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Abstract: Progress monitoring is an essential part of large construction projects. As manual progress
monitoring is time-consuming, the need for automation emerges, especially as, nowadays, BIM for
the design of buildings and laser scanning for capturing the as-built situation have become well
adopted. However, to be able to compare the as-built model obtained by laser scanning to the BIM
design, both models need to use the same reference system, which often is not the case. Transforming
the coordinate system of the as-built model into the BIM model is a specialist process that is pre-
requisite in automated construction progress monitoring. The research described in this paper is
aimed at the automation of this so-called registration process and is based on the dominant planar
geometry of most buildings with evident corner points in their structures. After extracting these
corner points from both the as-built and the design model, a RANSAC-based pairwise assessment
of the points is performed to identify potential matching points in both models using different
discriminative geometric invariants. Next, the transformation for the potential matches is evaluated
to find all the matching points. In the end, the most accurate transformation parameter is determined
from the individual transformation parameters of all the matching corner points. The proposed
method was tested and validated with a range of both simulated and real-life datasets. In all the case
studies including the simulated and real-life datasets, the registration was successful and accurate.
Furthermore, the method allows for the registration of the as-built models of incomplete buildings,
which is essential for effective construction progress monitoring. As the method uses the standard
IFC schema for data exchange with the BIM, there is no loss of geometrical information caused by
data conversions and it supports the complete automation of the progress-monitoring process.

Keywords: BIM; point cloud; registration; buildings; automated; IFC; corner point

1. Introduction

The accurate and efficient progress monitoring of under-construction buildings is a pre-
requisite for effective project management [1–5]. Current methods of progress monitoring
are based on manual measurements and extensive processing performed by construction
staff. The manual process with a dominant human presence consumes a lot of time and
labor and can lead to inaccurate or missing information; therefore, accurate automated
alternatives should be pushed forward [6–8].

Recently, several studies have been performed on automated progress monitoring
through a model-based assessment where the as-built model of the building is compared
with its as-planned model [1]. A three-dimensional (3D) point cloud of the building,
acquired through reconstruction technologies such as laser scanning, image-based recon-
struction, or the integration of both, represents the as-built model. This model is compared
to its design state (as-planned model) in a suitable format that is usually obtained from
a Building Information Model (BIM), a rich digital representation of the building com-
prising the 3D geometrical and semantic information [5]. The comparison of the as-built
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and as-planned model, termed “Scan-vs-BIM”, enables the accurate automated progress
monitoring of buildings [1]. However, effective progress monitoring using Scan-vs-BIM
requires an accurate alignment through a fundamental task of registration [9].

Registration is an active research area, with most efforts focused on the alignment
of point clouds and less on the alignment of point clouds with the BIM. In the latter case,
the BIM can be converted into a point cloud or some other suitable format like a mesh,
although the conversion process can result in loss of geometrical details. The registration
problem involves finding the rigid rotation and translation transformation parameters
to overlap the as-built model onto the as-planned model. Normally, a coarse-to-fine
strategy is applied in which coarse (or global) registration is initially applied to obtain the
approximate overlapping of the models, followed by a fine registration using the iterative
closest point (ICP) algorithm to improve the initial coarse registration. The results of the
fine registration are highly dependent on the success of the coarse registration; hence, this
first registration step requires a lot of attention. In this coarse registration, the extraction
of geometric features and identifying their match are the critical steps. The features
can be either points or primitives such as lines, planes, and curves. Furthermore, the
application of registration methods can also be limited to specific scenarios based on their
approach [10]. As a lot of building structures are dominated by planar features, approaches
utilizing the planar features can be considered a suitable solution for registration. Methods
employing the planar features are primarily dependent only on plane parameters, contrary
to complete point clouds, and this makes them more robust in identifying their matching
and less affected by outliers [10,11]. However, the identification of matching planes in these
methods is highly challenging [10,12–15]. Therefore, a plane-based method is required that
infers the discriminative information from buildings to differentiate the matching features
for registration.

Apart from registration, another challenge faced in Scan-vs-BIM is the direct extraction
of geometrical details from the BIM as an as-planned model. After the registration process,
the aligned models are compared in Scan-vs-BIM to infer the progress information. Later,
the progress information needs to be updated into a suitable catalog that can be later
utilized in schedule planning, continuous updating of progress information, visualization,
and communication of as-built progress [16]. To effectively perform these tasks, BIM inte-
gration with the construction schedule is required. Few researchers manually performed
the exchange of progress information using software solutions, against the notion of auto-
mated progress monitoring [5,17–19]. In contrast, some studies performed the automated
updating of progress data in the BIM by directly accessing the relevant information using an
Industry foundation classes (IFC)-based BIM [16,20]. IFC is a no-proprietary file exchange
format for BIMs that provides a common solution to exchange intense information between
stakeholders. The application of IFC-based BIMs in Scan-vs-BIM ensures a consistent infor-
mation format and facilitates the thorough automation of all stages of progress monitoring,
including registration. However, there is no registration attempt that directly utilizes
the IFC-based BIM as an as-planned model. This demands a registration method that,
instead of manually converting the BIM into another format before use, directly extracts
the geometrical information from the BIM in an automated way.

The corner points, corresponding to three intersecting planes, are identifiable 3D
points in the Euclidean scale. These corner points can be exploited for geometric invariants
for matching to compute the transformation for building models. The current research
proposes a novel registration technique that makes use of the distinct corner points defined
as the intersection points of three intersecting planes extracted from the model. A series of
geometric discriminative invariants are used as matching constraints to prune the corner
points in combination with the semantic information of their parent plane to find an
accurate match. The method is made robust by applying Random Sample Consensus
(RANSAC) during the initial identification of matching pairs to solve the combinatorial
problem and then clustering the potential matching points with similar transformations.
Similarly, the method also identifies the most optimal transformation from the clustered
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matched corner points. Another contribution of the current research is that it translates the
geometrical information directly from the IFC-based BIM during the processing.

In Section 2, related works on registration, particularly plane-based registration, are
reviewed to gain an insight into the problem. Section 3 details the stages of the proposed
methodology. Experimentation results with simulated and real-life datasets followed by a
discussion are presented in Section 4. Finally, the conclusions are outlined in Section 5.

2. Related Work

Registration is a widely studied research problem with the aim to align datasets in
a common coordinate system. Registration methods often apply a coarse-to-fine strategy
where an initial alignment is obtained by a coarse registration, after which it is improved by
fine registration algorithms. [21] The quality of the course registration determines the suc-
cess of the fine registration [21], which is mostly obtained by means of the well-established
ICP algorithm [22] and its variants [23–25] or the normal distribution transformation (NDT)
and its variants [26–29]. Hence, coarse registration remains the area of greater challenge,
with numerous studies attempting to address this challenge.

Generally, the coarse registration method involves extracting geometric features from
models and then identifying the matching features between them to compute the transfor-
mation. The main idea is that, instead of using all the 3D points in the models, the selection
of key points or primitives formed by the points as a distinct feature is established for
computational relief and improved matching [30]. The features are based on geometric
characteristics such as fast point feature histograms (FPFHs) [31], semantic feature lines [32],
intersecting lines [33], planes [34], curves [35], patches [36], or adaptive covariance [37].
Similarly, the identification of matching features is performed through different techniques
including Random sample consensus (RANSAC) [38], inliers search [39], fast-matching
pruning (FMP) [40], geometric consistency constraints [41], and non-cooperative game [37].
The approach of the feature-based registration method is widely adopted due to the prac-
tical effectiveness of geometric characteristics in various scenes. Approaches based on
point features such as scale-invariant feature transform (SIFT) key points [42,43], virtual
intersection points [12], Difference-of-Guassian (DoG) points [44], FPFH key points [45],
SURF key points [46], and semantic feature points [32,47] have registered the point clouds,
but their success is sensitive to noise and varying point density. Furthermore, they are
inefficient in the case of large datasets [13]. In contrast to the point-based features, ap-
proaches that use primitives such as lines, planes, and curved surfaces as features are
more robust in identifying the features that can be matched [30]. Some studies used line
features such as a linear invariant [48,49], the intersection of neighboring planes [33], and
the footprint from a building [50] for registration. Similarly, curved surfaces [36,51] are
also reported to be used as matching features. Additionally, a plane surface as a geometric
feature for matching has also been studied by numerous researchers [9,11,13,34,52–55].
These plane-feature-based approaches fail in rural landscapes, but they can achieve good
performance in urban infrastructures as urban structures have plenty of these features [21].

Buildings in particular have abundant planar features that can be extracted for regis-
tration. The registration approaches with plane features primarily process the plane param-
eters, instead of complete point clouds, to reduce the computation time. Furthermore, these
approaches are less affected by the outliers; hence, the accuracy can be increased [11]. The
efficiency of these approaches also depends on the quality of the extracted planes. The ex-
traction of planes from a point cloud can be performed with segmentation techniques such
as RANSAC segmentation [56–58], region growing [59], Hough transform [60], dynamic
clustering [55], and voxel-based growing [13]. Generally, high numbers of similar planar
surfaces extracted from the large-scale point clouds increases the difficulty in identifying
matching plane segments. Additionally, the lack of discriminative geometric primitives
and distinct invariants remains a challenge for reliable identification of matching pairs.
Consequently, some authors manually identify matching planes [14], although research ef-
forts to automate this process are emerging. He, Ma, and Zha [15] performed the matching
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of complete plane patches through interpretation trees where the area, normal angles, and
centroid were used for tree pruning. Although the computation complexity was reduced,
employing only complete planes lowered the probability of determining the correct trans-
formation because of varying overlap and occlusion conditions. Pavan and dos Santos [61]
introduced the non-iterative global refinement step utilizing the local consistency of the
plane. The identification of matching planes uses the plane similarity properties and the
geometric constraint formed by the surfaces of planes. This method exploits the properties
of quaternions to place the rotation matrices into the same coordinate system. Similarly,
the use of 4-plane congruent sets (4-PCS), which inputs the pair of planar patches from
voxelized point clouds to finds their matching, is proposed [30]. Furthermore, many studies
have attempted to solve the registration problem using geometric information obtained
from the combination of three planes. For example, Dol and Brenner [52] conducted a
search process with a triple product of plane normals to find their matching pairs with
acceptable results. The number of combinations in the matching process was reduced
using geometrical constraints such as area, boundary length, bounding box, and mean
intensity values. However, the related practical details were not published [10]. Similarly,
Brenner, et al. [62] used the intersecting angles formed by three planes for matching as
geometrical constraints. Theiler and Schindler [12] tackled the correspondence problem by
identifying the matching virtual tie points of three planes with the assistance of specialized
descriptors (intersection quality, angles, smoothness, segment extent) to describe the geo-
metrical characteristics of the planes. The distance between the tie points was employed
as the matching constraint and a specific threshold was introduced to limit the number of
compatible candidates and reduce the exponential complexity. This method is not reliable,
as additional virtual tie points at symmetrical distances can be obtained for planes that
are not physically intersecting or are located near to each other, in which case the distance
constraint is not enough to differentiate them. In addition, the success rate is also sensitive
to high noise and occlusions. The matching problem was also approached through the
utilization of three planes, in which the coordinate frame was estimated from the set of
normal planes obtained from randomly selected non-parallel planar patches [13]. This
method adopted the RANSAC-based strategy where transformation parameters from the
coordinate frame of potential matching patches are computed and then assessed according
to the number of coplanar patches. The parameter with the highest number of coplanar
patches is considered the final transformation parameter. This method considers all tie
points from planar patches of both models as their potential matching pairs without any
initial scrutiny and applies the RANSAC-based selection that may not always select the
matching points. Furthermore, the application of coplanar criteria as the only matching
constraint may result from the incorrect transformation in datasets with many parallel
planes. Morever, Li, Gao, Wang, and Li [55] proposed an automated registration method to
identify matching planes using only the relative angles of three planes with two strategies.
The first strategy finds the potential correspondence for those three planes intersecting
at one point with different relative angles with each other and the second strategy finds
the correspondence for three planes having at least one perpendicular relative angle. The
matching constraint marks the method as unreliable, as employing only angle constraints
limits the practicality if there are a high number of planes. Kim, et al. [63] proposed to use
a plane-matching algorithm in which three plane correspondences are identified by com-
paring their normal vectors. The rotation is computed from the identified corresponding
planes and the translation is determined from the tie point of the corresponding planes.
The method uses plane matching as an alternative if the primary method doesn’t find
sufficient initial alignment based on extracted common features from the RGB-fused point
cloud. Similarly, the identification of matching planes is not explained nor is any evaluation
performed to verify the transformation. Apart from the limitations of all these mentioned
methods, none of them performed the registration from the perspective of construction
progress monitoring in which the as-built point cloud is registered with its as-planned
BIM model.
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In studies focused on Scan-vs-BIM, Kim, et al. [64] proposed an automated method
in which the 3D CAD model of a building converted into a point cloud is used as an as-
planned model to register it with an as-built point cloud obtained from the construction site
using a coarse-to-fine strategy. The coarse registration was performed with Principal com-
ponent analysis (PCA) [65] with rotation determined from the bases formed by principal
components of both models while the translation was computed from the centroids of the
models. This method is not applicable in real-life scenarios involving occlusion, noise, or
missing data as the method assumes that the principal components of both models have the
same direction and centroid, which is only possible if both models are duplicates. Recently,
Bueno, Bosché, González-Jorge, Martínez-Sánchez, and Arias [9] performed Scan-vs-BIM
registration in planar patches extracted from the as-built point cloud and BIM converted
mesh model that were processed as 4-PCS to compute the possible transformation. The
transformation was later evaluated using plane and centroid support. In the end, top-five
ranked transformations are obtained, instead of top-only, based on the challenge that the
presence of extreme self-similarity and symmetry in building structures can lead to several
incorrect transformations. Although the correct transformation for the given simulated
datasets was ranked first, the method ranked the correct transformation in second place
for provided real datasets. Hence, none of these methods proved to be reliable in the
construction environment. Nevertheless, registration methods involving Scan-vs-BIM may
have mentioned the BIM or CAD model but none of them directly extracted the geometrical
information from them because all of them converted the model into a point cloud or
mesh for compatible processing. Recently, Sheik, et al. [66] performed the registration
of building models (Scan-vs-BIM) in which the geometrical parameters from the plane
segments were processed through a rotational and translational assessment using a mini-
mization process. Their method was able to successfully perform the registration for the
partially built building models provided the minimum of three matching plane segments
with distinct directions were present in both models. This paper proposes an improved
method that focuses on the utilization of corner points to perform the accurate registration
of the scan model of the partially built building acquired from a construction site with its
corresponding IFC-based BIM model.

In automated progress monitoring with Scan-vs-BIM, the aligned models are com-
pared to infer the as-built progress information that ultimately needs to be updated in the
BIM. This demands the utilization of IFC-based BIMs as the common solution to allow
exchange of information including the geometrical information of the as-planned model
(before registration) and the communication of progress information (after registration).
IFC is a platform-neutral and open data file exchange format for BIMs. This non-proprietary
format, introduced by BuildingSMART International Ltd. (Camberly, UK) [67], allows the
collaborative and interoperable use of BIMs at various stages of building projects between
different stakeholders. Its applications include schedule planning, continuous updating
of progress information, visualization, and communication of as-built progress [16,17,20].
There are some attempts that performed the IFC-based BIM updating using proprietary
software such as Synchro [68] and Vico Office [69] by manually inputting the required
information [5,17–19]. However, in compliance with automation, some efforts performed
the direct exchange of progress information to the IFC-based BIM using the IFC schema.
For example, Hamledari, McCabe, Davari, and Shahi [16] developed a method to update
the progress information into IFC2X3 BIM by modifying the schedule hierarchy, updating
the progress ratios, and then color-coding the building elements. Apart from IFC support
for schedules, other progress information such as facility inspection data including as-built
details, images, notes, and changes were also reported to be updated in the IFC-based
BIM [20]. Although these studies employed the IFC-based BIM to update progress infor-
mation, its utilization as an as-planned model by accessing the 3D geometrical information
using the standard IFC schema for registration still needs to be explored.
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3. Methodology
3.1. Overview

Building structures have evident corners due to the dominant planar structures, such
as walls, roofs, etc., in their geometry. In this study, a corner point is defined as the
intersection point of three plane segments, referred to as parent plane segments. Similar to
the Cartesian points in the 3D Euclidean space, the geometrical information of these corner
points, along with their parent plane segments, follows the geometric invariants; hence,
they can be employed for geometrical computations.

The proposed method employs corner points as points of interest to solve the registra-
tion problem of the building scan with its BIM model. The method can be divided in four
consecutive stages: (1) extraction of the corner points from both models, (2) identification
of the potential matching corner points through geometric invariants, (3) evaluation of
the transformations of potential matching corner points, and (4) calculation of the most
optimal transformation.

3.2. Extracting Corner Points

The corner points are extracted from both models using their plane segments. How-
ever, the models may not be in their best form to obtain the plane segments from them;
therefore, pre-processing might be necessary.

The as-built model obtained by laser scanning can contain millions of unevenly dis-
tributed points contaminated with noise and occlusions. Huge number of points will
increase the computation time, while noise and occlusions affect the accuracy of extracted
geometrical parameters. Therefore, pre-processing will consist of down-sampling the point
cloud using octree-based voxelization, with voxel sizes as a function of the desired level
of detail (LoD), after removal of noise based on existing algorithms. After that, plane
segmentation is performed on the model to detect the plane segments from it.

Similarly, the as-planned model is assumed to be a BIM model of the building. Usually,
the BIM model is converted into a point cloud before use for a compatible comparison
with the as-built point cloud model. However, the conversion may limit the details in the
model and causes the loss of quality in its extracted geometrical parameters. Therefore,
the current study directly extracts the geometrical details from an IFC-based BIM. The
Industry Foundation Classes (IFC) data model is a neutral and open file format, registered
as an official international standard ISO 16739:2013. The file format is object-oriented
and commonly used for Building information modelling. Objects have a precise position
in space and are distinguished by categories, characteristics, and function. IFC models
include geometric and non-geometric entities: the building geometry and data associated
with its elements. The IFC data schema assigns a name to, and relationships between,
objects. It describes identity and semantics (ID, object, name, function), characteristics
(material, color, properties), relationship between objects (e.g., walls, slabs, windows),
abstract concepts (e.g., performance, costing), processes (e.g., installation, assembly), and
people (e.g., owners, designers, contractors, managers). Figure 1 shows an example of the
IFC data format in plain text form that contains different entities exchanging various types
of information related to building components. To obtain the plane segments from the
as-planned model, the mesh model is constructed according to the geometrical details of
structural elements from the IFC-based BIM in an automated way, as shown in Figure 2. The
required geometrical shape information, including the vertices and faces from the planar
structural elements, like walls and roofs, are taken out from each element by processing
their geometric information. The elements are stored in IFC schema under the entity
‘IfcProduct’ with the inheritance (IfcRoot→ IfcObjectDefinition→ IfcObject→ IfcProduct).
The geometric information (such as shape, position, direction etc.) of the elements is
obtained by traversing the representation attributes. The processed information of these
elements in the form of vertices and faces is then used to create their mesh for further
processing. Later, the required plane parameters can be directly acquired from the mesh in
an accurate and efficient way, without any need of point cloud conversion.
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𝑥
𝑦
𝑧
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𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2

𝑎3 𝑏3 𝑐3

]

−1

[

−𝑑1

−𝑑2

−𝑑3
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Equation (1) generates the intersection points for the given plane segments based on
their plane directions, even if those segments are not actually intersecting. (Figure 3b)
Accordingly, false corner points are also generated that not only increase the quantity
of extracted corner points, but, due to the symmetrical positioning of these additional
points, can also affect the reliability of the invariant-based matching step. Therefore, a
verification is performed that confirms the intersection of the calculated corner point to
the actual surface of all three parent plane segments (Figure 3c). In this study, a k-d tree
nearest-neighbor search algorithm is used to verify the intersection of corner points with
their respective parent planes with a suitable tolerance radius to accommodate the errors
in plane segments. In the end, only the points at the actual corners of intersecting planes
(Figure 3d) are extracted along with the geometrical information of their parent planes.

3.3. Identifying the Potential Matching Corner Points through Geometric Invariants

To identify the matching points between both models, the corner points are pruned
using geometric matching criteria to reject the non-matching points based on distance,
angle, rotation, and translation invariants. The remaining points that comply with all
geometric criteria are termed ‘potential matching points’. These potential matching points
are later evaluated in the next step to sort out the matching points.

If the corner points extracted from the as-planned and as-built model are M = {mi}
p
i=1

and D = {di}
q
i=1, with mi, di ∈ R3, then their matching corner points can be identified as:

mi = Rdi + t + ei (2)

where p is the number of corner points in the as-planned model, q is the number of points
in the as-built model, R∈ SO(3), and t ∈ R3 are rotation and translation, respectively.
Similarly, ei is the error in the as-built corner point as a result of the presence of noise and
occlusions in the as-built model. In Equation (2), mi is the matching point of di with an error
ei in the i-th correspondence according to the rigid transformation parameters R and t.

The identification of matching points is performed in a cycle where the two cor-
ner points from both models are assessed for matching simultaneously through a series
of different geometric invariants in a specified combination. For example, two corner
points {da, db} from the as-built model are compared with the respective corresponding
corner points {ma, mb} from an as-planned model in a particular cycle, and if they are
congruent to all the invariants, only then they are withheld as potentially matching; oth-
erwise, they are rejected. In the next cycle, two different corner points from both models
are compared. Each cycle can either reject or withhold the pairs of two corner points as
potential matching corner points to eventually identify the possible pairs in the end.

Figure 4 shows the processing flow for the assessment of the geometric invariants for
one cycle. The processing of two sets of corner points, instead of one, gives the opportunity
to individually compare both sets with each other (in the first and last step) in addition
to analyzing the match of corresponding points in each set (in the second and third step)
in each scrutiny-based cycle. Overall, this pairwise processing of corner points in an
invariant-based step-wise combination is designed to increase the prospects of identifying
the matching corner points in a highly optimized way. The details of geometric invariants
to identify the potential matching points are as follows:
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Figure 4. The processing sequence of geometric invariants to identify the potential matching corner
points in a cycle.

3.3.1. Distance Invariant

The distance invariant is based on the characteristic that, if the two particular points
from both models are matching points, then the distance between them should also be
the same. Mathematically, given any two points {ma, mb} in M and their matching points
{da, db} in D, where a 6= b, the relative distance of these two points and their matching
points from Equation (1) becomes:

(ma −mb) = R·(da − db)+(ea− eb) (3)

||ma −mb||≤||da − db||+||ea − eb|| (4)

In above equations, ||·|| denotes the Euclidean norm in R3. If c is the constant that
represents the maximum allowed error on the distance, hence that c > ||ea − eb||, then the
Equation (4) can be written to reject the non-matching points:

||ma −mb||−||da − db|| ≤ c (5)

As the relative distance between corner points is invariant with respect to rotation ‘R’
and translation ‘t’, it provides the possibility to initially probe the pair of corner points for
matching without computing their transformation parameters.

3.3.2. Angle Invariant

The angle invariant is based on the geometric invariant that the corresponding parent
plane segments of matching corner points should have the same relative angles with
each other. Each corner point is constructed from three parent plane segments with their
respective normals. With a suitable tolerance, the angles between the corresponding parent
plane segments for both potential matching corner points are probed using their plane
normals, as demonstrated in Figure 5.
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3.3.3. Rotation Invariant

If not rejected in the previous steps, both pairs of potential points are assessed to find
their corresponding transformation with the correct rotation. It is based on the invariant
that the transformation obtained from potential matching corner points with correct rotation
should fit their respective corresponding parent plane segments.

To find the transformation of any potential matching corner points, the direction of
their corresponding parent plane segments can be utilized to find out the rotation matrix
and then the translation can be computed directly from the points. However, the estimation
of correct transformation demands the determining the correct rotation matrix and this
requires the identification of the respective corresponding segments. Most buildings have
orthogonal geometries with perpendicular plane segments; therefore, the correspondence
of plane segments cannot be truly determined based solely on their relative angles. To
illustrate this, some examples of rotation matrices (Rr) resulting from the alignment of the
corresponding plane’s normal in different combinations ‘r’ are shown in Figure 6a while
the visualization of the transformation obtained from the respective rotation matrices on
the as-built model relative to the as-planned model is shown in Figure 6b.
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Figure 6. Visualization of (a) rotation matrices obtained after alignment of the corresponding plane
normal in different combinations and, (b) their respective rotation effect on the as-built model relative
to an as-planned model.

To solve this issue, transformation is determined for potential matching points with
possible rotation matrices according to all the corresponding combination of parent plane
segments and then evaluated in terms of their plane segment centroids to confirm their
geometrical coincidence after transformation. For example, the rotation matrix (Rar) is
determined for individual potential matching corner points (ma, da) by aligning the cor-
responding direction of plane segments based on the correspondence combination ‘r’
while the translation (tar = ma −Rar da) is computed from the corner points. For all the
possible rotation matrices with their respective translations for all the combinations, the
projection of the average centroid of the parent plane segments from the as-planned and
transformed as-built corner points are compared using Equations (6) and (7) for both pairs
of points, respectively.
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Ra, ta = argmin
Rar , tar

r

∑
r=1

min(||Cma − (Rar ·Cda + tar ) ||)
2 (6)

Rb, tb = argmin
Rbr , tbr

r

∑
r=1

min(||Cmb − (Rbr ·Cdb
+ tbr ) ||)

2 (7)

In the ideal case, the average centroids { Cm, Cd} of the plane segment from both
models should project into each other with the correct rotation Ra (Figure 7a) as compared
to the incorrect rotations (Figure 7b). However, due to errors in the as-built plane segments,
the projections may have slight deviations. Therefore, the rotation matrix allowing the
projections to be nearest to each other is considered to be the most likely rotation matrix
among the other matrices. The underlying reason is that it is the only rotation matrix
obtained with the correspondence which permits the simultaneous fitting/coincidence of
all the matching plane segments with each other. At the end of this step, the individual
rotation matrices (Ra, Rb) for both pairs of potential matching points that are later processed
in next stage are computed.
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3.3.4. Translation Invariant

Finally, the transformation parameters calculated from both potential matching points
are compared. It is based on the invariant that all the matching points should have the
same rotation matrix and translation. If any of the transformation parameters from both
pairs of potential matchings points are not the same, then they are rejected.

Mathematically, any corner point mi corresponding to its matching point di rotated
with rotation matrix Ri has the translation ti = mi −Ri·di. Similarly, in the case of potential
matching corner points, the two corner points {ma, mb} in M corresponding to their match-
ing points {da, db} in D, with respective rotation matrices {Ra, Rb}, should have the same
rotation, such that Ra·Rb

T = I3, and the same translation, which satisfies the following:

||(ma −Ra·da) − (mb −Rb·db) || ≤ c (8)

In the above equation, c is the constant confirming c >||ea − eb|| with a suitable value
assigned according to the errors in as-built plane segments. Figure 8 indicates the potential
matching corner points, indicated with same label in both models, obtained after consenting
to all the geometrical invariants.
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Figure 8. The identification of potential matching corner points from the as-built (left) and the
as-planned model (right). The edges of the arrow with the same labels [a, b, c, . . . , y, z] in both
models represent the potential matching points.

The combinations of invariants that sequentially process the pairs of candidate corner
points for matching are arranged to identify the potential matching corner points with
less possible computation. The first step rejects the non-matching pairs without the need
to calculate other parameters, thus reducing the processing time of the succeeding steps.
The non-rejected pairs are further probed in a step-wise arrangement using the required
parameters that were computed in the preceding step. Furthermore, the identification of
potential corner points can be performed using all the extracted corner points from both
models. However, the processing time can be increased exponentially in the case of a
high number of corner points and can affect the time efficiency. Therefore, the two corner
points from both models are randomly picked in each cycle using RANSAC with a defined
number of cycles to ensure robustness during the current stage of identifying the potential
matching points using geometric invariants.

3.4. Evaluating the Transformations of Potential Matching Corner Points

The identified potential matching corner points include the matching corner points
with correct transformation, but there is a possibility that some non-matching points
with incorrect transformation may be included as well, as evident in Figure 8. Non-
matching corner points may have passed the identification due to the possible symmetries
in the models. Therefore, all the remaining potential matching points are re-evaluated
to find the correct or most likely matching corner points and transformations in two
steps: (1) removal of duplicates and clustering of the remaining potential matching points
according to their transformation parameters and (2) selection of the cluster with the correct
transformation parameters.

3.4.1. Removing the Duplicates and Clustering the Potential Matching Corner Points

The potential matching corner points, identified in the last step, may contain duplicates
due to the possibility of their identification in many pairs as a result of the RANSAC
pairwise processing. There is a possibility that the duplicate pairs of potential corner
points can be picked during RANSAC random selection. These duplicates are discarded by
removing the other potential matching corner points having the same parent planes.

After removing the duplicates, potential matching corner points are grouped according
to their transformation parameters. The translation vector ti = mi − Ri·di is dependent
on the rotation matrix; hence, it is unlikely that potential matching points with different
rotation matrices have the same translation vectors. Therefore, the translation vectors
of the points can be utilized to differentiate their transformation parameters. To allocate
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potential matching corner points to a cluster with translation to, the candidate potential
matching corner points with ti should have the same translation with a suitable tolerance c,
as represented in Equation (9).

||(m0 −Ro·d0) − (mi −Ri·di)||2 ≤ c2 (9)

Figure 9 represents the different potential matching points [a, b, c, . . . , y, z], clustered
according to their transformations where it is apparent that the potential matching points
in each cluster have the same translations (blue line).
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clustered according to respective transformation parameters visualized next to them in terms of their
corner points and 3D models (a–c).

3.4.2. Finding the Cluster with the Correct Transformation

To reduce computation time—instead of evaluating the individual potential matching
corner points—the evaluation is performed directly on the clusters based on the two
invariants to allow the simultaneous identification of the matching corners. According
to the first invariant, the correct transformation aligns all (or the majority of) the corner
points from both models. The second invariant advances that, if the aligned corner points
in the correct transformation are matching, their corresponding parent planes should be
parallel as well. Based on these two invariants as indicators of the correct registration, all
the clusters, with their transformations, are evaluated.

Initially, all the corresponding corner points according to each transformation from
the clusters are recognized. The transformation parameters from the respective clusters
are applied to the original as-built corner points to project them into as-planned points.
Ideally, corresponding points with the same parent plane segments from both models
should be aligned with each other in the case of correct transformations. However, due to
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the presence of errors in the as-built plane segments, the projection of corresponding corner
points may not be exactly aligned but located near to each other. Therefore, neighboring
corner points from both models having corresponding parallel parent plane segments are
determined with a suitable tolerance, by means of k-d tree and the angles between the
normals of the corresponding parent plane segments. Figure 10 shows a corner point di
from the as-built model transformed with rotation Ri and translation ti. Its distance to
a neighboring point mi from the as-planned model is less than the tolerance c, and both
points have parallel parent plane segments after transformation; hence, they are considered
to be aligned corner points.

Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 23 
 

 

3.4.2. Finding the Cluster with the Correct Transformation 

To reduce computation time—instead of evaluating the individual potential match-

ing corner points—the evaluation is performed directly on the clusters based on the two 

invariants to allow the simultaneous identification of the matching corners. According to 

the first invariant, the correct transformation aligns all (or the majority of) the corner 

points from both models. The second invariant advances that, if the aligned corner points 

in the correct transformation are matching, their corresponding parent planes should be 

parallel as well. Based on these two invariants as indicators of the correct registration, all 

the clusters, with their transformations, are evaluated. 

Initially, all the corresponding corner points according to each transformation from 

the clusters are recognized. The transformation parameters from the respective clusters 

are applied to the original as-built corner points to project them into as-planned points. 

Ideally, corresponding points with the same parent plane segments from both models 

should be aligned with each other in the case of correct transformations. However, due to 

the presence of errors in the as-built plane segments, the projection of corresponding cor-

ner points may not be exactly aligned but located near to each other. Therefore, neighbor-

ing corner points from both models having corresponding parallel parent plane segments 

are determined with a suitable tolerance, by means of k-d tree and the angles between the 

normals of the corresponding parent plane segments. Figure 10 shows a corner point 𝒅𝒊  

from the as-built model transformed with rotation 𝑹𝒊 and translation 𝒕𝒊. Its distance to a 

neighboring point 𝒎𝒊 from the as-planned model is less than the tolerance c, and both 

points have parallel parent plane segments after transformation; hence, they are consid-

ered to be aligned corner points. 

 

Figure 10. An example of neighbor corner points with parallel parent planes. 

It is obvious in Figure 10 that some of the aligned corner points with parallel corre-

sponding parent plane segments, according to the transformation of each cluster, are al-

ready present in the cluster along with other additional aligned corner points. The addi-

tional points are the potential matching points that have a similar transformation if com-

puted. However, they were not identified previously due to the random selection of cor-

ner points from both models using RANSAC. Therefore, the current procedure enables 

their complete detection. The additional potential matching points are detected at the cur-

rent stage because the complete identification of all the potential matching points in the 

previous stage is computationally expensive. The random identification ensures the min-

imum computation and outputs sufficient potential matching points that include at least 

one matching point whose transformation is enough to detect the other matching points 

at this present stage. Overall, this approach allows the robustness in the proposed method 

with high reliability. 

Finally, the cluster with the transformation having the highest number of aligned 

corner points is considered to be the correct transformation while the respective aligned 

points are finalized as matching corner points. Figure 11 demonstrates the aligned points 

Figure 10. An example of neighbor corner points with parallel parent planes.

It is obvious in Figure 10 that some of the aligned corner points with parallel cor-
responding parent plane segments, according to the transformation of each cluster, are
already present in the cluster along with other additional aligned corner points. The
additional points are the potential matching points that have a similar transformation if
computed. However, they were not identified previously due to the random selection of
corner points from both models using RANSAC. Therefore, the current procedure enables
their complete detection. The additional potential matching points are detected at the
current stage because the complete identification of all the potential matching points in
the previous stage is computationally expensive. The random identification ensures the
minimum computation and outputs sufficient potential matching points that include at
least one matching point whose transformation is enough to detect the other matching
points at this present stage. Overall, this approach allows the robustness in the proposed
method with high reliability.

Finally, the cluster with the transformation having the highest number of aligned cor-
ner points is considered to be the correct transformation while the respective aligned points
are finalized as matching corner points. Figure 11 demonstrates the aligned points in both
models according to the transformation of different clusters. The cluster transformation in
Figure 11a has the highest aligned points as compared to others; hence, it is finalized as a
cluster with matching corner points having correct transformation.
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3.5. Calculating the Most Optimal Transformation from Matching Corner Points/Cluster

After sorting out the cluster with highest number of matching corner points, the
individual transformation parameters of each corner point are assessed to find the most
optimal transformation. The rotation R̂ and translation t̂ among the other respective
rotation {R1, R2 . . . , Rc} and translation { t1, t2 . . . , tc} parameters of clusters that align the
corner points from both models with relatively more precise fitting, e.g., with less error, are
finalized as the optimal transformation parameter, using Equations (10) and (11).

σ(R, t) =

√
∑n

i=1 ||(mi −R·di − t) ||2

n
(10)

R̂, t̂ = argmin
R, t

σ(R, t) R ∈ {R1, R2 . . . , Rc}, t ∈ {t1, t2 . . . , tc} (11)

In Figure 12, the models registered with transformation parameters corresponding to
their error values are shown and Figure 12a indicates the optimal transformation (lowest
error). It is evident that the optimal transformation parameter offers the relatively highest
overlapping of models.
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3.6. Identifying the Matching Planes from Matching Corner Points (Optional)

The construction project monitoring requires the progress estimation of building com-
ponents that are represented by plane segments. The individual identification of matching
plane segments is essential for an effective monitoring process. Normally, the matching
planes can be easily identified using the criteria that the matching plane segments are
parallel and fit with each other after registration. As an additional and reliable alterna-
tive, the utilization of corner points along with the semantic information of their parent
plane segments in the proposed method enables the identification of plane segments as
well. Generally, each plane segment is present as a parent plane segment in more than
one corner point, with a maximum of four corner points. Therefore, after computing the
transformation from the matched corner points, likewise, the matching plane segments
can also be obtained by verifying their required presence in their corresponding multiple
matching points.
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4. Results and Discussion

The methodology was tested on different datasets presenting various challenges based
on their geometrical shape. The datasets include two simulated (A1 and A2) and two
real-life datasets (R1 and R2).

The simulated datasets were artificially designed to represent the building models
with different structural compositions for testing, as shown in Figure 13. Using such
datasets allowed for the assessment of the theoretical foundation of the proposed method,
without effect of errors typical for real life situations. The BIM models in IFC format
were used as as-planned models, whereas randomly transformed models in point cloud
format was used as as-built models. Both simulated models have nine plane segments;
however, the first model represents a single-floor building while the second one represents
a triple-floor building.
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Figure 13. Visualization of models for (a) dataset A1 and (b) dataset A2.

The real-life datasets contain the BIM and as-built models of two building projects.
The as-built models were acquired by means of laser scanning. The datasets represent
a conference room (R1) and a large educational building (R2), as shown in Figure 14a,b,
respectively. It is worth noting that both the real-life datasets were already used in other
research [70–72]. Using these real-life datasets to assess the proposed method allows the
evaluation of its performance and robustness in the case of the presence of occlusions, noise,
and other errors typically present in as-built point clouds.

During the testing, the initial down-sampling of the as-built models was performed
with a voxel size of 0.2 m and, later, RANSAC-based-plane segmentation was performed to
obtain as-built plane segments. Similarly, the number of RANSAC iterations to randomly
select the two corner points from both models for identification of potential matching points
was limited to 5000. Furthermore, according to errors in the as-built model of each dataset, a
suitable tolerance value was used to verify the geometric invariants. The proposed method
successfully registered all the datasets, as shown in Figure 15. A detailed analysis was also
performed to evaluate the registration accuracy and explore the limitations.

To evaluate the registration accuracy, the root-means-square errors (RMSE) were
computed. Furthermore, the transformed models were also compared with their ground
truth models as RMSE is not sufficient as an indicator of registration accuracy [10]. The
ground truth models were the same as the as-planned models for the simulated datasets;
however, in the case of the real-life datasets, the transformed models after fine registration
were used as ground truth. The rotation error in degrees and the translation error in mm for
each dataset were calculated as additional evaluating metrics using Equations (12) and (13),
respectively.

εR =
∣∣∣θGT − θT

∣∣∣ (12)

εt =
∣∣∣∣∣∣ tGT − tT

∣∣∣∣∣∣ (13)
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In the above equations, θGT and tGT represent the quaternion rotation angles and
translation vector of ground truth, whereas θT and tT are the quaternion rotation angles
and translation vector of the transformed model. The evaluation parameters, listed in the
Table 1, indicate an overall good accuracy as a coarse registration method. The method
registered not only the simulated datasets but also the real-life datasets with higher accuracy.
Furthermore, the registration results were also compared with our previous plane-based
method [66], as shown in the Table 1, where it is evident that the proposed method
registered all the datasets with more accuracy. The higher accuracy can be attributed to
the approach of the proposed method that ensures the detection of all the matching corner
points to compute the most accurate transformation parameter from them.

Table 1. Details of simulated datasets.

Datasets
Plane-Based Method Proposed Method

RMSE (mm) εR (◦) εt (mm) RMSE (mm) εR (◦) εt (mm)

A 1 7.186 0.007 29.164 7.519 0.002 4.036

A 2 8.792 0.005 35.385 8.485 0.003 7.821

R 1 18.119 0.027 94.267 15.884 0.015 37.649

R 2 17.781 0.021 107.142 16.139 0.007 31.224

The proposed method is RANSAC-dependent to ensure robustness, so the number
of iterations could have an influence on the success. Although increasing the number
of iterations results in more potential matching points with a cost of higher processing,
this does not improve the registration accuracy (as shown in Figure 16) as the method
already ensures the highest accuracy by detecting the remaining matching points after
selecting the most optimal cluster in the third step. Generally, the method can only fail
if the potential matching corner points obtained in stage 2 do not include any actual
matching point, which can happen if the number of RANSAC iterations is too low. During
testing, the method failed for dataset R1 and R2 prior to a number of iterations of 1500 and
2500, respectively. By increasing the number of iterations, this problem was resolved. In
our results, 5000 iterations were found to be sufficient for both robustness and successful
execution of the proposed method for all tested datasets.
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Figure 16. Graph showing the effect on RMSE of increasing the number of RANSAC iterations.

The potential matching points are identified using a series of geometric invariants to
try to ensure that only the actual matching corner points are detected; however, geometrical
symmetry in the building can still lead to the selection of non-matching points. To further



Remote Sens. 2022, 14, 5271 19 of 23

explore this problem concerning construction progress monitoring, the proposed method
was also tested for partially built buildings to analyze its success. For this purpose, two
additional as-built models derived from dataset A2 (Figure 17), representing the completion
of the first and second floor, were created.
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Figure 17. Visualization of the dataset A2 model with different floors utilized to create incomplete
as-built models.

The experimentation validated the successful registration of the as-built model with
two floors completed as shown in Figure 18a; however, the registration success of the
remaining model with the single model was inconsistent. Sometimes registration was
successful, but other times there was some translation error, as shown with the registered
models in Figure 18b,c. The reason can be attributed to the fact that there was a lack of
distinct points in both models. Hence, the proposed methodology finalized the two trans-
formation clusters with equal number of corresponding corner points due to symmetrical
positions of corner points at ground zero, first, and second, as demonstrated with the corner
points in Figure 18b,c. However, in the case of the as-built model with two floors completed,
the points are also the same and symmetrical, but the transformation cluster with maximum
corresponding points is identified. The same happened with the fully completed as-built
model (dataset A2). Therefore, it can be concluded that the proposed method works well for
incomplete buildings not only with non-symmetric corner points but also with symmetric
points if not all the as-built points form the symmetry with additional as-planned points.
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The presence of symmetrical corner points in the building models challenges the
registration due to similar geometrical parameters. However, the presence of a few discrim-
inatory corner points can support the identification of correct transformation. Hence, the
proposed method may fail in buildings with a symmetrical geometry; however, the pres-
ence of few distinct planar structures in the buildings can resolve this limitation. To solve
this limitation in future research, the same matching strategy for complicated structures in
the building can be developed if required.

5. Conclusions

The proposed method is a novel method that utilizes corner points to perform the
accurate registration of building scans with their BIM model to facilitate construction
progress monitoring using Scan-vs-BIM. To ensure a consistent information format in
automated progress monitoring, the study utilized an IFC-based BIM to directly extract
the lossless geometrical details using the IFC schema, instead of converting the BIM into
another format. Buildings have evident corner points due to the dominant planar features
in their structures. The method extracts those corner points from both models and then
identifies their matching to eventually compute the most precise transformation parameters
from them. The matching corner points are identified after RANSAC-based geometric
pruning through a series of different geometric invariants. The results demonstrated that
the proposed method successfully registered all the datasets, both the simulated and real-
life datasets, with a high level of accuracy in a fully automated way. Apart from registering
the scan models of completed buildings with their respective BIM models, the proposed
method also proved its ability to register the scan model of the under-construction building
as well, if a distinct corner point is present.

In terms of model-based construction progress monitoring, the current study adds a
significant contribution by introducing a fully automated and accurate registration tech-
nique that utilizes IFC-based BIMs, identifies the matching structural features, and is
capable of performing the registration of under-construction buildings. Further research
is aimed to refine the proposed method to upgrade its application in complex buildings
through additional geometric invariants.
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