
Citation: Lokugam Hewage, C.N.;

Laefer, D.F.; Vo, A.-V.; Le-Khac, N.-A.;

Bertolotto, M. Scalability and

Performance of LiDAR Point Cloud

Data Management Systems: A

State-of-the-Art Review. Remote Sens.

2022, 14, 5277. https://doi.org/

10.3390/rs14205277

Academic Editor: Sander Oude

Elberink

Received: 19 August 2022

Accepted: 14 October 2022

Published: 21 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Review

Scalability and Performance of LiDAR Point Cloud Data
Management Systems: A State-of-the-Art Review
Chamin Nalinda Lokugam Hewage 1,*, Debra F. Laefer 2,3, Anh-Vu Vo 1 , Nhien-An Le-Khac 1

and Michela Bertolotto 1

1 School of Computer Science, University College Dublin, D04 V1W8 Dublin, Ireland
2 Center for Urban Science and Progress, New York University, New York, NY 11201, USA
3 Department of Civil and Urban Engineering, New York University, New York, NY 11201, USA
* Correspondence: chamin.lokugamhewage@ucdconnect.ie

Abstract: Current state-of-the-art point cloud data management (PCDM) systems rely on a variety
of parallel architectures and diverse data models. The main objective of these implementations is
achieving higher scalability without compromising performance. This paper reviews the scalability
and performance of state-of-the-art PCDM systems with respect to both parallel architectures and data
models. More specifically, in terms of parallel architectures, shared-memory architecture, shared-disk
architecture, and shared-nothing architecture are considered. In terms of data models, relational
models, and novel data models (such as wide-column models) are considered. New structured
query language (NewSQL) models are considered. The impacts of parallel architectures and data
models are discussed with respect to theoretical perspectives and in the context of existing PCDM
implementations. Based on the review, a methodical approach for the selection of parallel architec-
tures and data models for highly scalable and performance-efficient PCDM system development is
proposed. Finally, notable research gaps in the PCDM literature are presented as possible directions
for future research.

Keywords: point cloud data; point cloud data management; scalability; performance; parallel
architectures; data models

1. Introduction

Light detection and ranging (LiDAR) is a technology that uses light, most commonly
from a laser, to detect and measure the distance to objects. LiDAR sensors can be deployed
on different mapping platforms for topographic mapping purposes. Prominent examples
include aerial platforms (e.g., an aircraft, a helicopter, a drone) terrestrial platforms (e.g.,
a car/boat, or a stationary LiDAR sensor), and most recently, smartphones and tablets.
LiDAR mappings produce their outputs as collections of explicitly georeferenced, three-
dimensional (3D) point data. Such point data collections are called point clouds (PCs). PCs
are important sources for 3D geo-information [1–3]. Each point in a PC represents the x-, y-,
and z-coordinates of the sensed object, along with other attributes (e.g., timestamp, laser
intensity, etc.) that are dependent on the LiDAR sensor and the presence or absence of
integrated global positioning and/or camera instrumentation.

Today, the utilization of LiDAR mapping is increasingly prevalent in many applica-
tions. As an example, airborne LiDAR mapping is widely used in large-scale, 3D mapping
projects at national, regional, and municipal levels. As of 2020, at least nine countries had
completed national LiDAR surveys. They include Denmark, Estonia, Finland, Netherlands,
Poland, Spain, Slovenia, and Sweden [4–8]. In the US, aerial laser scanning (ALS) is being
conducted at the national level under the 3D Elevation Program (3DEP), which aims to
complete the national mapping by 2023. As of the end of the year 2021, the program had
documented 84% of the US [9]. Such national ALS projects result in massive volumes of

Remote Sens. 2022, 14, 5277. https://doi.org/10.3390/rs14205277 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14205277
https://doi.org/10.3390/rs14205277
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-6471-4905
https://orcid.org/0000-0003-0122-7656
https://doi.org/10.3390/rs14205277
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14205277?type=check_update&version=2

Remote Sens. 2022, 14, 5277 2 of 31

point cloud data. For example, the US’s 3DEP has produced nearly 14 trillion points [10].
In the Netherlands, four nationwide ALS projects (AHN1–AHN4) have been completed.
AHN2 exceeded 640 billion point records [8], and future missions are expected to result
in larger data sets due to the increasing point densities, which started with as few as 1
point per m2 (in AHN1) to now 20–35 points per m2 (in AHN4). In addition to nation-wide
mapping projects, ALS is also widely conducted at regional and municipal levels. Examples
include the 2015, high-resolution, ALS survey of a portion of Dublin Ireland, which gen-
erated over 1.4 billion data points for an area of 1.5 km2 [11]. Similarly, terrestrial LiDAR
platforms have been employed for city and region-scale topographic mapping projects and
have collected massive volumes of point data [12–15].

As LiDAR point cloud data are becoming increasingly available, a growing amount of
research is being invested in developing efficient systems for point cloud data management
(PCDM). While some of those systems adopt file-based techniques to store and query point
cloud data, a significant number aspire toward developing PCDM systems that rely on
database technology. The crux of PCDM research has aimed to cope with the large volumes
of heterogeneous point cloud data. Thus, PCDM solutions that rely on database technology
have predominantly focused on achieving greater scalability, while preserving acceptable
performance levels. The term “scalability” is contextual. In this work, scalability is discussed
in terms of developing highly scalable, data-intensive systems or in other words, from
the point of data management. Therefore, the term scalability is predominantly focused
on how data-intensive systems with fast-growing data demands and query (i.e., traffic)
volume demands while ensuring efficient storage and data retrieval times. This definition
is obtained from Kleppmann, 2017 [16]. More specifically, the scalable management of point
cloud data is being explored in terms of designing and developing data-intensive systems.
In other words, PCDM systems are being sought that can accommodate the growth in the
different load parameters, while ensuring commensurate performance. These load parame-
ters include high growth in point cloud data volumes, high growth in the number of points
retrieved from databases for single user and multiple user scenarios, and high volumes
of point cloud data ingestion where necessary for the measured performance metric (e.g.,
response time taken to retrieve of 1 million points when managing 1 billion points).

To this end, PCDM research has explored various parallel architectures and distinct
data models. This paper discusses how different parallel architectures and data models
have contributed to scalability and performance. As will be described in Section 2, there
have been significant PCDM research studies (in terms of spatial indexes), data encoding
techniques, the benefits of adopting databases for PCDM, and data acquisition techniques,
there has yet to be a paper that reviews the scalability and performances of existing PCDM
systems, particularly combining the impact of both parallel architectures and data models.
In addition, the discussion of scalability has been primarily limited to the data model layer.
Typically in systems, both architecture and data models are tightly coupled. To consider
this tight coupling, this paper discusses aspects of scalability and performance with respect
to both parallel architectures and data models.

1.1. Contributions

The key objective of this paper is to review the scalability and performance of state-
of-the-art LiDAR PCDM systems. The contributions of this paper can be summarized
as follows:

1. A novel review of PCDM literature, which analyses the scalability and performance
of existing solutions.

2. A thorough discussion of the impact of architectures and data models toward scalabil-
ity and performance in the context of PCDM.

3. An in-depth analysis of the implementation aspects of PCDM systems.
4. An overview of research experiments published in the PCDM literature, including

the synthesis of different queries of interests, data sets, and performance measures

Remote Sens. 2022, 14, 5277 3 of 31

obtained in the experiments, to demonstrate the spectrum of research conducted in
the PCDM area.

5. A novel, concrete workflow for the selection of parallel architectures and data models
for PCDM system development.

6. A list of notable research gaps in the PCDM literature.
7. A discussion of the most promising future research directions, including the iden-

tification of the need for an agile extensible framework for methodical testing and
evaluation of the performance and scalability of PCDM systems.

1.2. Paper Organization

The remainder of the paper is organized as follows. Section 2 presents a synopsis of
related work in relation to PCDM surveys and reviews and highlights the motivation for
writing this paper. Section 3 provides background, including the definitions of scalability
and performance. Section 3 also explains parallel architectures and introduces databases
and data models that are adopted in state-of-the-art data management systems. Section 4
provides additional technical details on parallel architectures and provides a thorough
discussion on scalability aspects and their relationships to PCDM. Similarly, Section 5,
investigates various data models and delineates scalability and performance aspects in the
context of PCDM. Section 6 furnishes an in-depth analysis of state-of-the-art PCDM systems
and a comprehensive list of research activities conducted in PCDM research. Section 7
proposes guidelines on selecting parallel architectures and data models for highly scalable
PCDM system development. In addition, Section 7 presents the most pressing research
gaps in the PCDM literature. This is followed by the conclusions in Section 8.

2. Related Work

While multiple approaches related to PCDM have been presented quite comprehen-
sively in the scientific literature, many excellent past surveys have not fully captured recent
and emerging trends in this rapidly evolving field. As such, this paper synthesizes the
contributions from existing surveys, original research papers, book chapters, and theses
on PCDM. This can be mainly considered in two areas: (i) research on file-based PCDM,
and (ii) research on PCDM relying on database technology. These are then discussed with
respect to future system selection, with further identification of areas for which major
research questions remain.

2.1. File-Based PCDM

The work conducted by Otepka et al. [17] was one of the early survey papers in the
PCDM context. This survey defined the geo-referenced point cloud data model as a set
of points Pi, i = 1,, n in a 3D Cartesian space that was related to a geospatial reference
system (e.g., the universal transverse Mercator). Point cloud features were also described
with respect to two classes: (i) fundamental features, and (ii) derived features. Fundamental
features are those that are captured in the point cloud measurement/surveying process
(e.g., x-, y-, and z-coordinates). In contrast, derived features are generated in the point
cloud processing phase (e.g., classification). The authors emphasized the value of keeping
the native point cloud, as opposed to a surface model generated from interpolated data
(a common practice a decade ago). In the spirit of retaining the native format, the survey
discusses viable, state-of-the-art spatial indexes for native point preservation including
the kD-tree, octree, and R-tree. This survey further highlighted the different techniques in
organizing geometric attributes (i.e., coordinates) and other attributes, such as intensity or
color within point cloud files for managing point cloud data. Point cloud data management
issues pertaining to individual attribute organizations within point cloud files were also
discussed. However, these do not cover database-oriented PCDMs.

The subsequent work by Graham [18] provides an overview of the structure of LiDAR
point cloud data and the exploitation and transportation of point records via different
encoding formats [e.g., binary, ASCII, and mark-up language based (e.g., XML)]. The

Remote Sens. 2022, 14, 5277 4 of 31

author also provides a detailed description of the LAS data format by the American Society
for photogrammetry and remote sensing (ASPRS). The LAS format is the dominant data
sharing format for LiDAR data. Graham’s descriptions include major highlights of the
LAS 1.4 specification, the LAS data format’s relation to LiDAR data processing, and how
different point properties and LiDAR project properties are reflected within the LAS format.
Most importantly, Graham [18] makes a strong case for the use of file-based systems for
PCDM, as opposed to database solutions, and challenges the adoption of database solutions.
The author asserts that database solutions are attractive, only if random access to LiDAR
data is required and further argues that PCDM should be based on file-based storage for
high-throughput production operations based on the supposition that the adoption of
databases for PCDM is likely to bring more disadvantages than benefits.

2.2. PCDMs Relying on Database Technology

Most research on PCDM relying on database technology, including [3,5,19–24], dis-
cusses the limitations of file-based PCDMs. These include unreliability in querying a
massive number of LiDAR points, inadequate support for ad-hoc queries, poor horizontal
and vertical scalability, and lack of support for data integration and data sharing. In ad-
dition, the aforementioned papers thoroughly discuss the benefits of adopting database
solutions for LiDAR data management: (i) application independence through data isolation,
(ii) efficient support for concurrent access to data, (iii) high scalability (e.g., adoption of
distributed databases), (iv) I/O optimization, (v) integration of other point cloud data and
with imagery data, (vi) the possibility of data retrieval through standardized declarative
query languages, (vii) easy administration and security establishment, (viii) design of
special forms of spatial data types for point cloud data, and (ix) improved visualization
through multiple levels of level-of-detail point cloud data representation.

One of the leading research efforts in point cloud data organization within the database
environment is the work presented in [19], which proposes a comprehensive review and
benchmarks of multiple PCDM solutions. The benchmarks include two relational database
management systems (DBMSs) (i.e., Oracle and PostgreSQL/PostGIS), a columnar data
store (i.e., MonetDB), and a file-based approach using LAStools. In addition, those authors
investigated the adoption of high-performing, parallel databases for PCDM via the use
of the Oracle Exadata Database Machine (OEDBM). Data loading time, data storage, and
query response time of each PCDM are measured and presented under three benchmarks
(mini, medium, and full) using the AHN2 dataset. The use of three different data set sizes
provides a straightforward and concrete means for assessing scalability. Scalability and
performance can also be considered in terms of theory (for details see Sections 4 and 5).
Nevertheless, in experimental scenarios, a system’s scalability is typically established by
obtaining performance results for specific workload scenarios.

In that work by van Oosterom et al. [19], the authors primarily investigate scalability
with respect to different volumes of data loads. Their analysis includes a comparison of
block model, point cloud data organization (where groups of points are stored together
as a block) within Oracle and PostgreSQL and a flat table model point cloud organization
(where each point is stored in a table row) within Oracle, PostgreSQL, and MonetDB. The
authors also explain the use of the PC_PATCH ([25]) data type and SDO_PC and SDO_PC
and SDO_PC_BLK ([26]) data types in PostgreSQL and Oracle databases for point data
organization.

A more in-depth review of these built-in data types within Oracle and PostgreSQL
is presented by Vo et al. [5]. In that work, comprehensive background information on the
inception of aerial LiDAR is presented with an emphasis on its growth in scale, resolution,
and popularity. Additionally, the authors present a detailed discussion on aerial LiDAR
data modeling in file-based and database environments and the application of spatial
indexing in aerial LiDAR data as well as how LiDAR point records are partitioned and
organized in tile-based indexing, hierarchical indexing, and integrated multiple indexing

Remote Sens. 2022, 14, 5277 5 of 31

structures. Finally, Vo et al. [5] highlighted the lack of database support for LiDAR full-wave
form data management (DM).

Additionally, the importance of distributed, non-relational database solutions for
PCDM arises increasingly frequently [3,22,27–30]. While the benefits of adopting dis-
tributed solutions and non-relational databases have been articulated (i.e., avoiding the
single point of failure and better scalability) in [3,24], but published works to date have not
reviewed the scalability and performance of current PCDM systems. In particular, what
makes PCDM systems scalable and how that is achieved are topics lacking rigorous study.
The most notable points highlighted in this section are summarized in Table 1.

Table 1. Current reviews on PCDM and their relevance to scalability and performance.

References Main Contribution(s) in Terms of
Reviewing PCDM

Relevance to Scalability and
Performance in PCDM

[17]
Comprehensive survey on
georeferenced PCs and PCDM
in a file-based environment

No explicit focus on scalability
or performance is discussed

[18]
Detailed overview of LiDAR
point cloud data, their encoding
formats, and LAS specification

No explicit focus on scalability
or performance is discussed

Justifies the use of PCDM in
database environment for
random retrieval of
point cloud data

[3,5,20,22–24,31,32]
Limitations of file-based systems
and benefits of adopting databases
for PCDM

Recognizes scalability as an
important element in PCDM

Does not review scalability or
performance of state-of-the-art
PCDM systems

[19] Methodology to assess the
scalability of PCDM systems

Recognizes scalability as an
important element in PCDM

Does not review scalability or
performance of state-of-the-art
PCDM systems

[5]
In-depth review of the data types
for PCDM in Oracle and
PostgreSQL is presented

Recognizes scalability as a pivotal
element of PCDM

Does not review scalability or
performance of state-of-the-art
PCDM systems

[3,22,27,33]

Leading works that demonstrate
the possibility of PCDM in the
context of shared-nothing-architecture
oriented non-relational databases

Does not review scalability or
performance of state-of-the-art
PCDM systems

Table 1 demonstrates the absence of extensive investigations into the scalability and
performance of PCDM systems. This gap is discussed in detail in Sections 4–6. In this
review, current state-of-the-art PCDM systems are explored by encompassing both parallel
architectures and data models—two fundamental areas that contribute to making data
systems scalable and efficient.

Remote Sens. 2022, 14, 5277 6 of 31

3. Background
3.1. Scalability and Performance of Data-Intensive Systems

Achieving higher scalability without compromising commensurate performance is a
key objective in state-of-the-art, data-intensive application development where extensive
data growth is a key issue [16]. For data-intensive applications, scalability is defined as
the system’s ability to cope with increased data load factors in terms of volume, traffic,
and complexity. When designing data-intensive applications, the initial step is to iden-
tity and describe the aforementioned load factors and their expected growth over time.
Scalability is assessed by measuring the performance for a sequence of load experiments.
While performance aspects typically vary by domain and application areas, common per-
formance measures relate to storage, querying, and data loading. Storage performance is
typically measured by the amount of bytes/kilobytes required for storing the data (e.g., in
PCDM bytes per point data record [3]). Data loading performance is assessed by through-
put. Querying performance is typically measured by either throughput or response time. In
data-intensive applications, vernacular throughput is defined as the number of records
processed or the amount of work performed (e.g., data loading) per unit of time such
as per second, per minute, etc. For example, in a PCDM context, data loading (i.e., the
work) is typically measured as the number of points ingested per second or kilo points
per second [3,19,20]. Response time is defined as the query elapsed time. In PCDM, query
response time is commonly measured in milliseconds, seconds, or minutes [19,24]. In sce-
narios where multiple queries are executed, the query response time is often reported as the
average query response time [19] or as the percentile= [3,34]. When providing concurrent
access to data, depending on the objective, data-intensive systems trade response time over
throughput, or vice versa [16,35]; presently in PCDMs, query performance is not evaluated
as throughput.

Scalability and performance are two important dimensions in data-intensive systems
(e.g., PCDM) development. Scalability and performance are intertwined [36]. Ineffective
scalability typically results in poor performance [35]—meaning, in non-scalable systems,
performance will typically degrade with demand (i.e., load) [37]. In addition, scalability
gives the option for a better performance. While having both scalability and performance
at a higher level is desirable, data-intensive systems typically trade performance to gain
higher scalability [35,37]. Thus, state-of-the-art data-intensive systems are usually designed
with the objective of absorbing higher loads, while achieving acceptable performance.

3.2. Scaling Techniques and Parallel Architectures in Data-Intensive Systems
3.2.1. Advent of Parallel Data-Intensive Systems

Traditionally computer systems followed “classical” von Neumann architecture and,
thus, adhere to a single-core, single-processor architecture. Normally, the term core is used
for single computing units. Thus, historically, computer systems each had only a single
processor, and in that processor, there was only a single computing unit. Today, these
computing units are also introduced as cores. Furthermore, these cores are contextually
synonymous with the central processing units (CPUs) (i.e., a core = CPU ([38])). With the
commercial introduction by chip manufacturers of processors with multiple computing
units on a single processor chip, multi-core processors became a mainstream element
in computer systems. Concurrently, the advent of the techniques, such as threading
enabled the simultaneous utilization of processor cores. Consequently, the overall logical
computing units (i.e., logical CPUs) available in the overall computer system increased,
thereby enabling parallel computation.

To achieve greater scalability and commensurate performance, state-of-the-art com-
puter systems that support large-scale data management (i.e., data-intensive systems) are
designed by networking different processing elements. These processing elements en-
compass computing units such as multi-core processors, multiple processor chips (single
core or multi-core), elements such as RAMS, disks, and even fully autonomous processing
elements (i.e., nodes [39,40]). Thus, modern data-intensive systems have a larger number

Remote Sens. 2022, 14, 5277 7 of 31

of available computing units (i.e both physical and logical CPUs). This enables CPUs in
data-intensive systems to interact in parallel with the data that resides in RAMs and/or
disks in parallel and then, also in parallel, perform computations corresponding to data
management tasks.

3.2.2. Architectures of Data-Intensive Systems (Parallel Data System Architectures)

As stated previously, today’s data-intensive systems are parallel systems. These state-
of-the-art data-intensive systems are mainly of three kinds: (i) vertically scaled systems
(scale-up systems), (ii) horizontally-scaled systems (scale-out systems), and (iii) systems
that encompass a pragmatic mix of both [16]. Data-intensive systems can adopt vertical
scaling in two ways. The first approach consists of connecting many CPUs, memory chips,
and disks via a fast network under a single operating system. These systems yield shared-
memory architecture based, data-intensive systems. The second approach connects multiple
machines, where each machine has its own copy of the operating system, CPU(s), and
memory chip(s) but uses a shared-disk to store data, via a fast network. Applications
that adopt this approach are characterized as shared-disk architecture-based data-intensive
systems. Applications that adopt horizontal scaling are characterized as shared-nothing
architecture based systems [16,39].

3.3. Use of Databases in Data-Intensive Systems

The adoption of databases is a common scenario in today’s data-intensive applications.
These databases are typically deployed in shared-memory, shared-disk, or shared-nothing
oriented parallel architectures. They provide mechanisms to manage the system’s under-
lying data, either on disk persistently or in the main memory, in an efficient manner. In
contrast to file-based applications, these database-oriented, data-intensive applications
maintain data independence from the respective applications (in file-based applications,
the file formats are tightly bound to the application).

Currently, there is a myriad of databases from which data-intensive systems benefit.
They serve a multitude of purposes and, thus, have different data models and are deployed
in various parallel architectures. Data models are formats to receive and organize input
data. Common ones include relational models, relational-columnar models, NoSQL models
(i.e., key-value model, wide-column model, graph model), array models, and hybrid (multi-
model and NewSQL) models. Databases that adhere to relational models can be deployed
under all three data-intensive system architectures. NoSQL model databases and hybrid
model databases are mainly deployed in shared-nothing architecture environments [16,39].
While array databases can also be deployed in shared-memory architectures, in practice
array databases are predominantly used in shared-disk or shared-nothing architectures [41].

All three parallel architectural styles and the database deployments in their respective
architectures have the potential to provide the scalability required for data management,
while ensuring commensurate performance. Nevertheless, understanding the impact of
each parallel architecture on scalability and performance when adopting data-intensive
application development (such as PCDM) is vital. In particular, the flexibility, technical
versatility, range of scalability, performance characteristics, and limitations inherent to
each parallel architecture (when adapting to a given data-intensive task) are important.
Such understanding enables the selection of appropriate parallel architecture for the data-
intensive task at hand. Similarly, the impact of the data models also needs to be understood
to develop data-intensive applications. Thus, Sections 4 and 5 are provided to discuss
the impact of architecture and data models on scalability and performance with respect
to PCDMs.

4. Parallel Architectures toward Scalability and Performance

The state-of-the-art shared-memory systems and shared-disk systems have the po-
tential to cope with increased data volumes and traffic volumes. However, the scalability
of these vertically scaled systems is always limited to the capacity of their respective

Remote Sens. 2022, 14, 5277 8 of 31

systems [42,43]. For example, in shared-memory systems, the ability to accommodate
increased data volumes and traffic volumes (i.e., scalability) is bounded by the existing
capacities of all data processing and storage elements (i.e., available CPUs, memory units,
and disks). If shared-memory systems require to be further scaled for more data volume
and traffic volume beyond their capacities, these systems must be migrated to a higher-end
machine that has more storage capacity, processing capability, and memory [44]. Similarly,
in shared-disk architecture, scalability also depends on the specific characteristics of the
system. In particular, to support increasing volumes of data, shared-disk systems might
also require being migrated into shared-disk machines that have bigger disk capacities.

Nevertheless, as compared to shared-memory systems, shared-disk systems enable
addressing data processing requirements (e.g., data reads, data writes, etc.) by adding
more processor-memory (or CPU-memory) nodes to the existing system. This increases
the data processing capabilities without any system migration. However, another issue
to consider in shared-disk systems is that the data writes can be performed against any
node. This means that two or more nodes can attempt to write a data record (i.e., a tuple)
at the same time. Therefore, to ensure consistency, the management system must either use
a disk-based lock table or communicate the intention to lock the tuple to the other nodes
in the system [45]. Due to these additional overheads, adding more nodes in shared-disk
architecture does not always result in higher scalability in terms of managing large data
volumes and traffic volumes [16].

In contrast, when data are managed in shared-nothing architecture-based systems,
the storage, processing, and memory requirements for increased data volumes and traffic
volumes can be added without any system migration. More specifically, the addition of
fully autonomous nodes that encompass processor(s), memory(ies), and disk(s) is easily
doable in shared-nothing architecture-based systems. Furthermore, unlike shared-disk
architecture systems, adding nodes often accommodates higher scalability prospects. This
is because in shared-nothing architecture, each node independently manages its own data.
Hence, when writing data to persistent storage, the locking of nodes does not incur in
shared-nothing architecture. Thus, in scenarios where data volume demands and traffic
volume demands are increasing, shared-nothing architecture is considered an effective
approach [16].

Notably, Ozsu et al. [39], observed that given the same level of parallelism, shared-
memory architecture-based systems typically yielded the best performance, while shared-
nothing architecture-based systems yielded the least performance. In all three considered
architectures adding more nodes/cores or more powerful nodes/cores typically results
in higher levels of parallelism in the system. As a result, more processors (and CPUs),
memory, and disk units are available for data management tasks. Hence, the performance,
particularly the data loading and querying, typically improve. Although the addition
of nodes/cores generally results in improved performance, in PCDM literature, this can
be seen only in shared-nothing architecture-oriented PCDM work. More specifically, the
current shared-memory and shared-disk architecture-oriented PCDM systems do not
demonstrate the performance improvements that PCDM systems can yield when more
core/processor-memory nodes are added to an existing PCDM system [19,20,24,31,46–49].
A potential reason could be the infeasibility of adding more cores/processor-memory nodes
to existing systems once the systems are configured.

The PCDM system tested in [33], which is based on shared-nothing architecture,
demonstrated that the addition of fully autonomous nodes to an existing system can im-
prove data querying time. Improved performance in query response time and data loading
can also be seen in other shared-nothing architecture-oriented spatial data management
systems (e.g., Hadoop-GIS [50], VegaGIStore [51]). Nevertheless, the addition of nodes to
shared-nothing architecture systems only improves the performance sub-linearly [39]. Fur-
thermore, adding nodes does not guarantee performance improvements, as improvements
are achievable only up to a specific number of nodes, after which the performance gains
will be outweighed by communication costs [39].

Remote Sens. 2022, 14, 5277 9 of 31

When analyzing the state-of-the-art PCDM research work, most of the database-
oriented PCDM research efforts are shown to be based on shared-memory architecture-
oriented systems [19,20,24,31,46,47,49,52,53]. Critically, current research work in PCDM
literature does not provide straightforward reasons for the adoption of shared-memory
architectures. However, the architectures are mainly influenced by the respective databases
used in the experiments. More specifically, these PCDM systems are based on traditional
relational databases (e.g., Oracle, PostgreSQL/PostGIS, etc.).

To the best of our knowledge, there exists only one shared-disk architecture-based
PCDM system (i.e., the Oracle Exadata Database Machine PCDM presented [19]). Similar to
shared-memory architecture-based PCDM systems, the reasoning for only one shared-disk
architecture-oriented PCDM system cannot be strictly justified. Nevertheless, most of
today’s prominent, shared-disk architecture-oriented database solutions, such as Oracle
Exadata, IBM Parallel Sysplex, and similar solutions by Microsoft and Sybase, are com-
mercial database solutions. Consequently, the adoption of shared-disk architecture-based
database solutions may require significant financial investment [45]. This can be identified
as a potential reason for the paucity of shared-disk architecture-based PCDMs.

Some recent PCDM systems are based on shared-nothing architecture [3,27,33,34].
These systems experiment with NoSQL databases (using data models employed in PCDM
as described in Section 5) and are designed to deploy under shared-nothing architectures.
Vis-a-vis relational databases, the advent of NoSQL databases is new to the data manage-
ment paradigm. Thus, the efforts in adopting shared-nothing architecture-based NoSQL
systems appear infrequently in the PCDM literature. All of those cited herein demonstrated
scalability with commensurate performance in managing different volumes of data. These
data volumes ranged from several million LiDAR points to 640 billion (existing systems are
further discussed in Section 6). To date, the scalability of those PCDM systems was tested
with existing large or dense aerial point cloud(s) (e.g., AHN2, Dublin LiDAR dataset, etc.)
and not in terms of real-time data growth and traffic volume growth.

As large and dense LiDAR datasets are increasingly prevalent, this poses challenges
to systems that utilize shared-disk or shared-memory architectures. Therefore, in situations
where real-time data and traffic volume growth becomes significant for PCDM projects that
repeatedly capture data over long periods, shared-nothing architecture-based PCDM could
provide a promising avenue.

Having covered the different scalable architectures and their impact toward scal-
ability and performance, the following conclusions can be made: (1) higher scalability
and performance can be achieved through parallelization; (2) all three parallel architec-
tures can achieve better performance by increasing parallelism; and (3) shared-memory
architecture is the least scalable with respect to growing data and traffic volumes, while
shared-nothing architecture has the greatest scalability prospects. Additionally, the perfor-
mance of shared-nothing architecture systems can be improved by adding more nodes to
the system, performance can be negatively impacted after node saturation.

All three parallel architectures have been explored in PCDM research. In terms of static
point cloud data sets, sufficient parallelism could allow any of the three architectures to
perform in a scalable manner. Conversely, in scenarios where a PCDM must accommodate
periodic data and traffic volume growth, a shared-nothing architecture-based PCDM system
provides greater potential for effective scalability. In addition to the parallel architecture,
the data model is another element that significantly impacts performance and scalability.
The next section discusses data models.

5. Data Models toward Scalability and Performance

Data models are profoundly important in software development, including database
software systems [16]. A data model provides a means to represent real-world entities and
their relationships in a database (e.g., a user and user’s name, address, etc., or timestamp
and metadata among LiDAR points). The most common data model is the relational model
proposed by Codd in 1970 [54]. Database systems based on the relational model, referred

Remote Sens. 2022, 14, 5277 10 of 31

to as relational database management systems (RDBMSs), have been successfully used for
decades in almost every application. According to the relational model, data are organized
into relations (i.e., tables) that have fixed and precisely defined schema [55,56]. Many
relational database management systems (RDBMSs) (e.g., Oracle and PostgreSQL) provide
object-oriented features. The data model in such systems is referred to as an object-relational
data model. Traditionally, most relational databases rely on vertical scaling. As a result, their
scalability in terms of data volume and traffic volume is limited. Nevertheless, today, all
major relational databases offer horizontal scaling deployments [16] and are capable of
managing large traffic volumes, as well as large data volumes.

Both the relational model and the object-relational model have been used for PCDM.
For example, by storing one point record per row and one point attribute per column
in a table, van Oosterom et al. [19] and Psomadaki et al. [31] used the relational model
(without object-oriented features) to store point clouds. Such models are referred to as
flat models and have been implemented in both Oracle and PostGIS DBMSs. Flat models
allow direct access to each individual point within a point cloud by using standard DBMSs
functions. However, the scalability of these flat models is limited mainly because of the
cost of handling an excessive number of data records (e.g., a very large indexing structure
that manages billions of records). In addition to flat models, both Oracle and PostGIS allow
point cloud storage using object-relational models (i.e., Oracle’s SDO_PC and PostGIS’s
PCPATCH, referred to as block models). As the name suggests, points are grouped into
blocks, each of which is represented as a binary large object (BLOB) stored in a row of
the database. Thus, there are fewer data records compared to an equivalent flat model.
Specialized data types and operations are defined in those systems to handle point cloud
BLOBs. Van Oosterom et al. [19] demonstrated experimentally that the block models were
more scalable and generally allowed faster querying compared to the flat models.

Column-oriented RDBMSs are another class of relational database systems that have
been considered in the PCDM literature. Unlike typical relational databases that are
optimized for storage and retrieval of rows of data, column-oriented RDBMSs are optimized
for fast retrieval of columns of data, thus characterized as column-oriented. These columnar
RDBMSs are often designed to exploit parallelism in the underlying hardware. MonetDB
and Oracle Exadata Database Machine (OEDBM) are two prominent columnar-oriented,
massively parallel RDBMS. Examples of MonetDB include [19,47,48]. As of today, OEDBM
research for PCDM is scarce [19]. At the storage levels, both MonetDB and OEDBM follow
a flat table approach for storing point records within their storage models.

An alternative group of data models is known as NoSQL. Unlike RDBMSs, many
NoSQL databases do not require an explicitly pre-defined schema. Instead, data can have
arbitrary structures and are implicitly encoded by the application logic. This feature is
often known as schemaless, which helps reduce the cost of schema evolution and better
supports semi-structured and unstructured data. Examples of NoSQL data models include
the key-value model (e.g., Redis), the graph model (e.g., Neo4j), the document model (e.g.,
MongoDB), and the wide-column model (e.g., HBase, Casandra, Big Table). NoSQL data
models offer a wide variety of options for representing different kinds of data. Each model
is optimized for a specific application [57]. Compared to the relational model, NoSQL
models allow higher schema flexibility [16,57].

The schemaless nature of NoSQL databases has been explored in the context of PCDM
research. For example, Boehm et al. [22] modeled point cloud files as document objects in
MongoDB (document model), and Vo et al. [3] investigated four different ways to model
point clouds in HBase (using a wide column model). In those cases, NoSQL allowed point
clouds to be stored without a predefined, fixed schema. Such flexibility is particularly
useful when point clouds are derived from multiple sources (e.g., different sensor types),
have heterogeneous point attributes, and do not require ingestion and storage according to
a pre-defined standard such as the LAS standard. Compared to RDBMSs, NoSQL databases
more easily accommodate a higher level of data complexity. In addition, many NoSQL
data models were developed specifically for greater scalability and performance than that

Remote Sens. 2022, 14, 5277 11 of 31

achievable by RDBMSs [16,57]. Many NoSQL systems evolved around shared-nothing
system architecture and are, thus, inherently highly scalable [39]. Data partitioning, distri-
bution, duplication (to minimize network communication), and strategic use of distributed
indices, hashing, and caching are among the techniques that allow many NoSQL systems
to achieve high query performance and scalability [57].

Most NoSQL RDBMSs achieve higher performance and scalability by scarifying major
standard features in RDBMSs, such as ACID (A—atomicity, C—consistency, I-isolation, and
D—durability) properties [39]. ACID properties are vital in applications that require low
latency, while the state of the database continuously changes [39]. Such applications are
commonly seen in online transaction processing systems, such as banking systems and
online ticketing systems [16,39]. To guarantee ACID compliance, a database management
system (DBMS) may compromise its scalability [39]. While ACID properties are important
for many applications, there is yet to be an agreed view on whether ACID compliance is
necessary for PCDM. Nevertheless, some research (e.g., in Vo et al. [3] and van Oosterom
et al. [19]) has recognized that the majority of point cloud databases do not change states,
as point clouds are rarely updated, inserted, or deleted after ingestion. Based on that, Vo
et al. [3] argued that ACID compliance is not strictly required for PCDM. As the result,
trading ACID compliance for scalability and performance as is being done in many NoSQL
systems can be considered acceptable in the context of PCDM. However, the advent of
novel passenger vehicles and ubiquitous iPhone devices might pave the way for creating a
new set of applications that would require a rethinking of LiDAR data sets as pseudo-static
entities, which could influence thinking about the importance of ACID compliance.

Importantly, high scalability and ACID compliance do not have to be mutually ex-
clusive. EarthServer [58] is an example of an ACID-compliant, scalable database system
that can handle point clouds. EarthServer is based on the array data model of Rasdaman
(raster data manager) [59]. The primary type of spatial data supported by EarthServer
is high-dimensional, raster data. Accommodating point cloud data requires conversion
into a raster representation for storage in EarthServer. Arguably, this is a less-than-ideal
situation, as rasterization strips the point cloud data of much of its richness and, thus, its
value. Examples of this value are readily demonstrated in per-point processing applications
(e.g., Vo et al. 2021 [60], Vo and Laefer, 2019 [61]). In addition to the particular case of Earth-
Server, modern SQL databases such as NewSQL belong to a class of relational database
systems [62] that provide high scalability of NoSQL systems and strong consistency and
usability of relational databases [39]. However, Pavlovic et al. [49] appears to be the only
PCDM system that is built atop a NewSQL DBMS. In [49], the authors employ the SAP
HANA database—an in-memory column-oriented RDBMS for PCDM.

A critical shortcoming of most performance benchmarking is that results cover only a
limited number of existing data models [63–66]. Moreover, when conducting performance
assessments across multiple data models, the experimental settings across each data model
must be identical. In the context of current PCDM literature, this means that performance
benchmarks of object-relational data models and relational columnar models must be con-
ducted under similar experimental settings [19]. Although the adoption of the relational,
columnar, NoSQL, and NewSQL models exists in PCDM, the performance benchmark has
not, to date, been conducted under the same experimental settings for all models. Thus, all
data models in point cloud data are not possible. Nevertheless, according to Oszu et al. [39]
and Davoudian et al. [57] NoSQL databases, NewSQL databases, and other novel database
technologies enable and exhibit better performance. Hence, obtaining performance re-
sults under the same testing environments for different NoSQL, NewSQL, and traditional
relational databases would provide more insight into performance-efficient PCDM.

Traditional relational and object-relational models have been well exploited for PCDM.
Major RDBMSs (e.g., Oracle and PostGIS) have provided PCDM solutions for many years.
In addition, the use of hardware optimized columnar oriented RDBMSs (i.e., MonetDB,
Oracle Exadata) is also visible in current PCDM research. Specifically, NoSQL offers a
wide variety of alternatives to the traditional relational model. Several NoSQL PCDM

Remote Sens. 2022, 14, 5277 12 of 31

(e.g., [3,22,33,34,67]) systems and one NewSQL PCDM system (i.e., [49]) can be found in
the current literature. The non-relational data models allow point clouds to be represented
without a rigid schema. Thus, they can better accommodate complex heterogeneous point
cloud data sets. In addition, both NoSQL and NewSQL promise higher scalability and
performance than that attainable with RDBMSs. Many NoSQL databases achieve scalability
and performance by sacrificing features, such as ACID compliance. While PCDM may
arguably not require strict ACID compliance, the drawbacks of NoSQL models must be
considered when selecting a data model. Unlike NoSQL, NewSQL systems provide high
scalability without sacrificing ACID. The selection of a data model for PCDM should be
done by considering the actual system requirements. For example, if scalability is more
important to the application than consistency, a NoSQL data model may be a suitable
choice. In case the point cloud data must be integrated with existing data currently hosted
in RDBMSs, a relational or object-relational model may be a more effective option.

6. Analysis of State-of-the-Art PCDM Systems

As seen in Sections 4 and 5, when discussing theoretical aspects of scalability and
performance, parallel architectures and data models can be considered independent ar-
eas. However, when analyzing already developed systems, such a decoupling between
architectures and data models is not straightforward. This is because in already imple-
mented data management systems, both the architecture and corresponding databases
(which encompass data models) are tightly integrated. Therefore, when investigating
already implemented systems, the architectures and data models and their impact on the
system need to be considered in unison. For the purpose of clarity, this section analyses
the state-of-the-art PCDM systems by organizing the systems into their respective parallel
architectures: namely as (i) shared-memory based PCDM systems, (ii) shared-disk based
PCDM systems, and (iii) shared-nothing architecture-based PCDM systems. The data
models, corresponding databases, and other information related to PCDM systems are
presented and discussed in unison with each architecture.

6.1. Shared-Memory Based PCDM Systems

Table 2 presents the most popular shared-memory architecture-oriented PCDM sys-
tems. According to Table 2, current shared-memory architecture-based PCDM systems
have been successfully tested with data sets that range from 74 million LiDAR points to
23 billion LiDAR points. In [19], the authors highlight that, even with extensive parallelism
and considerably more powerful hardware, ingesting 640 billion LiDAR points in their
experimental setup compromised scaling and generated unaffordable loading times. When
compared to the 23 billion points, which was the maximum points testable in a shared-
memory PCDM system in [19], 640 billion points can be considered to be significantly
larger (26.8 times so). Thus, in scenarios where the point cloud data to be managed is
extremely large (i.e., billions of points) and the anticipated data growth is expected to
happen in significant factors (e.g., reaching beyond several hundred of billion points),
using shared-memory PCDM systems could be difficult to test experimentally, because of
its dynamic nature.

Given the rare updating of LiDAR data sets [3], the tremendous data ingestion times
that could be required (e.g., several days to weeks) for large point cloud data sets (e.g.,
several hundred billion points) might still be acceptable, but that the ingestion of trillions
LiDAR points, such as those in nationwide LiDAR scans, could further exacerbate the data
loading time. As a result, more adverse scaling perspectives can occur in both research
and non-research scenarios. In addition, the availability of resources and parallelism in
shared-memory systems could also impede managing such data sets.

Remote Sens. 2022, 14, 5277 13 of 31

Table 2. shared-memory architecture-based PCDM systems.

References Max: Points Database Data ModelTested

[46] 20 billion PostGIS/ Object
PostgreSQL relational

[47,48] 23 billion

PostGIS/ Object
PostgreSQL relational

MonetDB Relational
(columnar)

[19] 23 billion

PostGIS/ Object
PostgreSQL relational

MonetDB Relational
(columnar)

Oracle Object
relational

[20] 5.2 billion PostGIS/ Object
PostgreSQL relational

[31] 74 million Oracle IOT Object
relational

[24] 496.7 million PostGIS/ Object
PostgreSQL relational

[49] 1 billion SAP HANA Relational
(columnar)

According to Table 2, the current shared-memory architecture-based PCDM systems
are mainly built atop two types of relational databases: (i) object-relational databases that
provide persistent storage and (ii) relational columnar databases that provide in-memory
storage. Generally, in-memory databases are favorable when the size of the data to be
managed is compatible with the system’s main memory size. Therefore, when adopting in-
memory databases for PCDM, the system’s main memory should be able to provide storage
requirements for all available point cloud data. In addition, there should be sufficient
main memory for PCDM operations such as data loading and data querying. However,
determining a priori the size of the main memory that an in-memory PCDM system should
possess is non-trivial. This is because the overall memory consumption requirements are
influenced by multiple factors such as the data encoding technique, number of points,
index size, number of attributes per point, and memory required for common point cloud
operations.

Nevertheless, when sufficient main memory is available for both point cloud data
and operations, in-memory systems can yield better performance. For example, according
to [19,48], in-memory PCDM solutions (e.g., MonetDB) yield better data loading times
compared to other shared-memory architecture-based PCDM systems that use persistent
storage. The performance gain is also enhanced by the inherent parallel execution in
the MonetDB. However, due to main memory bottlenecks within in-memory databases,
querying of large data sizes can result in poor performance and ineffective scalability [48].
For example in [48], the authors note that when querying point cloud data from a MonetDB
PCDM system that stores 2.2 billion points, it yields better query performance compared to
a PostgreSQL/PostGIS-based PCDM system that stores 2.2 billion points. However, when
point data are queried from a MonetDB-based PCDM system which stores 23 billion points,
the counterpart PostgreSQL/PostGIS PCDM system that stores 23 billion points yielded
significantly better query response times. They, thus, concluded that PostgreSQL/PostGIS-

Remote Sens. 2022, 14, 5277 14 of 31

like databases, which organize point data as a set of blocks in the disk storage, in contrast
to individually treating each point in a separate row in the main memory as in the case of
MonetDB, are scalable solutions for managing voluminous point cloud data [48].

MonetDB and SAP HANA, the two in-memory databases used in shared-memory
architecture-based PCDM, can also be deployed in shared-nothing architecture [39]. To
the best of the authors’ knowledge, currently, there are no MonetDB or SAP HANA-based
horizontally-scaled PCDM systems. As horizontal scaling provides favorable scalability
and performance perspectives. This can be a potential future research direction for shared-
nothing-architecture, oriented PCDM.

Existing, shared-memory, architecture-oriented, object-relational PCDM systems are
primarily based in either Oracle or PostgreSQL/PostGIS databases. Both adhere to a fixed
schema. Therefore, from a scalability point of view, these PCDM systems will be unable
to support the heterogeneity of disparate point cloud data sets acquired from different
sensors. However, this limitation can be mitigated, if point cloud data are ingested and
stored in database tables in which the schema is defined according to the LAS standard.

From a theoretical perspective, shared-memory architecture and relational data models
do not provide sufficient support to accommodate growing data volumes, traffic volumes,
and data complexities in PCDM. Beyond the research listed in Table 2, some PCDM
researchers still adopt shared-memory architecture and relational (object-relational) data
models. For example, the need for a dedicated spatial data type for point cloud data, as
advocated for in [19], and further examined in [68,69] in a shared-memory architecture-
based PCDM system. Work by both [68,69] are built atop Oracle databases and mainly
focus on identifying new shared-memory indexing strategies for PCDM. Similar attempts
can be also found in [20,31,46,52]. From scalability and performance perspectives, spatial
indexing plays a pivotal role. For example, when managing large volumes of point cloud
data, efficient filtering or retrieval of required LiDAR points is critical. Thus, spatial indexes
that reduce the number of disk reads or decrease the load to the database are attractive due
to their positive impacts on query throughput and query response time as performance is
improved. As indexing strategies employed in shared-memory architecture PCDM systems
are already reviewed quite comprehensively in [5], they will not be discussed further in
this paper.

6.2. Shared-Disk Oriented PCDM Systems

The Oracle Exadata PCDM system (see [19]) appears to be the only system that
adopts shared-disk architecture for PCDM and has been tested beyond 23 billion points.
In [19], the authors tested the OEDBM PCDM system with 640 billion LiDAR data points
without experiencing adverse data loading or processing times. This example showed the
ability of a shared-disk architecture to handle unprecedented data quantities compared
to shared-memory architectures. Nevertheless, this is predominantly attributed to the
exhaustive memory usage and optimized hardware parallelization inherent to OEDBM.
Therefore, presently in PCDM literature, assessing scalability and performance of shared-
disk architecture-based PCDM against shared-memory architecture based PCDM is still an
open research question.

In both shared-memory architecture and shared-nothing architecture based PCDM
systems, the emphasis on indexing to assist point cloud data retrieval is a widely discussed
topic. However, in [19], no index was implemented for point cloud data retrieval. This
is because OEDBM does not implement additional data structures or indexes for data
retrieval purposes. Instead, for the purpose of data retrieval and to reduce disk I/O,
OEDBM employs the concept of reverse indexes. Reverse indexing is typically achieved
via metadata management. Through the use of metadata such as minimum values and
maximum values in different columns, OEDBM can perform data retrieval [70] without
manual intervention.

In addition, similar to most shared-memory architecture-based PCDM systems, OEDBM
is primarily based on the relational model (see Section 5; OEDBM uses a column-oriented

Remote Sens. 2022, 14, 5277 15 of 31

relational model). Therefore, when point cloud data are managed in OEDBM, the data must
conform to a fixed schema. Consequently, the scalability with respect to data complexity
is limited.

In terms of its computational techniques, OEDBM leverages Message Passing Interface
(MPI) library for distributed multi-node computations. MPI is primarily employed in
systems that have many nodes and where a high level of synchronization among com-
putational tasks [38] is required. This is achieved through the efficient use of available
parallelism in the underlying hardware. Thus, adopting OEDBM for PCDM can provide
the benefit of fully exploiting the parallelism in the underlying hardware. However, this
requires extensive expertise in efficiently splitting the tasks (i.e., data loading, data query-
ing, etc.) in the available hardware. Consequently, this added complexity could act as a
potential barrier for highly scalable PCDM research experiments.

From the above discussion of PCDM systems in shared-memory and shared-disk
architectures, these systems have been tested successfully to a maximum of 23 billion
and 640 billion LiDAR points, respectively. However, as described in Sections 4 and 5,
both shared-memory and shared-disk systems provide restrictive scalability compared
to shared-nothing architecture-based systems. Therefore, investigating the scalability of
shared-nothing architecture-based, PCDM systems is a logical next step and appears as the
next sub-section.

6.3. Shared-Nothing Architecture-Oriented PCDM Systems

One of the first efforts in PCDM-based shared-nothing architecture is discussed in [22].
The authors loaded and managed 448 billion LiDAR points using MongoDB, a document-
oriented NoSQL database. In that experiment, the large LiDAR files were partitioned into
a collection of smaller files. Subsequently, the smaller files were stored within MongoDB
collections deployed atop a GridFS file system. In that work, the authors claimed high
scalability in terms of large data volumes, because that system could adopt Hadoop Dis-
tributed File System (HDFS) for distributed storage, scalability, and higher capacity for
voluminous data management [71] and support MapReduce [72], a parallel data processing
framework. Nevertheless, the proposed solution is limited to file selection, as the data are
managed at the file system level.

Li et al. [29] proposed a general framework for LiDAR PCDM, which was also built
atop HDFS and MapReduce but only tested to 4.17 billion points (a fraction of that previ-
ously tested with shared-memory architecture-based systems and shared-disk architecture-
based systems). The authors’ main motivations were the massive storage and data pro-
cessing demands inherent to PCDM. To that end, spatially organized LAS files were stored
within HDFS, and a MySQL database was used to index the LAS files. Their solution
also integrated LAStools in every node to generate compatibility with the MapReduce
framework to enable LAS file manipulation and support for machine learning efforts.

While [22,29] were built for shared-nothing architecture, the solutions follow a hybrid
approach where both LAS file format and database solutions coexist within the same system.
Therefore, complete data independence, which is a major objective for adopting databases
for PCDM is not guaranteed. Hence, the remainder of this review focuses exclusively on
pure database storage solutions.

Database-Oriented Shared-Nothing Architecture-Based PCDM

Some of the most important work on shared-nothing architecture-oriented PCDM
include [3,33,34]. From a theoretical perspective, these systems are highly scalable for
large volumes of data. However, these PCDM systems that were built atop shared-nothing
architecture, were only evaluated for a maximum of 1.4 billion points. More specifically,
References [3,33,34] were tested only for a maximum of 1.4 billion, 273 million, and 812
million points, respectively, but clearly demonstrate the potential scalability of shared-
nothing architecture built PCDM systems. In certain cases, horizontally-scaled PCDM
have yielded better scalability and performance compared to shared-memory architecture-

Remote Sens. 2022, 14, 5277 16 of 31

oriented PostgreSQL/PostGIS PCDM systems. This is attributable to the greater availability
of resources in the shared-nothing architecture.

In addition to the aforementioned shared-nothing architecture-based PCDM work,
GeoWave [67], EarthServer/RASDAMAN [59,73,74], and TileDB [75] also provide sup-
port for PCDM in shared-nothing architecture settings. Table 3 provides an overview of
the existing PCDM solutions that follow the shared-nothing architecture. According to
Table 3, PCDM systems that adopt shared-nothing architecture are mainly based on the
wide-column or array model. Furthermore, leveraging MPI-based, highly synchronized
computations is mainly employed in array model based, PCDM systems. These systems
(i.e., TileDB and EarthServer/RASDAMAN) use HDFS/S3 and PostgreSQL, respectively,
as their data storage medium. In contrast, wide column-based PCDM systems use HBase
and Accumulo databases as their databases. Furthermore, in contrast to MPI, these HBase
and Accumulo-based PCDM systems leverage the Hadoop/MapReduce or Hadoop/Spark
data processing frameworks, as their multi-node computation frameworks.

Table 3. Shared-nothing architecture-based PCDM systems.

Reference
Database/

Storage
Medium

Data
Model

Storage
Engine’s
Access

Method

Index
Implemented

Computing
Technique

[3] HBase Wide-
column LSM-tree

Single Hilbert
SFC and
Dual Hilbert
SFC

Hadoop and
MapReduce

[33] HBase Wide-
column LSM-tree Z-order SFC Hadoop and

Spark

[34] HBase Wide-
column LSM-tree

timestamp as
the row key
(i.e., the index)

Hadoop and
MapReduce

GeoWave ** Accumulo Wide-
column LSM-tree Hilbert SFC,

Z-order SFC
Hadoop and
MapReduce

EarthServer/
RASDAMAN **

PostGIS/
PostgreSQL Array B-tree

R+-tree,
Directory index,
Regular
computed index

MPI

TileDB ** HDFS/
S3 Array B-tree R-tree MPI

To the best of authors’ knowledge, there’s no openly published research work that reviews or analyses the
scalability and/or performance of some shared-nothing architecture-based PCDM systems. These systems are
marked with ** in Table 3.

Compared to MPI, the computations in Hadoop/MapReduce and Hadoop/Spark are
not highly synchronous. Importantly, Hadoop/MapReduce and Hadoop/Spark provide
higher levels of programming abstractions that circumvent programmers from needing
skilled knowledge of the underlying hardware. Nevertheless, knowledge of the underlying
hardware will enable Hadoop/MapReduce and Hadoop/Spark programs to more effi-
ciently utilize the underlying hardware parallelism. Therefore, from a pragmatic perspec-
tive, the use of Hadoop/MapReduce and Hadoop/Spark for shared-nothing architecture-
based PCDM could be considered less complicated to PCDM researchers compared to
MPI-based PCDM.

As seen in Section 6.2, MPI can be leveraged atop relational models (e.g., OEDBM
in shared-disk architecture). However, according to Table 3, MPI and relational model-
based PCDMs are not popular. Therefore, the adoption of MPI, relational data models in

Remote Sens. 2022, 14, 5277 17 of 31

horizontally-scaled architectures could be a potentially fruitful direction for scalable PCDM
investigation, particularly where scalability with respect to data complexity is trivial.

As described in Sections 5 and 6.2, the adoption of an array model requires the loss
of a point cloud-native format. Yet as previously noted in Section 5, point cloud data
must be considered as the primary data set where its preservation along with connections
to any post-processing is to be retained. The value of such a mindset has already been
demonstrated in the context of solar potential analysis [61], where interim outputs were the
final outputs needed for shadow analysis [30]. In an array model, the native point cloud
format is transformed into a raster format. Thus, coping with data complexities in systems
such as EarthServer/RASDAMAN and TileDB are prohibitive, even though they can be
horizontally scaled to multiple, independent nodes to efficiently manage the needed data
volumes and traffic volumes.

Notably, since both HBase and Accumulo NoSQL databases relax the requirements
to adhere to a rigid schema, systems that are built atop HBase and Accumulo could offer
greater scalability accommodating data complexities. Hence, [69] argues that managing
point cloud data in HBase or Accumulo-based systems, such as GeoWave, would facilitate
requirements, such as assemblage of heterogeneous point cloud data. Furthermore, systems
that are built atop HBase and Accumulo provide flexibility to scale to a large number of
nodes. Therefore, from a theoretical perspective, systems that adopt HBase or Accumulo,
such as wide-column databases for PCDM could achieve greater scalability with respect to
data volume and traffic volume, as well as data complexity.

On another note, key-value databases and wide-column databases are optimized
for write-intensive workloads [76]. Such databases typically are constructed atop log-
structured merge tree (LSM tree)-based storage engines vis-a-vis read-optimized storage
engines that are typically built atop B-tree structures [16]. Commonly, once point cloud
data are ingested, a PCDM system is expected to perform predominantly read-intensive
tasks. Thus, the adoption of write-intensive databases can be seen as a contradiction for
PCDM in system design objectives. Nevertheless, in scenarios where read optimization
is expected in LSM tree-based databases, such as HBase, Bloom Filter adjustments are
doable [77]. However, the existing PCDM research that employs HBase has not explored
the potential gains that could be obtained from Bloom Filter adjustments.

Similar to shared-memory architecture-based PCDM systems, shared-nothing
architecture-based PCDM systems also invest efforts in implementing efficient spatial
indexing strategies for point cloud data retrieval. Table 3 shows that except for TileDB, [34]
and EarthServer/RASDAMAN systems, other research work that uses HBase or Accumulo,
like databases have implemented spatial indexes atop point cloud data. Such efforts have
been tested predominantly with two variations of space-filling curves (SFCs): (i) Hilbert
SFC and (ii) Morton curve. Attempts at implementing other space-based point access
techniques such as hierarchical indexes (e.g., quadtree) for PCDM in wide-column databases
do not appear in the peer-reviewed PCDM literature. Indeed, there could be challenges
in implementing and managing tree-like, hierarchical data structures in shared-nothing
architecture context. However, there have been attempts at quadtree implementation atop
an HBase in MD-HBase in which the authors demonstrate the use of an on-disk, persistent
quadtree data structure in performing 2D point data retrieval in a series of range and k
nearest neighbor queries [78]. Thus, the implementation of a quadtree, such as a data
structure atop wide-column databases for the purpose of PCDM can be seen as a potential
future research direction, especially for spatial queries with 3D point cloud data.

The adoption of shared-nothing architecture is also extended to full waveform (FWF)-
LiDAR data management. As opposed to discrete points in point cloud data, FWF-LiDAR
comprises the full waveform version of the raw signal. This includes the pulse component,
i.e., the line segment that represents the location and orientation of the laser beam, the wave
component, i.e., the series of signal magnitude values, and the point component which is
the derivation of the processing of pulse and wave components. This richer information in
FWF-LiDAR provides greater insight into scanned scenes, yet demands more storage and

Remote Sens. 2022, 14, 5277 18 of 31

computing power. In response, Vo et al. [79] developed a novel spatial–temporal indexing
technique and scalable data management solutions for FWF-LiDAR data by adopting the
HBase database. The spatial index strategy of Vo et al. [79] employs a six-dimensional
Hilbert index. This index is based on the two edges of the pulse component of FWF-LiDAR:
the x-, y-, and z-coordinates of the two edges of the pulse component. The temporal
indexing is based on the flight line id, which is unique to each pulse component in the
FWF-LiDAR data.

As described in Section 4, the addition of nodes is a means to improve performance
when adopting shared-nothing architecture. For example, in the work [51,78,80,81], the
addition of nodes resulted in improved performance for data querying and data loading,
in the respective spatial data management systems. Nevertheless, within the context of
PCDM, to date, only [33] provides sufficient evidence toward this potential under 3, 5, and
9 nodes. Although this experiment clearly depicts the benefit of shared-nothing architecture
in performance improvement, more systematic testing is needed with multiple data sets,
various standard queries, and other expected actions such as data loading and concurrent
data querying.

6.4. Comparison of Scalability and Performance of Current PCDM Systems

In this section, a comprehensive overview of underlying architectures and data models
and other related pivotal information on current PCDM solutions are presented, along
with their scalability potential and prominent performance aspects with respect to storage,
querying, and loading.

Achieving scalability, while ensuring acceptable performance, is the ultimate goal
in PCDM research. Almost all PCDM experiments to date demonstrate some scalability
with respect to data volumes but are not easily compared because of the use of different
hardware, various data sets, and disparate queries. Arguably, the most reliable way to
experimentally compare systems is to conduct systematic benchmarks similar to that done
by van Oosterom et al. [19]. Such an approach enables the direct comparison of systems
with different data models and distinct indexing techniques. The absence of that type
of experiment to date greatly complicates meaningful comparisons of PCDM systems.
Despite these understood limitations, evaluation of existing comparisons can provide
insights. Thus, Table 4 is provided.

Remote Sens. 2022, 14, 5277 19 of 31

Table 4. Data loading, data storage, and different range query performance time achieved in current PCDM solutions.

Ref: Database Storage
Model

Index
Strategy

Queries of Interest Dataset (by
Project/City/
Country)

Max:
Points
Tested

Data
Loading
(bytes/s)

Data
Storage
(bytes/point)

Query
Response
Times (s)

Points
Returned

Window

kN
N

Po
in

t

te
m

p:

2D 3D

[19] PostgreSQL/
PostGIS flat B-tree (x,y) X X AHN2 23 B 243,022 77.1 18.02 718,131

[19] PostgreSQL/
PostGIS block NA X X AHN2 23 B 1,882,931 4.6 2.19 718,131

[20] PostgreSQL/
PostGIS block R-tree,

B-tree X Vosges 5.2 B 125,000 7.5 NA NA

[20] PostgreSQL/
PostGIS block R-tree,

B-tree X Paris 2.15 B 74,500 26.9 0.6 1,200,000

[46] PostgreSQL/
PostGIS block

2D tile index
with

metadata
X X

Italy,
Austria 20 B 30,000 190 NA NA

[19] Oracle flat B-tree X AHN2 23 B 1,459,065 43.2 18.2 718,021

[19] Oracle block Hilbert-R-tree X AHN2 23 B 119,881 9.5 1.3 718,131

[31] Oracle flat Hilbert (x,y) X AHN2 73 M 278,427 25 0.33 3927

[31] Oracle flat Hilbert (x,y,z) X AHN2 73 M 110,570 20.2 1.12 3927

[31] Oracle flat Hilbert (x,y,t) X AHN2 73 M 107,444 25.7 0.06 3927

[31] Oracle flat Hilbert (x,y,z,t) X AHN2 73 M 92,420 20.2 0.11 3927

[68] Oracle flat Morton (x,y) NA AHN2 273 M 380,011 51.1 NA NA

[68] Oracle flat
SDO_
Point(x,y,z),
scale(LoD)

NA AHN2 273 M 123,247 153 NA NA

[19] MonetDB flat Imprints X X AHN2 23 B 2,719,439 22.9 16.74 718,021

[52] MonetDB flat Imprints X AHN2 23 B 5,888,822 22.9 0.32 718,021

Remote Sens. 2022, 14, 5277 20 of 31

Table 4. Cont.

Ref: Database Storage
Model

Index
Strategy

Queries of Interest Dataset (by
Project/City/
Country)

Max:
Points
Tested

Data
Loading
(bytes/s)

Data
Storage
(bytes/point)

Query
Response
Times (s)

Points
Returned

Window

kN
N

Po
in

t

te
m

p:

2D 3D

[52] MonetDB flat Morton-
added X AHN2 23 B 415,725 30 0.2 718,021

[52] MonetDB flat Morton-
replaceXY X AHN2 23 B 592,492 15 0.3 718,021

[19] OEDBM flat no indexes X AHN2 21B 22,706,269 4.5 0.59 369,352

[3] HBase flat Hilbert X X Dublin 1.4 B 41,283 235.5 0.05 NA

[3] HBase flat Hilbert X X Dublin 1.4 B 181,110 48.3 0.04 NA

[3] HBase block Hilbert X X Dublin 1.4 B 1,344,047 31.2 0.07 NA

[3] HBase block Hilbert X X Dublin 1.4 B 2,372,243 26.9 0.08 NA

[34] HBase flat NA (time-stamp) X Dublin 812 M 259,011 12.3 48 13,498,454
‘NA’ stands for ‘not applicable’ and/or ‘not available’, ‘B’ stands for ‘billions’ and ‘M’ stands for ‘millions’.

Remote Sens. 2022, 14, 5277 21 of 31

Inspect Performance Results of Current PCDM Systems

Table 4 and Figure 1 summarize the performance results (i.e., storage performance,
data loading performance, and window query performance) reported to date for prominent
PCDM systems. The focus is on window queries, as they are commonly used across all
PCDM experiments, although with some differences. For example, Ref. [19] is primarily
based on 2D window queries and kNN queries, whereas [3] employs 3D window queries.
As reporting all experimental results in one table requires extensive consolidation, specific
considerations were made while constructing Table 4. These are as follows:

• In scenarios where different data set sizes were tested, the results obtained from the
largest are reported herein.

• Additional information such as the number of threads used for loading, nature of
the window query, spatial index used, and storage model implemented are provided
where appropriate.

• Data storage is mainly ascertained by considering the total disk/memory usage, i.e.,
in experiments where the size of the index and data are provided separately, the
summation of the two (i.e., total storage consumption) is reported.

• While the results reported are impacted by data heterogeneity, there is not an easy means
of characterization and, thus, must be considered as an uncertainty in the reporting.

Figure 1. Data loading speeds and storage costs of the existing PCDM solution.

With respect to Figure 1, data loading speed and storage costs of several PCDM
systems were significantly higher (i.e., an outlier). Thus, preserving space and clarity in
Figure 1, outlier data points are depicted outside the main plot region.

Remote Sens. 2022, 14, 5277 22 of 31

Based on Table 4 and Figure 1 with respect to current experimental scenarios, the
following observations can be made:

• The OEDBM PCDM system—a multi-node shared-disk architecture-based relational
database-oriented PCDM system had the best (highest) reported points/seconds ratio.

• The OEDBM PCDM system also had the best (lowest) bytes/points ratio (i.e., the
number of bytes per point), with the aid of an in-built compression mechanism (i.e.,
query high compression mode).

• Among the PostgreSQL/PostGIS-oriented PCDM systems:

– The block model implemented in [19] yielded the lowest bytes/points ratio (using
blocks of 3000 points).

– This system also yielded the highest points/loading time and ratio among the
PostgreSQL/PostGIS systems.

• Among the Oracle database-oriented PCDM systems:

– The Oracle flat model implemented in [19] yielded the highest points/loading
time ratio.

– The Oracle system that yielded the lowest bytes/points ratio was the Oracle block
model implemented in [19].

• Amongst the MonetDB-based systems:

– The Morton-relaceXY implementation yielded better bytes/points ratio [47].
– The Imprints index implementation yielded a better points/loading time ratio [47].

• Investigation of the 2D window queries is more common compared to the investigation
of the 3D range or kNN queries for LiDAR point cloud data.

• Data loading and concurrent data querying can be done in parallel. However, many
researchers have not explicitly explored parallelism under data loading and querying.

In the process of amassing data loading results, querying results, and storage results
for Table 4, a few notable gaps in the reporting of shared-nothing architecture-based PCDM
research experiments were identified that should appear in future reporting. These include
(i) the replication factor in the database (e.g., in HBase, the default replication factor is
3 [82]—meaning: that three copies of data are stored in the database); (ii) the number of
nodes used in the data loading process; (iii) communication costs incurred in data retrieval
(which is an overhead); (iv) index size; and (v) point cloud data distribution across nodes.

Such information is vital. For example, according to [3], PostgreSQL/PostGIS con-
sumed 21.0 bytes to store a LiDAR point record whereas the HBase model-4 consumed
28.4 bytes per point. Assuming that the default replication factor 3 is configured in [3]’s
HBase database, it could be argued that 28.4 bytes value represents storage requirement for
3 points, not one point. If so, the storage performance that [3] obtained for its best-case sce-
nario is nearly 100% more efficient as compared to PostreSQL/PostGIS system. However,
since that information is not available, such a conclusion cannot be made without further
experimentation. Similarly, information, such as the number of nodes participating in the
data loading process, the size of the index, and the time incurred for data communication
are essential for an insightful analysis of scalability and performance of shared-nothing
architecture-based PCDM systems.

Current state-of-the-art PCDM systems are implemented atop parallel architectures.
Published experiments to date demonstrate that shared-memory architecture-based PCDM
could result in poor scalability and performance with large data volumes. In addition,
current shared-memory architecture-based PCDM systems cannot support heterogene-
ity of data, as the systems are based on a relational data model. Similarly, shared-disk
architecture-based PCDM systems demonstrate limited scalability when in the presence
of data complexities. Nevertheless, in current PCDM literature, shared-disk architecture-
based PCDM systems are the only database-oriented PCDM systems that have been tested
with extremely large data sets (i.e., up to 640 billion points); compared to the maximum of
1.4 billion points tested on the current shared-nothing architecture-based PCDM system.

Remote Sens. 2022, 14, 5277 23 of 31

In terms of supporting data complexities, shared-nothing architecture-based systems that
utilize HBase and Accumulo, demonstrate much promise. Scalability with respect to con-
current data access or traffic scalability is highlighted as an important aspect of PCDM [19].
However, PCDM scalability (with respect to different traffic volumes) is not well researched,
queries to date have been 2D window queries, with substantially fewer attempts with 3D
window and kNN queries.

7. Discussion

Discussing issues that arise in developing new scalable, performance-efficient PCDM
systems are critical, as well as highlighting crucial gaps in the PCDM research domain.
Therefore, this section provides guidance on selecting parallel architectures and data models
when specific requirements arise. Future research avenues are also presented.

7.1. Guide to Selecting Parallel Architectures and Data Models for PCDM

Figure 2 depicts the avenues available for highly scalable, performance-efficient PCDM
systems implementation. From the parallel architecture’s viewpoint, shared-nothing archi-
tectures provide more flexibility for the choice of data models compared to both shared-
memory and shared-disk architectures. Similarly, from a data model point of view, rela-
tional data models (i.e., including object-relational, relational columnar, etc.) provide more
flexibility, as they can be deployed in any parallel architecture. Furthermore, if the choice of
parallel architecture is primarily on shared-memory architectures, the data model choices
available will be relational models and NewSQL models. On the other hand, shared-disk
architecture is limited to array and relational models.

Shared
Memory

Shared
Nothing

Shared
Disk

Relational NewSQL ArrayNoSQL

Figure 2. Available choices in adopting parallel architectures and data models for PCDM systems
development.

Although, as previously noted, NoSQL models inherently provide higher scalability
and performance compared to relational models, NoSQL models are primarily designed
to deploy in shared-nothing architectures. Thus, the adoption of wide-column and/or
key-value databases will require PCDM system developers to adhere to shared-nothing
architectures, which may unduly restrict certain types of querying.

Figure 2 provides some broad guidelines for the choice of parallel architecture and
data model for PCDM. However, based on the review provided herein, the adoption of
specific parallel architectures and data models for PCDM requires meticulous attention to
ensure acceptable performance and future usability in terms of data size and complexity.
In particular, the choice of parallel architecture and data model should be made through
careful investigation with respect to the specific requirements of the intended PCDM system.
From a decision-making point of view, such requirements can be mainly categorized into
three areas, namely: (i) anticipated changes in point cloud data volume, (ii) anticipated
changes to the traffic volume, and (iii) other PCDM system requirements (e.g., requirements
associated with the data models/databases and inherent characteristics of point cloud data).

Figures 3 and 4 provide a workflow for decision-making with respect to anticipated
changes to traffic volume and point cloud data volumes. From the review, all parallel
architectures are capable of providing scalability and commensurate performance for
PCDM. Nevertheless, as highlighted in the review, the scalability and performance of the
PCDM systems have been tested over precisely defined data sizes. Consequently, the

Remote Sens. 2022, 14, 5277 24 of 31

maximum data size to be managed in each experiment is known a priori. In such cases,
the adoption of any parallel architecture is possible for PCDM. This flexibility is allowed
because the required storage and data processing capabilities can be designed explicitly
into the parallel architectures, and may permit consideration of a wider range of data
models (as depicted in Figure 2).

Where anticipated, data and/or traffic volumes are unknown, but significant changes
are expected, shared-nothing parallel architectures seem more suitable. Indeed, as de-
picted in both Figures 3 and 4, the capacities of shared-memory or shared-disk parallel
architectures could act as potential barriers.

Anticipated
change to
data size is

known

All parallel
architectures are

possible

Data growth is rapid/
exponential

If adopting shared-
memory

or shared-disk,
 concern about

'capacity'

Shared-Nothing
more appropriate

Yes

No

No

Figure 3. Choosing parallel architectures based on anticipated changes to data volume.

Remote Sens. 2022, 14, 5277 25 of 31

Anticipated
change to

traffic volume is
known

All parallel
architectures are

possible

Traffic volume
grow rapidly

If adopting shared-
memory

or shared-disk,
 concern about

'capacity'

Shared-Nothing
more appropriate

Yes

No

No

Figure 4. Choosing parallel architectures based on anticipated changes to traffic volume.

While intuition with respect to parallel architecture could be based on anticipated
changes in point cloud data volumes and traffic volume demands in a PCDM system,
other system requirements associated could provide better insights for selecting the most
appropriate data models. To this end, Table 5 provides an overview of the data models
available for different requirements specific to PCDM system development (Please note
that Table 5 has a column name titled: Wide-column, instead of NoSQL. The reason is that,
as of the current juncture in PCDM, wide-column is the only NoSQL model that is experi-
mented with in the full database-oriented PCDM). For example, if higher scalability and
performance are integral requirements, NewSQL models and wide-column NoSQL models
may provide competitive solutions. Indeed, although array data models are scalable, to the
best of our knowledge, the scalability of array databases has not directly been compared
with NewSQL and NoSQL models. Similarly, if ACID requirements and/or fixed schema
requirements and/or the relationships among point cloud data or data sets are a priority,
relational, NewSQL, and array models may provide more viable solutions. On the other
hand, if requirements such as the assemblage of heterogeneous point cloud data are a prior-
ity, wide-column-oriented NoSQL data models should be considered. The fundamental
level guidelines depicted in Figures 2–4 and Table 5 will enable strategic decision-making
in the development of highly scalable performance-efficient PCDM systems.

Remote Sens. 2022, 14, 5277 26 of 31

Table 5. PCDM requirements that can cater through data models.

Requirement/Characteristics
Data Models

Relational NewSQL Wide- ArrayColumn

Assemblage of heterogeneous point
cloud data/ (Schemaless storage)

X

ACID requirement X X X

High scalability and performance are in-
herent characteristics of the data model

X X **

Fixed schema X X X

Relationship among point cloud data
/datasets (one-one, one-many, many-
many)

X X X

As stated in the main text, the scalability of array databases has not directly been compared with
NewSQL and NoSQL models. Thus, the cell value in the table is indicated as **.

7.2. Further Research Avenues

In addition to the gaps stated with respect to existing PCDM systems and the evalua-
tion of scalability and performance of PCDM systems, this review has identified directions
in which PCDM research could invest more effort. These directions are discussed below
with respect to existing PCDM systems and developing novel PCDM systems, respectively.

• Existing PCDM systems:

– Perform experiments on scalability and performance with respect to growing
traffic volumes.

– Design experiments that demonstrate scalability and performance with respect to
data complexity.

• Developing new PCDM systems:

– Deploy relational databases, both row-oriented and column-oriented, in shared-
nothing architecture and explore scalability and performance.

– Explore avenues with NewSQL databases for PCDM in shared-nothing archi-
tecture. This includes exploring the suitability of graph databases, document
databases, and key-value databases (NoSQL databases other than wide-column)
for PCDM.

As previously stated, the scalability and performance of PCDM systems are mainly
assessed with respect to the growing data volumes. In a few circumstances, parallel loading
has been explored. Nevertheless, in developing highly scalable–data-intensive PCDM
systems, performing experiments on other dimensions of scalability (i.e., traffic volume
and data complexity) is equally vital. Similarly, as noted, the advent of new data models
and the deployment of these novel data models in shared-nothing architecture, promise
better scalability and performance. Thus, a pragmatic analysis in developing novel PCDM
systems (e.g., by combining new data models and unexplored parallel architectures) is also
crucial to future PCDM research.

Finally, emphasizing the need for an extensible, agile framework for methodical test-
ing, evaluation, and the comparison of scalability and performances of heterogeneous
PCDM systems are important. As noted in Section 6, as of today, there is no systematic
approach to evaluate the scalability and performance of existing PCDM systems against
each other. Thus, an agile extensible framework covering all parallel architectures and data
models is vital. Such a framework is required to encompass characteristics of point cloud
data so that different data sets can be directly compared. Furthermore, performance dimen-
sions, such as storage performance, querying performance, and data loading performance,

Remote Sens. 2022, 14, 5277 27 of 31

should also be incorporated. We believe that such a framework requires careful analysis of
the steps involved in PCDM experiments and data-intensive system characterizations.

8. Conclusions

LiDAR point cloud data are important sources for 3D geospatial scientific research.
Currently, these inherently voluminous and heterogeneous data sets are being collected at
unprecedented scales and densities. Today, there is a growing number of research attempts
toward the development of highly scalable–performance-efficient PCDM solutions. These
attempts are explored atop different parallel architectures and specific data models and
have produced results that demonstrate scalability and commensurate performance.

With respect to the capacity, shared-memory architecture-based PCDM systems have
been successfully explored by adopting databases that adhere to relational and NewSQL
models. On the other hand, to date, there is only one system that has produced scalability
and performance results with respect to managing point cloud data in a shared-disk
architecture. Demonstrating scalability and performance results of shared-disk PCDM
systems could provide important insights into PCDM research. More recently, there is a
trend to adopt shared-nothing architecture and wide-column NoSQL
databases for PCDM systems.While shared-nothing architectures and wide-column models
(and NoSQL models in general) are theoretically capable of achieving high performance
and scalability, current results are insufficient to validate such claims with respect to PCDM.

The review of scalability and performance of parallel architectures and data models
in PCDM systems and the evaluation of state-of-the-art PCDM systems presented herein
aids in the identification of pivotal research gaps at the system level, as well as at the core
research level. The main research gaps identified in this survey relate to gaps with respect
to existing PCDM systems and gaps, with respect to developing novel PCDM systems.
This work can be used as a guide in strategic decision-making when developing scalable
PCDM systems under three main areas: (i) anticipated changes to point cloud data volume,
(ii) anticipated changes in traffic volume, and (iii) other system requirements. Finally,
this work has identified a critical need for an extensible, agile framework for methodical
testing, evaluation, and comparison of scalability and performance of heterogeneous,
PCDM systems that should be explored in future research.

Author Contributions: Conceptualization, C.N.L.H.; manuscript preparation, C.N.L.H., D.F.L. and
A.-V.V.; manuscript reviewing and editing, D.F.L., N.-A.L.-K. and M.B.; supervision and funding,
M.B. All authors have read and agreed to the published version of the manuscript.

Funding: This publication originated from research supported in part by a grant from Science
Foundation Ireland under grant number SFI-17US3450. Further funding for this project was provided
by the National Science Foundation as part of the project “UrbanARK: Assessment, Risk Management,
& Knowledge for Coastal Flood Risk Management in Urban Areas” NSF Award 1826134, jointly
funded with Science Foundation Ireland (SFI-17US3450) and the Northern Ireland Trust (grant
USI 137).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Remote Sens. 2022, 14, 5277 28 of 31

Abbreviations
The following abbreviations are used in this manuscript:

3D three-dimensional
DBMS database management system
DM data management
FWF full waveform
kNN k nearest neighbor
LiDAR (LiDAR) Light Detection and Ranging
OEDBM Oracle Exadata Database Machine
PCDM point cloud data management
PCs point clouds
RDBMSs relational database management systems
NoSQL Not only SQL
SFC space-filling curve
SFCs space-filling curves
SQL structured query language

References
1. Alvanaki, F.; Goncalves, R.; Ivanova, M.; Kersten, M.; Kyzirakos, K. GIS navigation boosted by column stores. Proc. VLDB Endow.

2015, 8, 1956–1959. [CrossRef]
2. Mosa, A.; Schön, B.; Bertolotto, M.; Laefer, D. Evaluating the benefits of octree-based indexing for LiDAR data. Photogramm. Eng.

Remote Sens. 2012, 78, 927–934. [CrossRef]
3. Vo, A.; Konda, N.; Chauhan, N.; Aljumaily, H.; Laefer, D. Lessons learned with laser scanning point cloud management in

Hadoop HBase. In Lecture Notes in Computer Science; Springer: Lausanne, Switzerland, 2018; pp. 231–253.
4. Stanley, M.H.; Laefer, D.F. Metrics for aerial, urban lidar point clouds. ISPRS J. Photogramm. Remote Sens. 2021, 175, 268–281.

[CrossRef]
5. Vo, A.; Laefer, D.; Bertolotto, M. Airborne laser scanning data storage and indexing: State of the art review. Int. J. Remote Sens.

2016, 37, 6187–6204. [CrossRef]
6. Lagmay, A.; Racoma, B.; Aracan, K.; Alconis-Ayco, J.; Saddi, I. Disseminating near-real-time hazards information and flood maps

in the Philippines through Web-GIS. J. Environ. Sci. 2017, 59, 13–23. [CrossRef]
7. GSI. Geographical Survey Institute Map Service. 2016. Available online: http://maps.gsi.go.jp/ (accessed on 20 December 2021).
8. AHN. Actueel Hoogtebestand Nederland—Actualisatie Van Het 2. 2014. Available online: https://www.ahn.nl/ (accessed on 30

July 2017).
9. US Geological Survey. USGS Program Updates. 2022. Available online: https://www.usgs.gov/3d-elevation-program/what-

3dep#publications (accessed on 20 May 2022).
10. OpenTopography. USGS 3DEP Data Now Available to Academic Users in OpenTopography Pilot. 2020. Available online:

https://opentopography.org/news/usgs-3dep-data-now-available-academic-users-opentopography-pilot (accessed on 20
May 2022).

11. Laefer, D.; Abuwarda, S.; Vo, A.; Truong-Hong, L.; Gharibi, H. 2015 Aerial Laser and Photogrammetry Survey of Dublin City
Collection Record. 2017. Available online: https://doi.org/10.17609/N8MQ0N (accessed on 20 October 2019).

12. Wang, Y.; Chen, Q.; Zhu, Q.; Liu, L.; Li, C.; Zheng, D. A survey of mobile laser scanning applications and key techniques over
urban areas. Remote Sens. 2019, 11, 1540. [CrossRef]

13. Cura, R.; Perret, J.; Paparoditis, N. Point cloud server (pcs): Point clouds in-base management and processing. ISPRS Ann.
Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 2, 531. [CrossRef]

14. Bauwens, S.; Bartholomeus, H.; Calders, K.; Lejeune, P. Forest inventory with terrestrial LiDAR: A comparison of static and
hand-held mobile laser scanning. Forests 2016, 7, 127. [CrossRef]

15. Zhu, L.; Hyyppa, J. The use of airborne and mobile laser scanning for modeling railway environments in 3D. Remote Sens. 2014,
6, 3075–3100. [CrossRef]

16. Kleppmann, M. Designing Data-Intensive Applications: The Big Ideas behind Reliable, Scalable, and Maintainable Systems; O’Reilly
Media, Inc.: Newton, MA, USA, 2017.

17. Otepka, J.; Ghuffar, S.; Waldhauser, C.; Hochreiter, R.; Pfeifer, N. Georeferenced point clouds: A survey of features and point
cloud management. ISPRS Int. J. Geo-Inf. 2013, 2, 1038–1065. [CrossRef]

18. Graham, L. Data Management of Light Detection and Ranging. In Topographic Laser Ranging and Scanning Principles and Processing,
2nd ed.; Shan, J., Toth, C., Eds.; CRC Press: Boca Raton, FL, USA, 2018; Chapter 10, pp. 314–346. [CrossRef]

19. van Oosterom, P.; Martinez-Rubi, O.; Ivanova, M.; Horhammer, M.; Geringer, D.; Ravada, S.; Tijssen, T.; Kodde, M.; Gonçalves, R.
Massive point cloud data management: Design, implementation and execution of a point cloud benchmark. Comput. Graph. 2015,
49, 92–125. [CrossRef]

http://doi.org/10.14778/2824032.2824110
http://dx.doi.org/10.14358/PERS.78.9.927
http://dx.doi.org/10.1016/j.isprsjprs.2021.01.010
http://dx.doi.org/10.1080/01431161.2016.1256511
http://dx.doi.org/10.1016/j.jes.2017.03.014
http://maps.gsi.go.jp/
https://www.ahn.nl/
https://www.usgs.gov/3d-elevation-program/what-3dep#publications
https://www.usgs.gov/3d-elevation-program/what-3dep#publications
https://opentopography.org/news/usgs-3dep-data-now-available-academic-users-opentopography-pilot
https://doi.org/10.17609/N8MQ0N
http://dx.doi.org/10.3390/rs11131540
http://dx.doi.org/10.5194/isprsannals-II-3-W5-531-2015
http://dx.doi.org/10.3390/f7060127
http://dx.doi.org/10.3390/rs6043075
http://dx.doi.org/10.3390/ijgi2041038
http://dx.doi.org/10.1201/9781315154381-16
http://dx.doi.org/10.1016/j.cag.2015.01.007

Remote Sens. 2022, 14, 5277 29 of 31

20. Cura, R.; Perret, J.; Paparoditis, N. A scalable and multi-purpose point cloud server (PCS) for easier and faster point cloud data
management and processing. ISPRS J. Photogramm. Remote Sens. 2017, 127, 39–56. [CrossRef]

21. Psomadaki, S. Using a Database for Dynamic Point Cloud Data Management. (Doctoral Dissertation, Master’s Thesis, Delft
University of Technology, 2016. (Graduation Plan)). Available online: https://repository.tudelft.nl/islandora/object/uuid:
c1e625b0-0a74-48b5-b748-6968e7f83e2b/datastream/OBJ2/download (accessed on 20 May 2022).

22. Boehm, J.; Liu, K. NoSQL for storage and retrieval of large LiDAR data collections. ISPRS Int. Arch. Photogramm. Remote Spat. Inf.
Sci. 2015, 40, 577–582. [CrossRef]

23. Janecka, K.; Karki, S.; van Oosterom, P.; Zlatanova, S.; Kalantari, M.; Ghawana, T. 3D Cadastres Best Practices, Chapter 4: 3D
Spatial DBMS for 3D Cadastres. In Proceedings of the 26th FIG Congress 2018 Embracing our Smart World Where the Continents
Connect, Istanbul, Turkey, 6–11 May 2018.

24. El-Mahgary, S.; Virtanen, J.P.; Hyyppä, H. A Simple Semantic-Based Data Storage Layout for Querying Point Clouds. ISPRS Int.
J. Geo-Inf. 2020, 9, 72. [CrossRef]

25. Ott, M. Towards storing point clouds in PostgreSQL. Ph.D. Thesis, HSR Hochschule für Technik Rapperswil, Rapperswil,
Switzerland, 2012.

26. Godfrind, A. Oracle’s Point Cloud Datatype. 2009. Available online: https://ncgeo.nl/downloads/PointCloud_14
_AlbertGodfrind.pdf (accessed on 20 May 2022).

27. Vo, A.; Laefer, D.; Trifkovic, M.; Hewage, C.; Bertolotto, M.; Le-Khac, N.; Ofterdinger, U. A highly scalable data management
system for point cloud and full waveform lidar data. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 507–512. [CrossRef]

28. Boehm, J. File-centric organization of large LiDAR Point Clouds in a Big Data context. In Proceedings of the IQmulus First
Workshop on Processing Large Geospatial Data, Cardiff, UK, July 2014 ; Volume 8, pp. 69–76.

29. Li, Z.; Hodgson, M.; Li, W. A general-purpose framework for parallel processing of large-scale LiDAR data. Int. J. Digit. Earth
2017, 11, 26–47. [CrossRef]

30. Vo, A.; Laefer, D. A Big Data approach for comprehensive urban shadow analysis from airborne laser scanning point clouds.
ISPRS Ann. Photogramm. Remote Spat. Inf. Sci. 2019, 4, 131–137. [CrossRef]

31. Psomadaki, S.; van Oosterom, P.; Tijssen, T.P.M.; Baart, F. Using a Space Filling Curve Approach for the Management of Dynamic
Point Clouds. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, IV-2/W1, 107–118. [CrossRef]

32. van Oosterom, P.; Martinez-Rubi, O.; Tijssen, T.; Gonçalves, R. Realistic benchmarks for point cloud data management systems.
In Advances in 3D Geoinformation; Springer : Cham, Switzerland, 2017; pp. 1–30.

33. Pajić, V.; Govedarica, M.; Amović, M. Model of Point Cloud Data Management System in Big Data Paradigm. ISPRS Int. J.
Geo-Inf. 2018, 7, 265. [CrossRef]

34. Vo, A.V.; Hewage, C.N.L.; Russo, G.; Chauhan, N.; Laefer, D.F.; Bertolotto, M.; Le-Khac, N.A.; Oftendinger, U. Efficient LiDAR
point cloud data encoding for scalable data management within the Hadoop eco-system. In Proceedings of the 2019 IEEE
International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 5644–5653.

35. Fowler, M. Patterns of Enterprise Application Architecture; Addison-Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 2002.
36. Bondi, A.B. Characteristics of scalability and their impact on performance. In Proceedings of the 2nd International Workshop on

Software and Performance, New York, NY, USA, September 2000 ; pp. 195–203.
37. Weinstock, C.B.; Goodenough, J.B. On System Scalability; Technical Report; Carnegie-Mellon Univ Pittsburgh Pa Software

Engineering Inst: Pittsburgh, PA, USA, 2006.
38. Pacheco, P. Parallel Programming with MPI; Morgan Kaufmann: Burlington, MA, USA, 1997.
39. Özsu, M.T.; Valduriez, P. Principles of Distributed Database Systems; Springer: Cham, Switzerland, 2020; Volume 4.
40. Leopold, C. Parallel and Distributed Computing: A survey of Models, Paradigms and Approaches; John Wiley & Sons, Inc.: New York,

NY, USA, 2001.
41. Dumitru, A.M.; Merticariu, V.; Baumann, P. Array database scalability: Intercontinental queries on petabyte datasets. In

Proceedings of the 28th International Conference on Scientific and Statistical Database Management, Budapest, Hungary, 18–20
July 2016; pp. 1–5.

42. Gorelik, E. Cloud Computing Models. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2013.
43. Singh, D.; Reddy, C.K. A survey on platforms for big data analytics. J. Big Data 2015, 2, 8. [CrossRef]
44. Hwang, K.; Shi, Y.; Bai, X. Scale-out vs. scale-up techniques for cloud performance and productivity. In Proceedings of the 2014

IEEE 6th International Conference on Cloud Computing Technology and Science, Singapore, 15–18 December 2014; pp. 763–768.
45. Ben Stopford. Shared Nothing v.s. Shared Disk Architectures: An Independent View. 2009. Available online: http://www.

benstopford.com/2009/11/24/understanding-the-shared-nothing-architecture (accessed on 21 October 2021).
46. Rieg, L.; Wichmann, V.; Rutzinger, M.; Sailer, R.; Geist, T.; Stötter, J. Data infrastructure for multitemporal airborne LiDAR

point cloud analysis—Examples from physical geography in high mountain environments. Comput. Environ. Urban Syst. 2014,
45, 137–146. [CrossRef]

47. Martinez-Rubi, O.; van Oosterom, P.; Tijssen, T. Managing massive point clouds: Performance of DBMS and file-based solutions.
GIM Int. 2015, 29, 33–35.

http://dx.doi.org/10.1016/j.isprsjprs.2016.06.012
https://repository.tudelft.nl/islandora/object/uuid:c1e625b0-0a74-48b5-b748-6968e7f83e2b/datastream/OBJ2/download
https://repository.tudelft.nl/islandora/object/uuid:c1e625b0-0a74-48b5-b748-6968e7f83e2b/datastream/OBJ2/download
http://dx.doi.org/10.5194/isprsarchives-XL-3-W3-577-2015
http://dx.doi.org/10.3390/ijgi9020072
https://ncgeo.nl/downloads/PointCloud_14_AlbertGodfrind.pdf
https://ncgeo.nl/downloads/PointCloud_14_AlbertGodfrind.pdf
http://dx.doi.org/10.5194/isprs-archives-XLIII-B4-2020-507-2020
http://dx.doi.org/10.1080/17538947.2016.1269842
http://dx.doi.org/10.5194/isprs-annals-IV-4-W8-131-2019
http://dx.doi.org/10.5194/isprs-annals-IV-2-W1-107-2016
http://dx.doi.org/10.3390/ijgi7070265
http://dx.doi.org/10.1186/s40537-014-0008-6
http://www.benstopford.com/2009/11/24/understanding-the-shared-nothing-architecture
http://www.benstopford.com/2009/11/24/understanding-the-shared-nothing-architecture
http://dx.doi.org/10.1016/j.compenvurbsys.2013.11.004

Remote Sens. 2022, 14, 5277 30 of 31

48. Kersten, M.; Ivanova, M.; Pereira Goncalves, R.A.; Martinez-Rubi, O. In FOSS4G-Europe 2014: Independent Innovation for
INSPIRE, Big Data and Citizen Participation: OSGEO’s European Conference on Free and Open Source Software for Geospatial.
Academic Track Open Source Geospatial Foundation. Available online: http://europe.foss4g.org/2014/sites/default/files/11
-Martinez-Rubi_0.pdf (accessed on 20 May 2022).

49. Pavlovic, M.; Bastian, K.N.; Gildhoff, H.; Ailamaki, A. Dictionary compression in point cloud data management. In Proceedings
of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Redondo Beach, CA,
USA, 7–10 November 2017; pp. 1–10.

50. Aji, A.; Wang, F.; Vo, H.; Lee, R.; Liu, Q.; Zhang, X.; Saltz, J. Hadoop-GIS: A high performance spatial data warehousing system
over MapReduce. Proc. VLDB Endow. 2013, 6, 1009–1020. [CrossRef]

51. Zhong, Y.; Han, J.; Zhang, T.; Li, Z.; Fang, J.; Chen, G. Towards parallel spatial query processing for big spatial data. In
Proceedings of the 2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum,
Shanghai, China, 21–25 May 2012; pp. 2085–2094.

52. Martinez-Rubi, S.; van Oosterom, P.; Gonçalves, R.; Tijssen, T.; Ivanova, M. Benchmarking and improving point cloud data
management in MonetDB. SIGSPATIAL Spec. Big Spat. Data 2015, 6, 11–18. [CrossRef]

53. Laefer, D.F.; Vo, A.V.; Bertolotto, M. A spatio-temporal index for aerial full waveform laser scanning data. ISPRS J. Photogramm.
Remote Sens. 2018, 138, 232–251. [CrossRef]

54. Codd, E.F. A relational model of data for large shared data banks. In Software Pioneers; Springer: Cham, Switzerland, 2002;
pp. 263–294.

55. Elmasri, R. Fundamentals of Database Systems; Pearson Education: Chennai, India, 2008.
56. Garcia-Molina, H. Database Systems: The Complete Book; Pearson Education: Chennai, India, 2008.
57. Davoudian, A.; Chen, L.; Liu, M. A survey on NoSQL stores. ACM Comput. Surv. (CSUR) 2018, 51, 1–43. [CrossRef]
58. Baumann, P.; Mazzetti, P.; Ungar, J.; Barbera, R.; Barboni, D.; Beccati, A.; Bigagli, L.; Boldrini, E.; Bruno, R.; Calanducci, A.; et al.

Big data analytics for earth sciences: The EarthServer approach. Int. J. Digit. Earth 2016, 9, 3–29. [CrossRef]
59. Baumann, P.; Furtado, P.; Ritsch, R.; Widmann, N. The RasDaMan approach to multidimensional database management. In

Proceedings of the 1997 ACM Symposium on Applied Computing, San Jose, CA, USA, April 1997; pp. 166–173.
60. Vo, A.; Hewage, C.; Le Khac, N.; Bertolotto, M.; Laefer, D. A parallel algorithm for local point density index computation of large

point clouds. ISPRS Ann. Photogramm. Remote Sens. Spat. Inform. Sci. 2021, 8, 75–82. [CrossRef]
61. Vo, A.; Laefer, D.; Smolic, A.; Zolanvari, S. Per-point processing for detailed urban solar estimation with aerial laser scanning and

distributed computing. ISPRS J. Photogramm. Remote Sens. 2019, 155, 119–135. [CrossRef]
62. Pavlo, A.; Aslett, M. What’s really new with NewSQL? ACM Sigmod Rec. 2016, 45, 45–55. [CrossRef]
63. Klein, J.; Gorton, I.; Ernst, N.; Donohoe, P.; Pham, K.; Matser, C. Performance evaluation of NoSQL databases: A case study. In

Proceedings of the 1st Workshop on Performance Analysis of Big Data Systems, Austin, TX, USA, 1 February 2015; pp. 5–10.
64. Gandini, A.; Gribaudo, M.; Knottenbelt, W.J.; Osman, R.; Piazzolla, P. Performance evaluation of NoSQL databases. In Proceedings

of the European Workshop on Performance Engineering; Springer: Cham, Switzerland, 2014; pp. 16–29.
65. Hendawi, A.; Gupta, J.; Jiayi, L.; Teredesai, A.; Naveen, R.; Mohak, S.; Ali, M. Distributed NoSQL data stores: Performance

analysis and a case study. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA,
10–13 December 2018; pp. 1937–1944.

66. Li, Y.; Manoharan, S. A performance comparison of SQL and NoSQL databases. In Proceedings of the 2013 IEEE Pacific
Rim Conference on Communications, Computers and Signal Processing (PACRIM), Victoria, BC, Canada, 27–29 August 2013;
pp. 15–19.

67. Whitby, M.; Fecher, R.; Bennight, C. GeoWave: Utilizing distributed key-value stores for multidimensional data. In Advances in
Spatial and Temporal Databases; Springer International Publishing: Cham, Switzerland, 2017; pp. 105–122.

68. Liu, H.; van Oosterom, P.; Meijers, M.; Verbree, E. Towards 10 15-level point clouds management-a nD PointCloud structure. In
Proceedings of the 21th AGILE Conference on Geographic Information Science; Lund University: Lund, Sweden, 2018; p. 7.

69. Van Oosterom, P.; Meijers, M.; Verbree, E.; Liu, H.; Tijssen, T. Towards a relational database Space Filling Curve (SFC) interface
specification for managing nD-PointClouds. In Münchner GI-Runde 2019; Runder Tisch GIS: München, Germany, 2019.

70. Osborne, K.; Johnson, R.; Põder, T.; Closson, K. Expert Oracle Exadata; Springer: Cham, Switzerland, 2011.
71. Shvachko, K.; Kuang, H.; Radia, S.; Chansler, R. The hadoop distributed file system. In Proceedings of the 2010 IEEE 26th

Symposium on Mass Storage Systems and Technologies (MSST), Incline Village, NV, USA, 3–7 May 2010; pp. 1–10.
72. Dean, J.; Ghemawat, S. MapReduce: Simplified data processing on large clusters. Commun. ACM 2008, 51, 107. [CrossRef]
73. Baumann, P.; Misev, D.; Merticariu, V.; Huu, B.P.; Bell, B. Rasdaman: Spatio-temporal datacubes on steroids. In Proceedings of

the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Seattle, WA, USA, 6–9
November 2018; pp. 604–607.

74. Baumann, P.; Dehmel, A.; Furtado, P.; Ritsch, R.; Widmann, N. Spatio-temporal retrieval with RasDaMan. In Proceedings of the
VLDB, Scotland, UK, 7–10 September 1999; pp. 746–749.

75. Papadopoulos, S.; Datta, K.; Madden, S.; Mattson, T. The TileDB array data storage manager. Proc. VLDB Endow. 2016, 10, 349–360.
[CrossRef]

76. Dayan, N.; Idreos, S. The log-structured merge-bush & the wacky continuum. In Proceedings of the 2019 International Conference
on Management of Data, Amsterdam, The Netherlands, 30 June–5 July 2019; pp. 449–466.

http://europe.foss4g.org/2014/sites/default/files/11-Martinez-Rubi_0.pdf
http://europe.foss4g.org/2014/sites/default/files/11-Martinez-Rubi_0.pdf
http://dx.doi.org/10.14778/2536222.2536227
http://dx.doi.org/10.1145/2744700.2744702
http://dx.doi.org/10.1016/j.isprsjprs.2018.01.012
http://dx.doi.org/10.1145/3158661
http://dx.doi.org/10.1080/17538947.2014.1003106
http://dx.doi.org/10.5194/isprs-annals-VIII-4-W2-2021-75-2021
http://dx.doi.org/10.1016/j.isprsjprs.2019.06.009
http://dx.doi.org/10.1145/3003665.3003674
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.14778/3025111.3025117

Remote Sens. 2022, 14, 5277 31 of 31

77. Aiyer, A.S.; Bautin, M.; Chen, G.J.; Damania, P.; Khemani, P.; Muthukkaruppan, K.; Ranganathan, K.; Spiegelberg, N.; Tang, L.;
Vaidya, M. Storage infrastructure behind Facebook messages: Using HBase at scale. IEEE Data Eng. Bull. 2012, 35, 4–13.

78. Nishimura, S.; Das, S.; Agrawal, D.; El Abbadi, A. Md-hbase: A scalable multi-dimensional data infrastructure for location aware
services. In Proceedings of the 2011 IEEE 12th International Conference on Mobile Data Management, Lulea, Sweden, 6–9 June
2011; Volume 1, pp. 7–16.

79. Vo, A.; Chauhan, N.; Laefer, D.; Bertolotto, M. A 6-Dimensional Hilbert approach to index Full Waveform LiDAR data in a
distributed computing environment. In Proceedings of the ISPRS International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, Delft, The Netherlands, 1–5 October 2018; Volume XLII-4, pp. 671–678.

80. Eldawy, A.; Mokbel, M.F. Spatialhadoop: A mapreduce framework for spatial data. In Proceedings of the 2015 IEEE 31st
International Conference on Data Engineering, Seoul, Korea, 13–17 April 2015; pp. 1352–1363.

81. Alarabi, L.; Mokbel, M.F.; Musleh, M. St-hadoop: A mapreduce framework for spatio-temporal data. GeoInformatica 2018,
22, 785–813. [CrossRef]

82. Dimiduk, N.; Khurana, A. HBase in Action; Manning Publications: Shelter Island, NY, USA, 2012; p. 334.

http://dx.doi.org/10.1007/s10707-018-0325-6

	Introduction
	Contributions
	Paper Organization

	Related Work
	File-Based PCDM
	 PCDMs Relying on Database Technology

	Background
	Scalability and Performance of Data-Intensive Systems
	Scaling Techniques and Parallel Architectures in Data-Intensive Systems
	Advent of Parallel Data-Intensive Systems
	Architectures of Data-Intensive Systems (Parallel Data System Architectures)

	Use of Databases in Data-Intensive Systems

	Parallel Architectures toward Scalability and Performance
	Data Models toward Scalability and Performance
	Analysis of State-of-the-Art PCDM Systems
	Shared-Memory Based PCDM Systems
	Shared-Disk Oriented PCDM Systems
	Shared-Nothing Architecture-Oriented PCDM Systems
	Comparison of Scalability and Performance of Current PCDM Systems

	Discussion
	Guide to Selecting Parallel Architectures and Data Models for PCDM
	Further Research Avenues

	Conclusions
	References

