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Abstract: Following significant urban expansion, the ecological problems of resource-based cities are
gradually exposed. It is of great significance to study the ecosystem services of resource-based cities
to achieve their sustainable development goals and to alleviate the conflicts between environmental
protection and the utilization of the surrounding resources. However, in the current research on
resource-based cities, few scholars have combined multiple minerals and multiple ecosystem services
to explore the impact of mineral resources on the ecosystem. In this study, based on the historical data
spanning from 2002 to 2018, we used the CA–Markov model to project the land use of Panzhihua
City to 2030. Based on future land use projection, we quantified four ecosystem services (ESs)
variables, including water yield, carbon storage, habitat quality, and soil conservation, using the
InVEST model from the perspective of land use evolution in Panzhihua City. In addition, we
explored the trade-offs and synergies of different ecosystem services and the correlations between
different mineral species and ecosystem services using Spearman’s correlation coefficient. Results
showed the following: (1) During 2002–2018, water yield service, habitat quality service, and carbon
storage service of Panzhihua City decreased year by year, and soil conservation service showed
significant fluctuations; most of the low ESs areas were distributed in the central region of Panzhihua.
On the contrary, most high ESs areas were located in the forest region. (2) The trade-offs and
synergistic relationships among different ecosystem services showed significant spatial variations.
There were synergistic relationships among ESs and weak trade-offs between water yield services,
soil conservation, and habitat quality services. There was also significant spatial variability in the
trade-offs and synergies among ecosystem services, with water production services showing “east
trade-offs and west synergies” with soil conservation and habitat quality services, and most of the
rest showing trade-offs in urban areas. (3) ESs in mining areas showed trade-offs in general, mainly
between water production services and carbon storage services, with clay as the major negative
factor of mineral species, and iron ore mines that have undergone ecological protection construction
showed the lowest negative impact on ecology.

Keywords: CA–Markov; integrated assessment model for ecosystem services and trade-offs; ecosys-
tem services (ESs); tradeoffs and synergies; resource-based city
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1. Introduction

Ecosystem service value assessment is an essential reference and basis for ecological
and environmental protection, ecological function zoning, environmental and economic
accounting, and ecological compensation decision-making [1,2]. With the acceleration of
economic development and urbanization, the decline of ecosystem services and the decay
of biodiversity have become serious global problems. The assessment of ecosystem service
functions helps provide a basis for the rational use of resources and then contributes to the
sustainable development of the ecosystem.

Since the end of the 20th century, with the gradual clarity of the concept of ecosys-
tem services and the deepening of the research on the division of ecosystem services, the
research on ecosystem services has made great progress [3,4]. Domestic scholars have
classified the indirect value of ecosystem service functions from the ecology perspective
and constructed a value equivalent factor table based on the previous work, which provides
a theoretical basis and reference for natural property assessment and ecological compensa-
tion [5,6]. With the deepening of research, evaluating ecosystem service value has become
a research hotspot. Scholars have researched the methods of physical quality evaluation
and value quantity evaluation of ecosystem services [7,8].

The assessment of physical quality methods of ESs is usually based on ecosystem
service processes or ecosystem service functions, which can objectively reflect the formation
mechanism of ecosystem services [9–11]. Strengthening the integration of ecosystem
processes and services is the current trend in ecosystem assessment. With the deepening
of ecosystem services research, various assessment models have emerged. Currently,
the more common and open source models used internationally are InVEST model, the
ARIES model, the SoLVES model, etc. Among them, the ARIES model is currently only
applicable to some case areas in the United States and cannot take ecological or socio-
economic influences into account when used in other areas, but it has high accuracy
for assessing functional areas and has excellent potential for development. The SoLVES
model assesses ecosystem service functions innovatively, such as aesthetics, biodiversity,
and recreational life in terms of public attitudes and preferences. However, when it is
applied to agroecosystems, there is the problem of using the same landscape parameters
for different landscape types. Although some data are difficult to collect, the InVEST model
has strong applicability to small amounts of demand data. Furthermore, all modules of it
are independent, allowing users to input relevant data of the study area, so it is suitable for
a wide range of research [12,13]. Currently, the InVEST model has more applications for
water yield, biodiversity, carbon storage, and soil erosion modules and fewer applications
related to pollination and aesthetic assessment modules. Both domestic and international
studies tend to focus on individual ecosystem services [14–16], the impact of land use
change on ecosystem services [17–20], and the analysis of spatial and temporal patterns
of ecosystem services [21,22], among which water yield services have been studied with
more enthusiasm.

Land use change is a complex dynamic system with the characteristics of change
discontinuity, landscape matrix, mixed land use categories, irreversible change, etc. [23–26].
Among the relevant models for land use simulation and prediction, it is challenging to
predict the spatial pattern changes of land use with the traditional Markov model [27].
Many scholars internationally have conducted studies on urban growth using the Cellular
Automata (CA) model [28–31], which is highly capable of simulating the spatial and
temporal evolution of spatially complex systems, but due to the local interactions between
system elements and the single control element, it is difficult to reflect the social, economic,
and other macro factors affecting the regional ecological security pattern with this model.
Some scholars used the CA–Markov model to simulate and predict land use changes, and
the studies show that the current land use patterns still have many urgent problems to
be regulated [32,33]. The CA–Markov model integrates the ability of the CA model to
simulate the spatial change of complex systems with the advantages of the Markov model
in long-term prediction. It not only improves the prediction accuracy of land use type
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transformations but also effectively simulates the spatial change of land use patterns, which
is scientific and practical [34,35].

When people are involved in land use management, they often pursue only one or
several types of ESs [36]. However, this method intentionally or unintentionally impacts
the provision of other ecosystem services, thus raising the issue of trade-offs and synergies
of ecosystem services. Ecosystem service trade-offs are situations in which the use of one
ecosystem service increases or causes another benefit to decrease; synergies are situations
in which two ecosystem services increase or decrease simultaneously [37]. Neglecting
ecosystem service trade-offs or synergistic relationships may reduce the supply capacity of
specific ecosystem services [13]. Among the investigations of ecosystem service trade-offs
and synergies, scholars tend to focus on regional ecosystem services [38–41], the influence
of natural resources on ecosystem service trade-offs and synergies [42–44], the influence of
land use change on ecosystem services [44,45], and the influence of urban spatial planning
on ecosystem services [46], with fewer studies combining mineral resource development
and resource-based urban ecosystem service trade-offs and synergies. In the research on
ecosystem services of resource-based cities, domestic scholars constructed a composite
urban carrying capacity index based on mineral resources from the synergy of economy,
society, resources, and environment, which provides new perspectives for investigating
the carrying capacity of mining-based cities [47]. Generally, the research content is biased
towards the impact of land use change on ecosystem services and ecosystem vulnera-
bility [48–51]. Few related studies explore the synergistic trade-off relationship between
ecosystem services and mineral species. The irrational use of resources in resource-based
urban ecosystems leads to excessive environmental depletion, and the declining function
of natural ecosystems is becoming increasingly severe [52,53]. Therefore, it is desirable
to investigate the ecosystem service functions of resource-based cities to help explore the
sustainable development path of resource-based cities [54]. In the research of combined
mineral resources, some scholars have explored the impact of mineral resources on the
ecosystem from the perspective of single mineral species such as a coal mine [55,56] or
a single ecosystem service [57]. Multiple ecosystem services and multiple minerals are
rarely considered. In this study, we investigated the impacts of multiple mineral species
on ecosystem services and explored the trade-offs and synergy between different mineral
species and ecosystem services.

Panzhihua is a pivotal city for mineral resource development in China, so it is an
important topic to investigate the relationship between different mineral species and
ecosystem service functions in Panzhihua. The adjustment plan of Panzhihua’s overall land
use plan proposes to strengthen the land use planning and management and to transform
the city from an industrial and mining base to an ecologically livable city. The “14th Five-
Year Plan for Ecological and environmental protection of Panzhihua” pointed out that it
is necessary to accelerate the development of low-carbon industries and to systematically
promote ecological and environmentally friendly construction. In this paper, based on
the land use data of Panzhihua city in 2002, 2006, 2010, 2014, and 2018, we used the CA–
Markov and InVEST models to assess and predict the evolutionary characteristics of the
ecosystem services in the Panzhihua area from the perspective of land use. Furthermore,
we used the Spearman correlation coefficient to analyze the trade-off and synergistic effects
between different mineral species and ecosystem services and thoroughly combined it
with the distribution of mineral resources in Panzhihua city to explore the correlation
between mineral species and ecosystem services to provide a reference for the sustainable
development and rational planning of resource-based cities.

2. Study Area

Panzhihua (26◦05′–27◦21′N, 101◦08′–102◦15′E) is located in the southernmost part of
Sichuan Province, China, in the middle and southern part of the Panxi Rift Valley, with
many hills and mountain plain canyon landscapes, and the terrain sloping from northwest
to southeast (Figure 1). The climate is a compound of various climate types, such as south



Remote Sens. 2022, 14, 5282 4 of 25

subtropical and north temperate, with an average annual temperature of about 20.8 ◦C,
yearly precipitation of about 950 mm, distinct dry and rainy seasons, and a significant
difference in temperatures between day and night. The city’s total area is 7440.398 km2,
with a resident population of more than 1.2 million. Panzhihua, as one of the four major iron
ore regions in China, is rich in mineral resources. Seventy-six types of minerals have been
discovered, and 7.18 billion tons of iron ore (mainly vanadium and titanium magnetite)
have been proven. The associated vanadium, titanium, graphite, and other resources are at
the forefront in China. Cobalt, chromium and other rare metal minerals, and coal, dolomite,
granite, and other non-metallic minerals are abundant.
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3. Materials and Methods
3.1. Data Sources

Multiple sources of data were used in this study. For more information on the data
and data sources, see Table 1. We preprocessed the data in PIE-Basic remote sensing image
processing software. We reclassified the land use data into seven land classes: crop, forest,
shrub, grassland, water, barren, and impervious, and we coded these classes from 1 to
7, respectively. We extracted slope rasters based on DEM data and extracted rivers and
watersheds through hydrological analysis tools in ArcGIS. We used ArcGIS to calculate
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Euclidean distances to obtain grids of distances to rivers, roads, railways, and settlements.
We screened 20 meteorological stations in Panzhihua City and surrounding areas and
obtained daily rainfall and annual average rainfall grids by inverse distance weighted
interpolation in ArcGIS. The inverse distance weighted method takes the distance between
the interpolation point and the sample point as the weighted average weight. The sample
points closer to the interpolation point are given more weight. All spatial data were unified
under the Asia_North_Albers_Equal_Area_Conic projection coordinate system, and the
raster data were resampled to 30 m spatial resolution.

Table 1. Data information and data sources.

Data Spatial Resolution Data Source Index

30 m annual land cover and
its dynamics in China from

1990 to 2019
30 × 30 m

Data set produced by Professor Huang Xin’s
team at Wuhan University [58]

(https://zenodo.org/record/4417810#
.YxhwS6HiviD (accessed on 9

December 2021.))

Land use

ASTER GDEM V3 (30 m) 30 × 30 m
Geospatial Data Cloud

(http://www.gscloud.cn/ (accessed on 20
January 2022.))

Digital elevation
model (DEM)
Slope grids of

study area
Watersheds

Distance to rivers
1:250,000 road traffic data set

of Sichuan Province
1:250,000

National Earth System Science Data Center
(http://www.geodata.cn/ (accessed on 3

March 2022.))

Distance to roads
Distance to railway

Distribution data of 1:250,000
rural residential areas in

Sichuan Province

Distance to
residential areas

Global Aridity Index and
Potential Evapotranspiration

Database
30 × 30 arc-second

CGIAR CSI
(https://cgiarcsi.community/ (accessed on 27

January 2022.))

Potential evapo-
transpiration

Harmonized World Soil
Database v 1.2 1 km × 1 km

Food and Agriculture Organization of the
United Nations

(https://www.fao.org/ (accessed on 23
January 2022.))

Sand, silt, clay, and
soil organic carbon

content

Dataset of soil properties for
land surface modeling over

China
30 × 30 arc-second

Big Earth Data for Three Poles
(http://poles.tpdc.ac.cn/ (accessed on 27

January 2022.))

Soil organic matter
content

Hourly observation data of
China’s ground

meteorological stations

Forms of report
China Meteorological Data Service Centre

(http://data.cma.cn/ (accessed on 21
January 2022.))

Daily rainfall grid
Average annual

precipitation grid

Statistical Yearbook of
Sichuan Province City level

Sichuan Provincial Bureau of Statistics
(http://tjj.sc.gov.cn/ (accessed on 28

September 2021.))

Annual
precipitation in the

study area

China Climate Bulletin Country level
China Meteorological Administration

(http://www.cma.gov.cn/ (accessed on 21
January 2022.))

Annual
precipitation in

China

Mine environment monitoring
data in Sichuan Province Polygon feature

Sichuan Geological Survey
(http://www.scddy.com.cn/ (accessed on 31

July 2019))

Vector mineral
data

A daily 0.25◦ × 0.25◦

hydrologically based land
surface flux dataset for
conterminous China,

1961–2017 [59]

0.25◦ × 0.25◦
Science Data Bank

(https://www.scidb.cn/en (accessed on 28
January 2022.))

River runoff

2006 IPCC Guidelines for
National Greenhouse Gas

Inventories
Forms of report

IPCC
(https://www.ipcc.ch/ (accessed on 15

February 2022.))

Carbon density of
dead matter

https://zenodo.org/record/4417810#.YxhwS6HiviD
https://zenodo.org/record/4417810#.YxhwS6HiviD
http://www.gscloud.cn/
http://www.geodata.cn/
https://cgiarcsi.community/
https://www.fao.org/
http://poles.tpdc.ac.cn/
http://data.cma.cn/
http://tjj.sc.gov.cn/
http://www.cma.gov.cn/
http://www.scddy.com.cn/
https://www.scidb.cn/en
https://www.ipcc.ch/
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3.2. Methodology

We innovatively combined the CA–Markov Forecasting model with the InVEST Fore-
casting model in the study. We forecasted land use in 2030 and selected four modules,
namely, water yield, soil conservation, habitat quality, and carbon storage, to evaluate the
value of ecosystem services and to construct an ecosystem services evaluation system for
resource-based cities. In particular, we optimized and improved the evaluation unit of
the mining ecosystem. We constructed a new model of ecosystem service trade-offs and
synergies across different mining areas according to the mining type (Figure 2).
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3.2.1. Land Use Dynamic Change and Forecast

(1) CA Model

The cellular automata (CA) model is a dynamic model that presents discrete data in
time, space, and state, constructed from temporal causality and spatial interactions, and
it is able to model the spatio-temporal evolution of complex systems [60]. The following
equation can express it:

S (t + 1) = f (S (t), N) (1)

where S is the metacell space, which is the set of finite discrete metacells; f is the transition
rule function of metacell states; N is the neighborhood of each metacell; and t + 1 and t are
two different moments.

(2) Markov Model

Markov is a special motion process based on the theory of the stochastic process of the
mathematician Markov, which has “no after effect” and can collect complex information in
the form of a state transfer matrix using historical factors and present states for statistical
and developmental law exploration [61]. Since land use changes have similar properties,
Markov models are widely used to predict dynamic changes in land use [62]. The Markov
model is calculated using this equation.

S (t + 1) = Pij × S (t) (2)

where S (t + 1) and S (t) are the land use states at the moment t + 1 and the moment t,
respectively, and Pij is the land use transfer probability matrix.

(3) CA–Markov Model

The CA–Markov model is a hybrid model consisting of cellular automata (CA) and a
Markov chain. In this study, we used IDRISI Selva v.17 to predict the future land use of the
study area on the CA–Markov model. IDRISI Selva v.17 is a platform that combines image
processing and geographic information analysis [63,64]. We used the CA–Markov module
in it to obtain the transition probability and the transition area matrix [65]. Land uses of
2014 and 2018 were used to construct the transition probability matrix for the purpose of
producing a simulated land use map for 2030.

3.2.2. Ecosystem Services Assessment

(1) Water Yield

The water yield module in the InVEST mode is based on the Budyko principle of
coupled hydrothermal equilibrium [66], which combines the effects of factors such as
spatial differences in soil permeability and evapotranspiration of different land use types
on runoff to construct a suitable model and takes raster as a unit to quantitatively estimate
water supply capacity [67].

Yxi =

(
1− AETxi

Px

)
× Px (3)

where Yxi is the annual water yield on the raster x when the land use is type i (mm); Px is
the average annual precipitation of the raster x (mm); and AETxi is the actual average
annual evapotranspiration (mm).

AETxi

Px
= 1 +

PETxi

Px
−
[

1 +
(

PETxi

Px

)wx
] 1

wx
(4)

PETxi = Kc(`i)× ET0(x) (5)

wx = Z
AWCx

Px
+ 1.25 (6)
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where PETxi is the annual average potential evapotranspiration on the raster x when the
land use type is i (mm); wx is a non-physical parameter of natural climatic soil properties;
AWCx is the effective soil water content of the raster x (mm); and Z is the Zhang coefficient,
which is a seasonal constant taking values between 1 and 30. In this study, the data from
hydrological stations in the study area and relevant papers were analyzed [68], and the
Zhang coefficient was continuously adjusted to debug the optimal assessment results.

(2) Soil Conservation

In the InVEST model, soil conservation (SC) is obtained by subtracting the actual soil
erosion (USLE) under manual management and conservation measures from the potential
soil erosion (RKLS) under natural vegetation protection.

SC = RKLS−USLE (7)

RKLS = R×K× LS (8)

USLE = R×K× LS×C× P (9)

where R is the rain fall erosivity, calculated using a monthly calculation formula [69]; K is
the soil erodibility factor, calculated using the EPIC model and modified with the correction
method [70,71]; LS is the slope length-gradient factor; C is a cover-management factor,
which is the ratio of soil loss from vegetated land or managed fields to soil loss from recre-
ational land with continuous light tillage under the same environmental conditions [72];
and P is the soil conservation measure factor, which is the ratio of soil loss from sloping
land with soil conservation measures to soil loss from sloping land without any measures
under the same environmental conditions [73,74].

(3) Habitat Quality

This module of the InVEST model is mainly used to obtain the distribution of habitat
quality and the distribution of degradation in the study area by the sensitivity of different
land types to each threat source and habitat threat density data and to assess biodiversity
by the level of habitat quality, which is calculated as follows:

Qxj = Hj(1−
(

Dz
xj

Dz
xj + Kz

)
(10)

where Qxj denotes the habitat quality score of raster x in land use type j; Hj denotes the
habitat suitability; and K is the semi-saturation parameter. In this study, the InVEST model
manual was used as the basis, and the threat factor and sensitivity were set according to
Yubin Bao [19], Shu Feng [75], Dazhi Zhang [76], and Xiaoyu Niu [77].

(4) Carbon Storage and Sequestration

In the InVEST model, the carbon storage and sequestration of the ecosystem (Ctotal)
consists of four basic carbon pools: Aboveground carbon stock (Cabove), belowground
carbon stock (Cbelow), soil carbon stock (Csoil), and dead organic carbon stock (Cdead), and
the model is calculated as follows:

Ctotal = Cabove + Cbelow + Csoil + Cdead (11)

Determining the carbon density value of each carbon pool is the key to calculating
ecosystems’ carbon stock functions. In this paper, based on the carbon density estimation
results of Xie Xianli et al. and Li Ke-Jean et al. for different land use types in China [78,79],
we corrected the carbon density by using the correction method proposed by Alam et al. in
combination with the precipitation correction factor [80].
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3.2.3. Correlation Analysis

Sampling points were evenly laid out in GIS software to extract the four ecosystem
services during the study period (2002–2030). Then the Spearman correlation coefficient
between the two ecosystem services was calculated using mathematical and statistical tools.
Finally, the Spearman correlation coefficient was applied to calculate the correlation of
non-normally distributed data, which is calculated as follows [81,82]:

r12 =
∑n

i=1
(
ES1i − ES1

)(
ES2i − ES2

)√
∑n

i=1
(
ES1i − ES1

)2
√

∑n
i=1
(
ES2i − ES2

)2
(12)

where r12 is the correlation coefficient between the two ecosystem services; n is the number
of sampling points; ES1i is the rank of the i-th sampling point of the first ecosystem service;
and ES2i is the rank of the i-th sampling point of the second ecosystem service. The larger
the absolute value of r12, the stronger the correlation [56]. If it is positive and passes the
significance test, there is a synergistic relationship between the pair of ecosystem services.
If it is negative and passes the significance test, there is a trade-off relationship between the
pair of ecosystem services [83].

4. Results
4.1. Spatial and Temporal Changes in Land Use

In this study, land use data for a total of five periods at each four-year interval from
2002 to 2018 were selected, the land use dataset was cropped according to the administrative
boundaries of the study area, and a land use transfer matrix was constructed (Table A1).
Based on this, a land use change chord diagram was introduced to visualize the land use
transfer changes (Figure 3).
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From 2002 to 2018, forest was the dominant part of land use in Panzhihua, accounting
for more than 60% of the total area; the second type was cropland, accounting for 26.69% of
the total area in 2018; followed by grassland, accounting for 8.31% of the total area in 2002;
the remaining land use types include impervious surfaces, shrubs, barren land, and water,
which are less than 5%. Long-term observations of land use show that cropland, water,
and impervious surfaces in Panzhihua continue to increase, while barren, grassland, and
forest continue to decrease. Influenced by urbanization and industrialization, impervious
surfaces expanded significantly from 2006 to 2010, with an increase of 24.38%, mainly
from the conversion of cropland and grassland. On the other hand, the strong advance in
agricultural production has dramatically increased the cropland area and decreased forest
and grassland, with up to 15,181 hm2 converted from forest to cropland from 2010 to 2014.
In addition, shrubs were mainly converted from forest and farmland, with less increase or
loss of wasteland and watershed.

4.2. Land Use Forecast Analysis

In this study, the prediction of dynamic land use changes in 2030 was carried out
with the help of IDRISI. A total of seven driving influence factors, namely, DEM, slope,
distance from river network, distance from road, distance from the highway, distance from
railroad, and distance from the settlement, was selected to construct the suitability atlas and
combined with the transfer matrix to build 5 × 5 standard filters with four iterations for the
2018 land use prediction with a Kappa coefficient of 0.8802 [84,85], which meets the criteria
for the 2030 prediction. In the 2030 projection results, there were significant growths in
cropland, shrubs, grasslands, and impervious surfaces, among which shrubs grew at a rate
of more than 0.75, and all other growth was around 0.16; there were significant decreases in
forests and bare lands, among which forests decreased by about 600 km2, and bare lands
decreased at a rate of more than −0.75; and waters remained stable with a slight increase.

4.3. Spatial and Temporal Analysis of Ecosystem Services

In this study, quantitatively, the InVEST model was used to evaluate four ecosystem
services in the study area. The evaluation results of six periods from 2002 to 2030 were
obtained, as shown in Figure A1. The annual water yield showed a general downward trend
from 2002 to 2018 and will improve slightly by 2030. The water yield of the northeastern
part of Panzhihua was the best, while the central and northwestern parts were poor.
Soil conservation had a trend of increasing, then decreasing, then increasing again. The
central, northern, and eastern edges of Panzhihua were along the high-value area of soil
conservation services, while the southern and southeastern areas were low-value areas.
Habitat quality in the study area decreased year by year. Habitat quality was better in the
central and northern parts of Panzhihua, while it was worse in the south and northeast.
Carbon sequestration showed a decreasing trend, with higher stocks in the mountainous
areas in the north-central part and lower stocks in the south-central and southeastern parts
with higher urbanization levels.

The overall pixel distribution, spatial distribution, and annual average change rate of
ecosystem services in the study period showed that the long-term time series of the four
ecosystem services in the study area changed significantly, and the spatial characteristics
were very different (Figure 4). Figure 4a reveals a slight increase in median water production
in 2030 compared to 2018, and Figure 4i shows a continued slowdown in the decline in
water production from 2006 to 2018, which collectively indicates a gradual improvement in
water production services, which is well reflected in the local magnification in Figure 4e.
Figure 4b shows that soil retention averages are concentrated at lower levels for most
rasters. There are localized differences in soil retention between 2018 and 2030 in terms of
increases and decreases (Figure 4f). Soil retention mean values repeatedly fluctuated during
2002–2018, with average annual rates of change exceeding 10% several times (Figure 4j).
Figure 4c displays that the habitat quality of most pixels is above 0.8, but there is an overall
decline in 2030 compared to 2018, reflected in a decrease in the number of high habitat
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quality pixels and a general reduction in the median and interquartile range. Figure 4g
presents a sharp drop in regional habitat quality, with the annual decline in habitat quality
leading to the increase and then slowing down (Figure 4k). Figure 4d indicates decreasing
carbon sequestration in high-value areas and increasing numbers in low-value areas in 2030,
with a significant decrease in regional carbon sequestration (Figure 4h). The average rate of
change in carbon sequestration was similar to that of habitat quality, which presented a
continuous trend of increasing decline until 2018 (Figure 4l).
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4.4. Spatio-Temporal Analysis of Trade-Offs and Analysis of Ecosystem Services
4.4.1. Spatial and Temporal Analysis of Ecosystem Services

A 500m × 500m fishing net was set up, and the ecosystem services were processed
using the linear function normalization method [86]. The central image element values of
the net were extracted to calculate the correlation coefficients and obtain the correlation
coefficient matrix (Figure 5). The upper triangle of the matrix shows the correlation
coefficients and significance between ecosystem services, the lower triangle shows the
scatter plot of each pair of ecosystem services, and the main diagonal shows the density
distribution curve.
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HQ and CS were significantly positively correlated from 2002 to 2018 (0.600 < r < 1,
p < 0.001), indicating that they have a significant synergistic relationship. Their R-values
peaked in 2010 and then gradually decreased, and the R-value was predicted to drop
to 0.587 in 2030 (p < 0.001). SC was positively correlated with HQ and CS, reflecting
a synergistic relationship. However, the R-value of SC and HQ increased yearly after
2006, indicating that the synergistic relationship was strengthening while the synergistic
relationship between SC and CS became weaker. WY and SC were weakly synergistic,
and their R-values (0 < r < 0.200, p < 0.001) were significantly lower than those of the
previous three. From 2002 to 2014, WY and HQ were negatively correlated, showing a
weak trade-off relationship and the trade-off is predicted to disappear in 2030. WY and CS
also showed a weak trade-off relationship. The results indicate that the ecosystem services
in Panzhihua tend to be coordinated, and that Panzhihua has played a positive role in
maintaining the stability of the ecosystem by promoting ecological and environmental
protection and construction and the coordination of ecosystem services.

4.4.2. Spatial Analysis of Ecosystem Service Trade-Offs and Synergies

The study area was sampled raster-by-raster, correlation coefficients between ecosys-
tem services were calculated at the image element scale, and trade-offs and synergistic
relationships were mapped according to the following classes (Figure 6): strong synergy
(r > 0, p < 0.05); medium synergy (r > 0, 0.05 p < 0.1); weak synergy (r > 0, p ≥ 0.05); weak
trade-off (r < 0, p ≥ 0.05); medium synergy (r < 0, 0.05 ≤ p< 0.1); and weak synergy (r < 0,
p < 0.05).

Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 27 
 

 

peaked in 2010 and then gradually decreased, and the R-value was predicted to drop to 
0.587 in 2030 (p < 0.001). SC was positively correlated with HQ and CS, reflecting a syner-
gistic relationship. However, the R-value of SC and HQ increased yearly after 2006, indi-
cating that the synergistic relationship was strengthening while the synergistic relation-
ship between SC and CS became weaker. WY and SC were weakly synergistic, and their 
R-values (0 < r < 0.200, p < 0.001) were significantly lower than those of the previous three. 
From 2002 to 2014, WY and HQ were negatively correlated, showing a weak trade-off 
relationship and the trade-off is predicted to disappear in 2030. WY and CS also showed 
a weak trade-off relationship. The results indicate that the ecosystem services in Panzhi-
hua tend to be coordinated, and that Panzhihua has played a positive role in maintaining 
the stability of the ecosystem by promoting ecological and environmental protection and 
construction and the coordination of ecosystem services. 

4.4.2. Spatial Analysis of Ecosystem Service Trade-Offs and Synergies 
The study area was sampled raster-by-raster, correlation coefficients between ecosys-

tem services were calculated at the image element scale, and trade-offs and synergistic 
relationships were mapped according to the following classes (Figure 6): strong synergy 
(r > 0, p < 0.05); medium synergy (r > 0, 0.05 p < 0.1); weak synergy (r > 0, p ≥ 0.05); weak 
trade-off (r < 0, p ≥ 0.05); medium synergy (r < 0, 0.05 ≤ p<0.1); and weak synergy (r < 0, p 
< 0.05). 

 
Figure 6. Spatial distribution and statistics of synergy and trade-off relationships. Note: (a): 
WY&SC; (b): WY&HQ; (c): WY&CS; (d): SC&HQ; (e): SC&CS; (f): HQ&CS. 

The spatial distribution of the relationship between WY, HQ, and CS was similar, 
with the strong synergistic relationship concentrated in the central main urban area and 
the strong synergistic relationship scattered in the northwest, northeast, and southeast 

Figure 6. Spatial distribution and statistics of synergy and trade-off relationships. Note: (a): WY&SC;
(b): WY&HQ; (c): WY&CS; (d): SC&HQ; (e): SC&CS; (f): HQ&CS.

The spatial distribution of the relationship between WY, HQ, and CS was similar,
with the strong synergistic relationship concentrated in the central main urban area and
the strong synergistic relationship scattered in the northwest, northeast, and southeast
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mountainous areas. The weak synergistic relationship between SC and HQ appeared in the
central and south-central areas and decreased in a radial pattern to the surrounding areas.
A weak trade-off relationship appeared in the study area’s northwestern, northeastern,
and southern parts. There was large insignificance between SC and CS, and there was a
fine-grained trade-off area in the central part of the study area.

4.5. Impact of Mineral Development on Ecosystem Services

Based on the vector mineral data, the spatial distribution of nine essential minerals in
Panzhihua, including coal, iron ore, and saprolite, was determined by mapping synthesis
(Figure 7). In addition, the correlation analysis method was extended to mining areas, and
the correlation coefficients of ecosystem services in mining areas were calculated pixel by
pixel according to mineral types (Figure 8).
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conservation; HQ: habitat quality; CS: carbon storage; (a): Coal Mine; (b): Iron Mine; (c): Diorite;
(d): Granite; (e): Limestone; (f): Dolomite; (g): Shale; (h): Clay; (i): Building Sand.

Overall, the mining ecosystem services were moving toward trade-offs. The study
area had a slight trade-off between WY and CS. However, within the amphibolite, granite,
and chert mines, the R-value between WY and CS was below −0.600 (p < 0.001), reflecting
a significant trade-off. The R-values between WY and HQ were negative in six of the
nine mineral zones, and their trade-offs were stronger than the whole study area. The
relationship between SC and HQ was positively correlated within mineral zones, and
its R-value was even higher than those of the entire study area in some mineral zones,
indicating stronger synergistic relationships than those of the entire study area. HQ and CS
were positively correlated within mineral zones, but their synergistic relationships were
weaker than the whole study area. The relationship between WY and SC and that between
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SC and CS had different trade-off/synergistic relationships across the mine area and did
not show consistency.

The varying impacts of different mineral extraction types on ecosystem services were
reflected in the differences in the ecosystem service correlation coefficients of those in
separate mining areas. Compared to other mining areas, the R-values between ecosystem
services in coal and iron ore mines were the least different from those in the whole study
area, indicating that they had the least impact on ecosystem services. The trade-off between
WY and CS was the most significant in the granite and tuff mining areas. There was a
strong trade-off relationship between SC and HQ in dolomite mines. In shale, clay, and
construction sand ore zones, WY reflected a significant trade-off with SC, HQ, and CS,
while SC reflected significant synergy with HQ, SC with CS, and HQ with CS. The clay
mine area had the largest difference in R-value from the entire study area, indicating that
its ecosystem services were most affected.

5. Discussion

This study assessed ecosystem services and trade-off and synergy analysis in the
Panzhihua region and explored the impact of mineral extraction on ecosystem services,
filling the research gap in ecological analysis and mineral impacts in resource-based cities.

5.1. Model Selection and Parameter Modification

In this paper, we assessed the ecosystem services in Panzhihua based on the InVEST
model. The InVEST model has nearly 20 ecosystem service modules, including terrestrial,
freshwater, and marine ecosystem service assessment models, covering many aspects of
ecosystem services. Four of the most widely used and important modules were selected
in this study, namely, water yield, soil conservation, habitat quality, and carbon storage,
which is consistent with previous studies [87]. Considering the rapid population growth
and the increasing demand for water by human activities, as well as the fact that Panzhihua
has rich forest resources but serious soil erosion, we selected these four ecosystem services.
Other ecosystem service assessment modules for the model will be carried out in the next
step. We chose four ecosystem service assessment modules, namely, water yield, soil
conservation, habitat quality, and carbon storage, to conduct the study because some of
the modules in the InVEST model are not well applicable in the region. In comparison,
these four modules have high research value due to their strong relevance to production
and life, and the study by Xiuming Wang [88] and Conghong Huang et al. [89] proved the
applicability and reliability of the combination of these four modules for the study, and the
accuracy of ecosystem service assessment was initially improved through the screening
of modules. Moreover, we modified the parameters of the InVEST model considering the
regional characteristics of Panzhihua. The module of water yield was moderately corrected
for the Zhang coefficient based on the statistical data of hydrological stations in Panzhihua,
which is consistent with the correction method of Dou Miao [68] and Xu Jianning et al. [90].
The result was close to the observed average value of hydrological stations, where the
Zhang coefficient was 3.2. The soil conservation module was made applicable to the region
by the correction method proposed by Keli Zhang [71], which is consistent with that of
Shuo Wang et al. [91]. The carbon storage module uses the precipitation correction factor
combined with the method proposed by Alam et al. [80]. The correction coefficients for
above-ground and below-ground carbon density were 1.7994, and for soil density they
were 1.1979, which is consistent with the correction method of Xijin Ren et al. [92]. Through
parameter modification, the research method was more suitable for the Panzhihua area,
and the accuracy of ecosystem services assessment was further improved.

5.2. Assessment of Ecosystem Services and Exploration of Land Use Impacts

The results of the study indicated that the overall trend of the physical quality of
ecosystem services in the Panzhihua region was decreasing, contrary to the effects of value
quantity studies by Liu Sha [93] and Zhao Haifeng [94], but according to Zhao Jingzhu
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et al. [7] the use of two different methods, namely, physical quality and value quantity for
service evaluation of the same ecosystem often leads to other or even opposite conclusions,
providing support for the results of the study. Central Panzhihua, as a key region for
economic development, formed a clear low-value zone for ecosystem services, which is
consistent with the findings of Liu Ting [95] and Li Daoan [96], indicating that human
activities such as mineral resource development and urbanization development affect the
development of the ecological environment. Relevant measures are urgently needed to
strengthen ecological restoration construction. However, the differences between the 2002
and 2030 ecosystem service assessment results were insignificant (Figure A1), mainly due
to the large study area, the absence of major land use type shifts during the study time
frame, and the stable climate and vegetation conditions during this period [97]. Combining
the spatial and temporal changes in land use in the Panzhihua area, it could be revealed
that the overall decreasing trend of ecosystem service quality was related to the conversion
of forests and grasslands to agricultural lands and impervious surfaces in the Panzhihua
area (Figure 3), which is consistent with the study of Luo Jing et al. [98].

In addition, except for the weak trade-off relationship between water production
services and soil conservation and habitat quality services, the ecosystem services in the
Panzhihua area were mainly synergistic, which is consistent with the findings of Chen
Xinmeng [99], Wang Xi [100], and others, which indicates that the ecosystem in Panzhihua
area has better stability. For the weak trade-off relationship presented between water
yield and soil conservation and habitat quality services, it is mainly due to the richness
of regional vegetation such as forests, which have high carbon storage and soil conser-
vation services, and the high evapotranspiration of vegetation, which leads to low water
yield services. For this situation, the land use types are reasonably adjusted according
to the different ecological needs of different areas, such as steep slope areas, considering
appropriate discarding of water-producing ecosystem services, and ensuring soil conser-
vation services, thus preventing excessive soil nutrient loss. The Panzhihua municipal
government proposed promotion of the construction of an ecological economic system and
the strengthening of the ability of environmental protection in the “Panzhihua Ecological
City Construction Plan (2006~2020)”. The Panzhihua Environmental Protection Bureau
also put forward in the “11th Five-Year Plan” of Panzhihua Environmental Protection to
vigorously develop the circular economy and create a conservation-oriented harmonious
society. After 2006, ecosystem services in Panzhihua were significantly improved in the
direction of synergy (Figure 8), which indicated that the coordinated ecological protection
policy adopted by Panzhihua was effective.

5.3. Exploration of the Impact of Mineral Species on Ecosystem Services

For mining areas, different intensities of mining have other impacts on ecosystem
services. Since the intensity of mineral extraction is difficult to judge, we explored the
impact of various minerals on ecosystem services in the Panzhihua area in this study.
Starting from the mining area, the ecosystem services were trade-off relationships, and
ecosystem stability was undermined, which aligns with the general perception of reality.
From the perspective of mineral species, the trade-off relationship was more significant in
clay mines than in other mines, with the largest negative impact on ecosystem services. The
study inferred that this is because clay mining requires large amounts of soil excavation,
which severely destroys soil conservation, habitat quality, and carbon storage services. In
contrast, water yield services result in a stronger trade-off relationship due to the pooling
of water resources caused by the low-lying position of the mines. The predominant iron
ore, however, has a similar trade-off synergistic relationship with the overall region and
does not reflect a negative impact on ecosystem services, contrary to Xiong Jian [101],
Yerner [102], etc. It is clear from the analysis that this is mainly due to the Panzhihua
government’s commitment to creating an ecologically protected mining area in recent
years, with vanadium–titanium magnetite mines as the key construction area for both
ecological and economical construction. Combined with the predicted results, there is
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better improvement in 2030 in terms of ecosystem service trade-offs and synergies, which
indicates that the ecological construction policy of mining areas adopted in Panzhihua at
the present stage has an excellent guiding effect. The Panzhihua municipal government
proposed to improve the ability of coordinated and sustainable development of land and
promote land development, consolidation, and reclamation in the Overall Plan of Land Use
of Panzhihua (2006–2020). According to the prediction, the ecosystem services of Panzhihua
will be better improved in 2030, which indicates that the mining ecological construction
policy adopted by Panzhihua at this stage has a good guiding role. Therefore, the mining
area needs to be managed in the future based on the successful policies and experiences at
the current stage, with a focus on clay mining species, to grasp the development direction
of the mining area and to deploy the development of the negative impact mining area to
achieve the coordinated development of the ecological environment and green mining.

5.4. Uncertainty Analysis

The results in this study fill the gap in the assessment of ecosystem services in the
region and, to a certain extent, provide a scientific basis for rational land use allocation and
ecological protection and restoration in the future. However, at the same time, the results
of this study also have some limitations. At first, the research method used in this study
is limited by the accuracy of critical data such as land use classification data, which has a
certain degree of uncertainty. The reliability of the study results can be further improved
by using high-resolution data combined with technical means such as machine learning.
Secondly, in the trade-off and synergy analysis, Spearman correlation analysis was used
to explore the trade-off and synergy relationship of ecosystem services and to explore
the influence brought by land use classification, but other influencing factors were not
considered. In future research, we will focus on the impact of social drivers and other factors
on trade-offs and synergies. Finally, due to data accuracy and timeliness in the mining
impact analysis, only the effect of different mining species was investigated differently.
The impact of factors such as mining intensity were not considered. In the future, we will
further explore the effects of other mining factors on ecosystem services, strive to improve
the analysis of mining impacts, and analyze a comprehensive mining impact analysis
model to support the exploration of ecosystem services in other resource-based cities.

Panzhihua, as a typical resource-based city, is generally influenced by human activities
in ecological aspects, especially in the mineral development area. Therefore, giving full play
to the subjective initiative of human beings and reasonably coordinating the relationship
between humans and land are essential ways to carry out the ecological restoration. At
the same time, human influence is also reflected in land use, so environmental protection
and restoration can be carried out by adjusting land use types. Given the situation of the
Panzhihua area, this study proposes the following recommendations for coordinating the
human–land relationship and ecological protection and restoration:

1. The unsuitable arable land in the central region is supposed to be returned to forest
and grass, and the mining area should be reasonably balanced between mining and
replanting.

2. Relevant authorities need to increase the construction of wetland systems, improve
functional integrity, achieve synergy of multiple ecosystem services from multiple
perspectives, and regulate trade-offs to build a healthier ecosystem.

3. Most forest vegetation types in the northern part of the study area are homogeneous,
and the trade-offs are more prominent. Therefore, enriching the vegetation types is
necessary to improve them, enhance ecosystem stability, and promote sustainable
development.

5.5. Applicability and Extension of the Model

In the study, we coupled the CA–Markov model and the InVEST model to predict
future land use, evaluate the value of ecosystem services, and explore the trade-offs and
synergistic relationships between ecosystem services and mining areas. This method can be
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extended to other spatial scales and other time scales. In view of the fact that Panzhihua is a
typical mining city, we studied the impact of mineral exploitation on ecosystem services. In
addition, we also adjusted the assessment unit of mining ecosystem services and proposed
the assessment method based on mineral species. This provided a new way of thinking
about ecosystem services and environmental assessment and governance in mining areas,
depending on the type of mining.

For other ecosystems, such as grassland ecosystems, it is a good way to study grassland
ecosystem services according to the functional characteristics of plants. This has been
applied in the study of the relationship between plant height and edibility and ecosystem
services in the grassland ecosystem of Tibet [103]. In addition, our model can also be
extended to study the carbon storage service value of different forest types, or to explore
the trade-offs and synergistic effects of forest ecosystem services at different north and
south slope and vertical zone scales [104,105]. It should be emphasized that constructing
an ecosystem services evaluation system and modifying the evaluation model combined
with the actual situation of the region to improve its applicability and accuracy are the
directions for further exploration in the future.

6. Conclusions

In this study, the CA–Markov model was used to predict the future land use of
Panzhihua City, and the quantitative assessment of ecosystem service functions based on
the InVEST model was conducted to explore the trade-offs and synergistic relationships
among ecosystem services, and further research on the synergy and trade-offs of ecosystem
services was carried out for the mining area. The results are as follows:

(1) From 2002 to 2018, land use in Panzhihua has undergone dramatic changes. Cropland,
water, and impervious surfaces continue to expand, and new agricultural land mainly
comes from the conversion of forests and grasslands. As a result, the area of ecolog-
ical lands such as forests and grasslands has decreased, and the rate of reduction
has slowed down yearly. While agricultural and rural construction are vigorously
developing, the conservation of ecological green areas should also be promoted.

(2) The results of the ecosystem service assessment using the InVEST model showed
a high degree of confidence. Water production, habitat quality, and carbon storage
services have all declined, and water production services are predicted to improve in
2030. Nevertheless, the ecological condition in the economically active central part of
Panzhihua is the worst, and attention needs to be paid to the adverse environmental
effects of rapid urban development.

(3) Synergistic relationships among ecosystem services dominate, with the most signifi-
cant synergistic relationship being between habitat quality and carbon storage. Weak
trade-off relationships appear between water production and soil conservation and
habitat quality services, and the trade-off relationship between water production and
habitat quality services is weakening. Ecosystem services in Panzhihua are gradu-
ally moving towards coordination, and ecological construction has a positive and
important impact on maintaining ecosystem stability.

(4) There are many trade-offs between ecosystem services in mining areas, with strong
trade-offs occurring between water production and carbon storage services. Coal
and iron ore mines have the most negligible impact on ecosystem services, while clay
mines have the greatest impact. The effects of mining areas on ecosystem services
should not be underestimated, and there is heterogeneity in the impact of different
mining areas on ecosystem services. Combining ecosystem services to optimize
mineral development is of great significance in achieving a win–win situation for
ecology and mining.

(5) A hierarchy of ecosystem service synergies and trade-offs was established. Spatially,
the pattern of relationships between water yield services and soil conservation and
habitat quality services showed trade-offs in the east and synergies in the west. The
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trade-offs between carbon storage services, water production, and habitat quality
services were more significant in urban areas.

Overall, ecosystem services in Panzhihua City showed continuous improvement. The
policies of mining area reclamation and promoting ecological system construction play
a vital role in environmental protection. At the same time, the construction of ecological
protection areas of vanadium titanium magnetite also indicates a road of harmonious
development for mineral mining and ecological construction. It is particularly important to
actively promote the policy construction of ecological restoration and protection.

Panzhihua is a resource-based city with rich and diverse mineral resources. We
adjusted the model and proposed an evaluation method based on multiple minerals. Our
study on ecosystem service trade-offs and synergies for nine key minerals, including coal
and iron, could provide a reference and demonstration for other mining cities.
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Appendix A

Table A1. Land use transfer matrix for the study area from 2002 to 2018.

Period LUCC Impervious Grassland Shrub Barren Cropland Forest Water

2002–2006

Impervious 1638.36 212.22 39.6 247.05 10.08 31.95
Grassland 54,342.81 599.76 19.35 5658.66 12.78 40.95

Shrub 1292.31 18,887.04 1963.44 2263.68
Barren 9.63 137.61 5.94

Cropland 4384.08 1211.13 0.27 136,341.09 9632.61 46.89
Forest 1101.96 1942.38 2909.34 486,843.75 10.17
Water 69.66 106.38 10.53 223.38 6887.7

2006–2010

Impervious 2102.4 196.38 10.98 368.1 4.14 28.53
Grassland 49,517.73 1325.97 18.81 3845.7 39.87 48.96

Shrub 407.16 19,203.03 848.16 1837.8
Barren 24.21 110.16 11.07

Cropland 0.27 9446.76 2435.4 0.81 144,111.06 12,948.39 36.63
Forest 981.09 1442.07 2283.57 477,977.22 9.18
Water 76.59 100.98 12.42 159.48 0.18 7163.28

2010–2014

Impervious 2675.79 30.87 14.58 101.25 0.72 23.76
Grassland 42,743.43 1266.21 24.3 4984.38 20.79 40.41

Shrub 475.56 17,154.36 1193.58 5050.8
Barren 24.12 97.02 0.27 4.41

Cropland 9917.28 3354.12 0.36 160,203.42 15,181.92 67.41
Forest 1434.06 521.37 2356.02 462,438.9 1.17
Water 34.74 171.72 0.09 9.18 140.4 7375.77
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Table A1. Cont.

Period LUCC Impervious Grassland Shrub Barren Cropland Forest Water

2014–2018

Impervious 2807.28 63.09 7.92 70.11 1.17 17.1
Grassland 39,702.87 580.23 40.23 5135.58 12.06 66.33

Shrub 811.8 19,399.59 1425.15 3173.04
Barren 1.53 63.72 0.45

Cropland 7450.92 2706.21 1.08 178,431.12 8616.6 66.24
Forest 900.09 1188.27 3506.67 454,948.65 1.62
Water 39.69 149.22 12.87 155.88 7580.16
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