presence of extreme meteorological conditions
such as precipitation, fog, and yellow dust for the analysis described below to investigate
the effects of PM and its composition on visibility changes.

According to the two methods, there is a systematic difference between the visibility
data sets, which is a significant limitation for continuous visibility analysis. We use em-
pirical equations that reflect light extinction by gases and aerosols to create a consistent
visibility dataset. Table 2 shows the light extinction equations used in the visibility calcula-
tions developed by Interagency Monitoring of Protected Visual Environments (IMPROVE)
and NIER [38–40], based on the observed PM component and NO2 concentrations and the
ambient RH. Visibility calculation using the light-extinction coefficient was performed in
previous studies [41–43]. IMPROVE_1994 is the light-extinction coefficient equation initially
proposed by IMPROVE, based on U.S. observation data. The light-extinction coefficient is
calculated by dividing the major aerosol components that cause reduced visibility, such as
ammonium sulfate (NHSO), ammonium nitrate (NHNO), organic carbon (OMC), elemental
carbon (EC), fine-mode soil particles (FS), and coarse-mode particles (CM; PM10–PM2.5). In
addition, as water vapor in the atmosphere is absorbed by deliquescent particles, the water
growth function (f (RH)) is considered. While IMPROVE_1994 applied f (RH) uniformly,
regardless of particle size, IMPROVE_2007 minimized the error about f (RH) by subdividing
it into f S(RH) and f L(RH) according to particle size. NIER calculated the light-extinction
coefficient for each aerosol component determined through multivariate linear regression
analysis based on data observed in South Korea.
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Table 2. Light-extinction coefficient equations of IMPROVE and NIER.

Institute The Composite Equation for the Light-Extinction Coefficient

IMPROVE_1994 3f (RH)([NHSO 1] + [NHNO 2]) + 4[OMC 3] + 10[EC] + 1[FS 4] + 0.6[CM 5]
+ babs,NO2 + bRay

IMPROVE_2007

2.2f S(RH)[Small Ammonium Sulfate] + 4.8f L(RH)[Large Ammonium
Sulfate] + 2.4f S(RH)[Small Ammonium Nitrate] + 5.1f L(RH)[Large

Ammonium Nitrate] + 2.8[Small Organic Mass] + 6.1[Large Organic Mass]
+ 10[Elemental Carbon] + 1[Fine Soil] + 1.7f SS(RH)[Sea Salt] + 0.6[Coarse

Mass] + Rayleigh Scattering (Site Specific) + 0.33[NO2 (ppb)]

NIER 0.91(3[NHSO](1-RH/100)−0.7) + 1.34(3[NHNO](1 − RH/100)−0.7) +
1.06(4[OMC](1 − RH/100)−0.4) + 0.98(10[EC]) + 2[FS] + 0.6[CM] + 153.53

1 NHSO = 1.375[SO4
2−], 2 NHNO = 1.29[NO3

−], 3 OMC = 1.41[OC], 4 FS = 1.40[Ca] + 1.43[Fe], and 5 CM = [PM10]
− [PM2.5].

We first calculated hourly light extinctions in Seoul for 2017–2018, using equations in
Table 2 with PM component-concentrations and humidity data. We then used the following
Koschmieder formula to convert light extinctions (Mm−1) into reconstructed visibility
(km) [44].

Visibility =
3.912

light-extinction coefficient
(1)

We evaluate the reconstructed visibility by comparing it with the instrument visibility
for the same period. The correlation coefficients (R) between the instrument visibility and
the reconstructed visibility using IMPROVE_1994, IMPROVE_2007, and NIER equations,
were 0.26, 0.21, and 0.82, respectively. The reconstructed visibility based on the NIER
equation shows the best agreement with the observation and is used for our analysis below.
However, the NIER equation limits the maximum visibility up to 25.5 km, beyond which
the maximum visibility observed with the naked eye was available. In particular, good
visibility (>20 km) observed with the naked eye accounts for approximately 30% of the
total hourly visibility observations. As mentioned above, to analyze poor visibility, which
is closely related to air quality degradation, we excluded good visibility data (>17 km) from
our analysis, which was not the main focus of the study. After filtering as described above,
the correlation coefficient between the reconstructed visibility and instrument observation
increased to 0.86. Then, the hourly reconstructed visibility data were averaged annually
and used for analysis. Note that we examined all visibility data without limiting distance;
however, there was no significant difference in our conclusions.

3. Results and Discussion
3.1. Annual Visibility Trend

The change in PM2.5 concentrations was an important factor in the visibility change in
Seoul. Figure 1 shows the annual mean surface PM2.5 concentration and the reconstructed
visibility (hereafter visibility) during 2012–2018. The PM2.5 concentration shows a clear
decreasing trend, influenced not only by the emission-reduction policy in South Korea, but
also by the recent clear decreasing trend of PM2.5 concentration in China [45–47]. Changes
in PM2.5 concentration in China are known to significantly impact air quality in South Korea
through long-range transport [6,48]. The annual mean visibility showed the opposite trend
to the PM2.5 concentrations (R = −0.96). Interestingly, the range of change between the two
differs: the annual mean PM2.5 concentrations decreased by −5.1% yr−1 during 2012–2018,
while the annual mean visibility increased by only 2.1% yr−1. To understand why the
increase in visibility was less than the decrease in the PM2.5 concentration, we additionally
analyzed the concentrations of PM2.5 components (SO4

2−, NO3
−, NH4

+, OC, and EC).
Figure 2 shows the annual mean variations of PM2.5 and PM2.5 component concentrations.
Except for OC, the concentrations of PM2.5 components exhibited a decreasing trend similar
to that of PM2.5 during 2012–2018.
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Figure 2. Annual mean concentrations of PM2.5, SO4
2−, NO3

−, NH4
+, OC, and EC concentrations in

Seoul, South Korea, during 2012–2018.

Table 3 shows the annual trends for PM2.5 and the components during 2012–2018.
First, the decreasing trend of SO4

2− was −1.0 µg m−3 yr−1, which made the highest
contribution to the decreasing trend of PM2.5, which was −2.3 µg m−3 yr−1. NO3

− and
NH4

+ also contributed, but were statistically insignificant (p-value > 0.10). Previous stud-
ies have suggested the importance of carbonaceous aerosols (OC and EC) on visibility
changes [13,41,49,50], but in Seoul, from 2012 to 2018, their contributions to PM2.5 con-
centrations were relatively low compared to secondary inorganic aerosols (see Figure 2).
The changes of OC and BC concentrations were small (Table 3), and their trends were
statistically insignificant, especially for OC. Except for the OC (for which the trend was
weak), the annual variability of PM2.5 components showed a high correlation coefficient
of >0.73 with that of PM2.5. In particular, NH4

+ had the highest correlation coefficient
of 0.96 with PM2.5. In addition, PM2.5 components showed a high negative correlation
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with visibility (−0.72 or higher), indicating that the annual change in aerosol concentration
played an important role in visibility change.

Table 3. Annual trends of concentrations of PM2.5, SO4
2−, NO3

−, NH4
+, OC, and EC concentrations

in Seoul, South Korea, during 2012–2018, and correlation coefficients (R) between each variable and
visibility trends.

Variables PM2.5 SO42− NO3− NH4
+ OC EC

Trend (µg yr−1) 1 −2.3 ± 5.2 ** 2 −1.0 ± 1.2 *** −0.3 ± 2.8 −0.3 ± 0.8 * 0.0 ± 0.4 −0.1 ± 0.1 ***
R with PM2.5 − 0.83 0.73 0.96 0.60 0.92

R with visibility −0.96 −0.76 −0.72 −0.92 −0.76 −0.82
1 Include the standard deviation along with the trend. 2 p-value: *** p < 0.05, ** p < 0.10, * p < 0.20.

3.2. Poor Visibility Analysis

For the general public, poor visibility is considered an indicator of air quality degrada-
tion; therefore, it is necessary to assess the recent changes in poor visibility. In particular, the
annual mean visibility in Seoul has been improving in recent years (see Figure 1); however,
since the public is sensitive to poor visibility, an increase in poor visibility can be perceived
by the public as air quality degradation. Here, we analyzed the frequency of poor visibility
in Seoul during 2012–2018.

The definition of poor visibility is arbitrary. For example, Fu et al. [51] and Sun
et al. [52] used low visibility (<5 km) as poor visibility, while Luo et al. [53] used a much
smaller distance (<3 km). Poor visibility is defined as the lowest 20th percentile of daily
visibility in Seoul for 2012–2018, which are values lower than 6.1 km. Using this criterion,
annual and diurnal (rush hour) frequencies of poor visibility were calculated. Note that to
analyze the sensitivity of our results to the poor visibility criterion, we changed the poor
visibility criterion to the lowest 5th (<3.6 km) and 10th (<4.7 km) percentile values, but
there was no significant difference in our conclusions.

3.2.1. Annual Poor Visibility

Despite the decreasing trend of the annual mean PM2.5 concentration observed in
Seoul during the analysis period, public concern regarding air pollution is most likely
due to the public perception that air pollution has been worsening from poor visibility.
Therefore, to investigate the trend of poor visibility, we examined the proportion of poor
visibility in the total hourly visibility data. Figure 3 shows the annual mean poor visibility
proportion in Seoul during 2012–2018. As mentioned above, we applied the criterion of
poor visibility to cases <6.1 km. Since 2013, the poor visibility proportion has decreased,
which is consistent with the increase in annual mean visibility in Seoul (Figure 1). The
correlation coefficient between the poor visibility proportion and annual mean visibility
was −0.94, which shows that poor visibility has played an important role in the annual
mean visibility. In particular, the trend of poor visibility since 2013 was −3.3% points
(p) yr−1, implying that the proportion of poor visibility has been rapidly decreasing in
recent years.

3.2.2. Poor Visibility in Rush Hour

When people are actively engaged in outdoor activities during commuting hours, they
may be exposed to PM more than during other times due to traffic congestion in metropoli-
tan cities such as Seoul. Therefore, we indirectly examined the changes in concerns of
people caused by high concentrations of PM through poor visibility changes during rush
hour periods. Figure 4 shows the poor visibility during two rush hour periods (morning
rush hour: 0700–0900 LST; and evening rush hour: 1700–1900 LST). The 7–year mean poor
visibility proportion in Seoul was 7.8%p higher in the morning rush hour (24.2%) than in
the evening rush hour (16.4%); this was generally due to the lower planetary boundary
layer and higher RH in the morning rush hour than in the evening rush hour [54,55]. As
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mentioned above, we set the criterion of poor visibility as the lowest 20th percentile value
of hourly visibility data. Therefore, the high poor visibility proportion during the morning
rush hour means that the morning rush hour significantly contributed to the change in the
poor visibility proportion in Seoul. In recent years, poor visibility has decreased in both
morning and evening rush hours; however, the change has been more significant in the
morning rush hour (−1.8%p yr−1) than in the evening rush hour (−1.4%p yr−1).
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3.3. Factors Affecting Poor Visibility

To better understand the change in poor visibility, we additionally analyzed the change
in concentrations of PM2.5 components during poor visibility conditions. Figure 5 shows
the annual mean variations of PM2.5 and the concentrations of the components during
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poor visibility. When all cases of observed visibility <17 km were considered, the NO3
−

concentration in Seoul showed the same negative trend as PM2.5 (see Figure 2). However,
when only considering the poor visibility of <6.1 km, the NO3

− concentration showed a
different trend, unlike the negative trend of the PM2.5 concentration. In particular, since
2015, the NO3

− concentration has shown a steadily increasing trend, which is opposite to
that of PM2.5 with a steadily decreasing trend.
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conditions, the correlations with visibility were higher with NO3

− (R = −0.60) and NH4
+

(R = −0.77) than with SO4
2− (R = −0.38), even with the low statistical significance of the

annual concentration trend (p-value > 0.10). In other words, this result shows that although
SO4

2− made a higher contribution than NO3
− to the trend in the PM2.5 concentration, the

contribution of the NO3
− concentration had a stronger influence on the poor visibility trend.

It also shows that NH4NO3 played a major role in visibility changes; this is described in
more detail in Section 3.4. The correlation between carbonaceous aerosols (OC and EC) and
visibility was relatively insignificant (R = −0.03 and R = 0.01, respectively), highlighting the
importance of secondary inorganic aerosols (SO4

2−, NO3
−, and NH4

+) for poor visibility
conditions. The mean cation to anion equivalent ratio observed in Seoul from 2012 to
2018 is 1.01, which indicates that the inorganic salts were fully neutralized in the forms of
(NH4)2SO4 and NH4NO3.

The optical properties of aerosols are sensitively affected by the composition and size
of hygroscopic particles, which are closely controlled by atmospheric humidity [37]. From
2012 to 2018, RH showed an increasing trend under poor visibility conditions (0.8% yr−1).
An increase in RH may have contributed to suppressing the improvement in visibility, as
higher RH and a more humid environment are more favorable for the hygroscopic growth
of particles and subsequent decrease in visibility. However, the change in RH and visibility
showed a weak correlation (R = 0.28), and the trend of RH also showed low statistical
significance (p-value > 0.10).
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Table 4. Annual trends of concentrations of PM2.5, SO4
2−, NO3

−, NH4
+, OC, and EC in Seoul, South

Korea, from 2012 to 2018 during poor visibility conditions, and correlation coefficients (R) between
each variable and visibility trends.

Variables PM2.5 SO42− NO3− NH4
+ OC EC

Trend (µg yr−1) 1 −2.6 ± 4.3 *** 2 −1.6 ± 1.6 *** 0.2 ± 3.4 −0.3 ± 0.8 * 0.0 ± 0.7 −0.2 ± 0.2 ***
R with PM2.5 − 0.95 0.12 0.83 0.23 0.82

R with visibility −0.55 −0.38 −0.60 −0.77 −0.03 0.01
1 Include the standard deviation along with the trend. 2 p-value: *** p < 0.05, * p < 0.20.

3.4. Variations of SO4
2− and NO3

− Concentrations
3.4.1. Budget Changes of Light-Extinction Coefficient

We derive the reconstructed visibility data by calculating the light-extinction coefficient
based on the PM components (Table 2). Here, we analyze the light-extinction coefficient
for each PM component to examine the cause of the recent improvement in visibility
in Seoul that is lower than the improvement in PM2.5 concentrations. Figure 6 shows
the annual trend of the light-extinction coefficient for PM components from 2012 to 2018
during poor visibility conditions. Since visibility has an inverse correlation with the
extinction coefficient (Equation (1)), a decrease in the light-extinction coefficient means an
improvement in visibility. According to the trend of light-extinction coefficient under poor
visibility conditions, (NH4)2SO4 significantly contributed to the improvement of visibility
(−13.6 Mm−1 yr−1), but as the concentration of NO3

− increased, NH4NO3 contributed to
the deterioration of visibility (9.4 Mm−1 yr−1). In poor visibility conditions, both PM2.5 and
visibility are improved due to a significant decrease in SO4

2− concentration, but an increase
in NO3

− concentration suppresses the visibility improvement. Furthermore, NH4NO3 has
higher mass extinction efficiency (light-extinction coefficient per unit mass) than (NH4)2SO4,
resulting in larger visibility degradation with the same mass concentration (see Table 2).
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We quantitatively analyzed the effects of PM component changes on visibility. Figure 7
shows the proportion of the light-extinction coefficient for 2 years (i.e., 2012 and 2018),
representing the relative influence of each PM2.5 component on reduced visibility. NH4NO3
contributed the most to poor visibility among the PM components, followed by (NH4)2SO4,
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OC, and EC. In recent years, visibility has improved, and the poor visibility proportion
has decreased (see Figures 1 and 3). However, the effect of NH4NO3 on poor visibility has
been increasing. In 2012, the proportion of NH4NO3 contributing to poor visibility was
48%; however, this increased to 59% in 2018. In contrast, (NH4)2SO4 decreased from 33% to
22% over the same period. The reason for this was the decrease in SOx emissions, and the
excess NH3 due to the decrease in the (NH4)2SO4 concentration contributed to the increase
in the NH4NO3 concentration (Figure 5).
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3.4.2. Effects of Changes in SOx and NOx Emissions on Visibility

To analyze the changes in SO4
2− and NO3

− concentrations in Seoul over two years,
2012 and 2018, we examined the changes in emissions of the precursor, such as SOx and
NOx, which significantly contribute to the concentrations of both species. Although SO4

2−

and NO3
− are secondary aerosols produced by complex reactions of thermodynamic

equilibrium in the atmosphere [56], different trends in their precursor emissions are critical
factors in determining the respective aerosol concentrations. Here, in comparing emissions,
we considered the Seoul Metropolitan area, including Seoul, Incheon, and Gyeonggi-do,
which may affect the generation of secondary aerosols in Seoul.

In 2018, the SO4
2− concentration had decreased by 36.7% compared to 2012, while

the NO3
− concentration had increased by 27.0% (Table 5). The distinct difference in the

concentration change between the two components was highly correlated with the change
in SOx and NOx emissions. During the two periods, SOx emissions decreased by 39.8%,
similar to the 36.7% decrease in the SO4

2− concentration. In general, SO4
2− and NO3

−

exist in the forms of (NH4)2SO4 and NH4NO3 in the atmosphere [57]. (NH4)2SO4 has a
stoichiometric ratio of SO4

2− and NH4
+ of 1:2, and NH4NO3 is composed of NO3

− and
NH4

+ at a ratio of 1:1. Theoretically, the NO3
− molar concentration can be doubled by the

reduced SO4
2− molar concentration. Moreover, NO3

− is optically 47% more effective than
SO4

2− in reducing visibility (see Table 2). Due to the decreased SO4
2− concentration, all

the available NH3 contributed to the increase in the NO3
− concentration. Therefore, the

NO3
− concentration increase was due to the decrease in SOx emissions, and in addition to

the 17.6% increase in NOx emission in 2018 compared to 2012, the 3.4% increase in NH3
emission also contributed to the increase in NO3

− concentration. As such, different changes
between PM components have played an important role in recent visibility changes. That
is, in 2018 compared to 2012, although the increase in the NO3

− concentration was smaller
than the decrease in the SO4

2− concentration, the change in the light-extinction coefficient
during the same period showed that the increase in NH4NO3 was larger than the decrease
in (NH4)2SO4 (Table 6). This result means that the increase in NH4NO3 concentration is an
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important contribution to the recent slowness in visibility improvement in Seoul despite
the decrease in PM2.5 concentration.

Table 5. Changes (%) in SO4
2−, NO3

−, and NH4
+ concentrations and their precursor emissions in

2012 and 2018.

Emission
SOx NOx NH3

−39.8 17.6 3.4

Concentration
SO4

2− NO3
− NH4

+

−36.7 27.0 −1.7

Table 6. Changes in (NH4)2SO4 and NH4NO3 concentrations (µg m−3) and light-extinction coeffi-
cients (Mm−1) in 2012 and 2018.

(NH4)2SO4 NH4NO3

Concentration −8.7 6.2

Light-extinction coefficient −50 91

Moreover, the increase in NOx emissions in the Seoul metropolitan area (which is in
an NH3-rich condition) [58–60] will play an important role, not only in suppressing the
decrease in PM2.5 concentration, but also in increasing the NO3

− proportion in the PM2.5
component. Therefore, detailed emission-reduction policies are required to reduce the
PM2.5 concentration and improve visibility.

Local sources of precursor emissions strongly influence the generation of secondary
inorganic aerosols. In addition, long-range transport from China is also an important part
of secondary inorganic aerosols because the Korean Peninsula is located downstream of
China, the largest source of pollution in East Asia [48]. Although the concentration trend of
secondary inorganic aerosols in Seoul is closely related to changes in emissions in the Seoul
metropolitan area, as seen above, it is not easy to evaluate the effects of emissions more
accurately only with observational information. Therefore, a sensitivity experiment using a
three-dimensional atmospheric chemical-transport model is required, but it is far from the
scope of this study.

4. Conclusions

In recent years, the annual mean PM2.5 concentration in Seoul has been decreasing;
however, people tend to perceive that the air quality is deteriorating. We investigated the
cause of the discrepancy by focusing on the changes in visibility that are closely related
to air quality degradation and especially evaluated the effects of changes in the PM2.5
components on poor visibility. Contrary to concerns, the annual mean PM2.5 concentration
and visibility steadily improved during 2012–2018 in Seoul, which shows that PM2.5
plays an important role in improving visibility. However, while the PM2.5 concentrations
decreased by −5.1% yr−1 from 2012–2018, visibility only increased by 2.1% yr−1.

To understand why the increase in visibility was less than the decrease in the PM2.5
concentrations, we investigated the trend of poor visibility, which is the lowest 20% value
for hourly visibility. The trend of the poor visibility proportion in Seoul is −1.4%p yr−1,
which has been steadily improving in recent years. In particular, the decrease in poor
visibility during the morning rush hour (−1.8%p yr−1) was noticeable compared to that in
the evening rush hour (−1.4%p yr−1). Next, we calculated the light-extinction coefficient
for each PM2.5 component to determine the importance of each component that contributed
to poor visibility. We found that NH4NO3 contributed the most to poor visibility and that
its impact gradually increased (i.e., from 48% in 2012 to 59% in 2018).

In contrast, the contribution of (NH4)2SO4 decreased from 33% to 22% over the same
period. In other words, the importance of NO3

− has been increasing in Seoul recently,
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in terms of both the PM2.5 concentration and poor visibility; however, the influence of
SO4

2− has been decreasing. This is evident in changes in the emissions of SOx, i.e., a
precursor of SO4

2−. During the two periods (2012 and 2018), the SOx emissions in the Seoul
Metropolitan area decreased by 39.8%, which is consistent with the decrease in the SO4

2−

concentration during the same period. Moreover, the decrease in the SO4
2− concentration

contributed significantly to the increase in the NO3
− concentration and the available NH3

concentration, which is noteworthy in terms of the recent changes in air quality in Seoul.
A decrease in the SO4

2− concentration with a reduction of SOx emissions is favorable
to the reduction of PM2.5 concentrations. However, in the Seoul Metropolitan area, which
is in an NH3-rich condition, the available NH3 contributed significantly to the NH4NO3
concentration by increasing the NOx emission. In addition, NO3

− can be generated
as a double of SO4

2− reduction, and optically, NO3
− is 47% more effective than SO4

2−

in reducing visibility. Therefore, as the PM component recently shifted from SO4
2− to

NO3
−, the visibility improvement in Seoul appeared slower than the decrease in PM2.5

concentrations. Reducing both NOx and NH3 emissions is required to improve PM2.5 and
poor visibility in Seoul. To achieve this, it is necessary to comprehensively understand
the chemical reaction involved in each component and implement effective emission-
reduction policies.

Visibility and PM2.5 concentrations have recently been improving in Seoul. Neverthe-
less, another cause of public concern regarding air quality may be increased public interest
in air quality degradation. As the WHO designated PM as a class 1 carcinogen, public
concerns regarding health have been increasing. Furthermore, PM forecasts can be easily
accessed through mass media, such as television or the internet, which has increased public
interest and concern regarding air quality.
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