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Abstract: Inverse synthetic aperture radar (ISAR) imaging for maneuvering targets suffers from a
Doppler frequency time-varying problem, leading to the ISAR images blurred in the azimuth direction.
Given that the traditional imaging methods have poor imaging performance or low efficiency, and
the existing deep learning imaging methods cannot effectively reconstruct the deblurred ISAR images
retaining rich details and textures, an unblurring ISAR imaging method based on an advanced
Transformer structure for maneuvering targets is proposed. We first present a pseudo-measured
data generation method based on the DeepLabv3+ network and Diamond-Square algorithm to
acquire an ISAR dataset for training with good generalization to measured data. Next, with the
locally-enhanced window Transformer block adopted to enhance the ability to capture local context
as well as global dependencies, we construct a novel Uformer-based GAN (UFGAN) to restore the
deblurred ISAR images with rich details and textures from blurred imaging results. The simulation
and measured experiments show that the proposed method can achieve fast and high-quality imaging
for maneuvering targets under the condition of a low signal-to-noise ratio (SNR) and sparse aperture.

Keywords: inverse synthetic aperture radar imaging (ISAR); deep learning (DL); deblurring;
Transformer; Uformer-based GAN (UFGAN); pseudo-measured data

1. Introduction

Inverse synthetic aperture radar (ISAR) imaging technology is an effective approach
to achieving high-resolution imaging for non-cooperative targets and has the merits of all-
weather, all-time, and long-range [1]. Classic range Doppler (RD) algorithm is effective for
smooth moving targets under the assumption of a small angle, which simplifies the imaging
process by transforming two-dimensional ISAR signal processing into two one-dimensional
FFT operations. However, for targets with extreme maneuverability, the RD algorithm is no
longer applicable [2]. The rotation component during coherent processing intervals (CPI) is
no longer equivalent to uniform rotation, resulting in the time-varying Doppler frequencies
and leading to the ISAR image blurred along the azimuth direction, which will bring a
serious challenge for the subsequent target classification and identification.

Traditional imaging methods for maneuvering targets mainly include
range-instantaneous Doppler (RID) methods and parameter estimation methods [3,4].
The RID methods replace the traditional Fourier transform with time-frequency analysis
(TFA) tools. Short-time Fourier transform (STFT), Wigner–Ville distribution (WVD), and
smooth pseudo WVD distribution (SPWVD) are several common time-frequency analysis
tools used in ISAR imaging [5,6]. These methods could reduce the blur of ISAR images for
maneuvering targets to some extent, but they inevitably suffer from a tradeoff between
the ability to suppress cross-terms and the time-frequency resolution. Adaptive Chirplet
decomposition, chirp Fourier transform (CFT), and Radon–Wigner transform (RWT) are
several common parameter estimation methods [7–9]. By estimating the parameters of the
echo, these methods could produce high-resolution images of maneuvering targets without
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cross-terms, but they have a strict requirement for the scatterer distribution and are sensi-
tive to noise. In order to improve the estimation accuracy, parameter estimation methods
come at the cost of high computational complexity, so they cannot meet the demands for
ISAR real-time imaging, especially in low signal-to-noise (SNR) scenarios.

In recent years, deep learning (DL) has achieved good applications in target detec-
tion [10–12], image classification [13], signal recovery, etc. Particularly designed deep neural
networks are also introduced to the radar imaging field. Providing unprecedented perfor-
mance gains in resolution and imaging efficiency, these networks have overcome the main
limitations of traditional methods. At present, ISAR imaging methods based on DL can be
mainly classified into two categories, i.e., model-driven methods and data-driven methods.

Model-driven DL methods [14] unfold the traditional iterative optimization algorithm
into a multi-layer deep network such as the CIST network [15], ADMMN [16], and AF-
AMPNet [17]. They are also called deep unfolding. By setting the adjustable parameters,
the network could be designed and trained in accordance with the physical models.

Deep-unfolding networks show excellent reconstruction performance while main-
taining high computational efficiency and have strong interpretability [18]. However,
when imaging the maneuvering targets, these methods cannot fit well. The essence of
the deep unfolding methods is the deep implementation of compressed sensing (CS) and
iterative optimization algorithms [19]. The imaging performance cannot be dominant over
the upper limit of traditional methods. Therefore, without the assistance of traditional
methods, model-driven methods cannot avoid the blurring of ISAR images when imaging
maneuvering targets.

Typical data-driven DL methods include fully convolutional neural network
(FCNN) [20], Unet [21], GAN [22,23], etc. Data-driven methods directly learn the compli-
cated nonlinear mapping from the input low-resolution ISAR images to the super-resolution
output images by designing and training the deep networks [24]. By replacing on-line
calculation with off-line network training, data-driven methods can reconstruct ISAR im-
ages efficiently and have strong robustness to various noise levels. However, there are still
two challenges.

Firstly, though the existing data-driven methods show excellent performance on super-
resolution and denoising, they have a weak ability to restore image details and textures
information. When imaging maneuvering targets, these methods are not able to use neural
networks alone to recover deblurred ISAR images. For example, ref. [25] firstly uses the
keystone transform to compensate for the main phase error in the echo caused by the
maneuver and then uses the u-net network to improve the resolution. The STFT-Unet
in [26] plays a role in enhancing the resolution of the time-frequency spectrum. The above
data-driven methods have to first use traditional methods to remove most of the image
blur before applying deep neural networks, resulting in cumbersome imaging processes,
so they are unfavorable for real-time imaging.

Secondly, the imaging performance and the generalization capability of the data-
driven methods rely heavily on the datasets [24]. The performance of the network trained
by simulation data may be degraded when applied to measured data due to the scattering
distributions of simulated data, and measured data are quite different. The ISAR image
of the measured data is usually a combination of block regions with different shapes [27].
However, most of the existing literature use randomly distributed scattering points to con-
struct simulation datasets [28], which cannot simulate the complex scattering distributions
of the measured block targets.

To cope with the above challenges, we first propose a pseudo-measured data genera-
tion method based on the Deeplabv3+ network [29] and Diamond-Square algorithm [30].
The generated random block targets could simulate the complicated scattering distribution
of the measured ISAR data. Then we construct a Uformer-based GAN, dubbed UFGAN,
to present a novel unblurring ISAR imaging method for maneuvering targets. The lat-
est proposed Uformer on CVPR 2022 has been proven to show superior performance in
several image restoration tasks [31]. In this paper, we refer to LeWin Transformer blocks
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to design a generator with the capability of capturing texture features as well as global
information. Moreover, the global GAN and PatchGAN [32] are combined to build a novel
Transformer-based discriminator, which can fuse the local details and global features to
comprehensively discriminate the generated images. The loss function we use is a combi-
nation of the Charbonnier loss, perceptual loss [33], and adversarial loss to focus on both
global similarity and perceptual features.

The main contributions of this paper include:

1. A pseudo-measured data generation method is proposed. We construct an aircraft
ISAR imaging dataset for network training following this method. It provides a
stimulating solution to an awkward predicament where the imaging performance of
the existing data-driven DL imaging methods is seriously restricted by the scarcity of
the publicly available dataset when imaging measured data.

2. Uformer, as a state-of-the-art Transformer structure, is used to construct a novel
UFGAN for the restoration of deblurred ISAR images of maneuvering targets. As
far as we know, it is the first attempt to apply a Transformer in ISAR imaging. The
constructed network far surpasses traditional imaging methods for maneuvering
targets in imaging performance and imaging efficiency and compared with the present
data-driven methods, and the UFGAN-based method shows better performance in
restoring the details and texture features of ISAR images.

The remainder of this paper is composed as follows. Section 2 presents the signal
model of ISAR imaging for a maneuvering target. Section 3 describes the architecture of
the proposed UFGAN in detail. Section 4 presents the data acquisition process in detail. In
Section 5, simulated and measured experiments are presented to prove the effectiveness of
the proposed method. Section 6 concludes the full paper.

2. ISAR Imaging Signal Model of a Maneuvering Target

Assuming that the translational compensation [34] has been finished, a two-dimensional
ISAR imaging geometric model for a maneuvering target is presented in Figure 1. 
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Figure 1. The ISAR imaging geometry for maneuvering target. 
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Figure 1. The ISAR imaging geometry for maneuvering target.

With the Y axis along the radar line of sight (LOS), a cartesian coordinate XOY is
established on the target, and the center of the revolving stage Oc is determined as the
origin of the coordinate. The distance from the origin to the radar is RP. Suppose the
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scattering point P rotates an angle of θ(t) during CPI, the distance from P to the radar can
be calculated by:

RP(t) =
√

R2
0 + r2

p − 2R0rP cos
[
θ(t) +

π

2

]
≈ R0 + xP sin θ(t) + yP cos θ(t) (1)

Under the assumption of a small imaging rotation angle for maneuvering targets,
high-order motion components can be ignored, so the motion of P in the imaging plane
can be approximated as a uniformly accelerated rotation with a constant jerk. Suppose the
initial angular velocity is ω0, the angular acceleration is β, and the angular jerk is γ, the
rotation angle could be written as:

θ(t) = ω0t+
1
2

βt2 +
1
6

γt3 (2)

The range shift of P caused by rotation can be calculated as:

R∆(t) = RP(t)− R0 = xp sin θ(t) + yp cos θ(t) (3)

Furthermore, for small angle, we have sin θ(t) ≈ θ(t), cos θ(t) ≈ 1, and Equation (3)
can be rewritten as:

R∆(t) = yp + xpωt+
1
2

xpβt2 +
1
6

xpλt3 (4)

Suppose the radar transmits linear frequency modulation (LFM)signal as:

s(tk, tm) = rect
(

tk
Tp

)
· exp

[
j2π

(
fct+

1
2

µtk
2
)]

(5)

where rect( tk
Tp
) =

{
1, |tk| ≤ Tp/2

0, |tk| > Tp/2
is the rectangular window function, t =tk + tm is

the full time, tk is the fast time, indicating the elapsed time from the transmission to the
reception of a pulse, tm is the slow time, indicating the transmission moment of each pulse.
Tp represents the pulse width, fc is the carrier frequency and µ indicates the chirp rate.

For point P, suppose the propagation speed of electromagnetic wave is c, the time
delay of the radar signal from transmission to reception can be calculated by τ = 2RP(tm)

c ,
the received echo signal can be written as:

sr(tk, tm) = σPrect
(

tk−τ

Tp

)
· exp[j2π fc(tk−τ)] · exp

[
jπµ(tk−τ)2

]
(6)

where σP is the scattering coefficient of the point P.
To simplify the calculation, the center of the revolving stage is selected as the reference

point. Similarly, the time delay at the reference point can be calculated by τref =
2R0

c , then
the reference signal can be written as:

sref(tk, tm) = rect
(

tk − τref
Tref

)
· exp[j2π fc(tk − τref)] · exp

[
jπµ(tk − τref)

2
]

(7)

The range compression signal could be obtained by “dechirp” processing as follows:

s(tk, tm) = sr(tk, tm) · s∗ref(tk, tm)

= σPrect
(

tk−2RP(tm)/c
Tp

)
exp

[
−j 4π

c µ
(

tk−2Rref(tm)
c

)]
· exp

[
−j 4π

c fcR∆(tm)
]
· exp

[
j 4πµ

c2 R∆
2(tm)

] (8)

After Fourier transform to Equation (8), the high-resolution range profile (HRRP) of
the target can be obtained as:
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S( fk, tm) = σPTpsin c
[

Tp

(
fk +

2µ
c R∆(tm)

)]
· exp

[
−j 4π

c fcR∆(tm)
]
· exp

[
j 4πµ

c2 R∆
2(tm)

]
· exp

[
−j 4π

c2 fcR∆(tm)
]

(9)

The last two phase terms are the residual video phase (RVP) and the envelope skew
term, respectively, and need to be compensated for. After phase compensation, the range
compressed signal can be written as:

S( fk, tm) = σPTpsin c
[

Tp

(
fk +

2µ

c
R∆(tm)

)]
· exp

[
−j

4π

c
fcR∆(tm)

]
(10)

Substituting Equation (4) into Equation (10), we have:

S( fk, tm)= S( fk) · exp
[
−j2πµ

(
2xpωtm

c

)]
· exp

[
−j2πµ

(
xpβt2

m

c

)]
· exp

[
−j

4πµ

c
yp

]
(11)

where S( fk) = Tpsin c
[

Tp

(
fk +

2µ
c

(
yp +p ωtm + 1

2 xpβt2
m + 1

6 xpγt3
m

))]
.

Suppose there are M scattering points, including P, within the discussed range unit.
The azimuth echo signal can be obtained by adding the sub-echoes of each scattering point
in the range unit:

sp(tm) =
M
∑

i=1
σi exp

[
−j2πµ

(
2xiω0tm

c

)]
· exp

[
−j2πµ

(
xi βt2

m
c

)]
· exp

[
−j2πµ

(
xiγt3

m
3c

)]
· exp

(
−j 4πµ

c yi

)
=

M
∑

i=1
σi exp

[
−j2π

(
fitm + 1

2 git2
m + 1

6 kit3
m

)]
· exp

(
−j 4πµ

c yi

) (12)

where fi =
2xiω0µ

c = 2xiω0
λ , gi =

2xi βµ
c = 2xi β

λ , ki =
2xiγµ

c = 2xiγ
λ .

Equation (12) demonstrates that the azimuth echo signal has the form of the multi-
component amplitude modulation-quadratic frequency modulation (AM-QFM) signal [35],
which can more accurately describe the imaging characteristics of the maneuvering targets.
The quadratic and cubic phase term of the AM-QFM signal leads to the blurring of ISAR
image. The center frequency fi, chirp rate gi, and derivative of chirp rate ki of the AM-QFM
signal are decided by the initial angular velocity ω0, angular acceleration β and angular
jerk γ of the turntable model, respectively.

The last phase term indicates the migration through range cells (MTRC) of the ISAR
image. It shows that the MTRC of the maneuvering target has nothing to do with the
motion parameters.

According to Equation (12), we can further give the following relationship:

Kβω =
gi
fi

=
2xiβ/λ

2xiω/λ
=

β

ω
(13)

Kγβ =
ki
gi

=
2xiγ/λ

2xiβ/λ
=

γ

β
(14)

where Kβω, Kγβ are called relative acceleration ratio and relative jerk ratio in this paper,
respectively. Equation (12) can be rewritten as:

sp(tm) =
M

∑
i=1

σi exp
[
− j4πω

λ
xi

(
1+

1
2

Kβωtm +
1
6

Kγβtm

)
tm

]
· exp

(
−j

4πµ

c
yi

)
(15)

According to Equation (15), blurring only occurs along the azimuth direction of the
ISAR image for the maneuvering target, and the blurring degree of the image is only
related to the azimuth coordinates of the scattering point once the motion parameters
are determined.
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3. Proposed UFGAN-Based ISAR Imaging for Maneuvering Target

Profiting from the excellent simulation capability for arbitrary data distributions,
GANs receive widespread use in the imaging field. GAN consists of two key compo-
nents, i.e., generators and discriminators. The adversarial relationship between the above
two gives GAN the ability to generate simulated images that are similar to real images.
To obtain a high-quality deblurred ISAR image that looks real, we construct the UFGAN
and propose a novel UFGAN-based ISAR Imaging method for maneuvering targets. In
this section, we will present the imaging framework, the network architecture, and the loss
function in detail.

3.1. Imaging Framework Based on UFGAN

The overall imaging framework for maneuvering the target is shown in Figure 2. By
setting different motion parameters for the simulated scattering points, ISAR echoes with
motion errors can be obtained. As analyzed in Section 2, the resulting ISAR images by the
RD algorithm are blurred in azimuth direction due to the phase error introduced by the
target maneuver. The generator is to transform the blurred image into the deblurred image,
and the discriminator is to determine and distinguish whether the generated image is real
or fake. The generator and the discriminator fight each other until the discriminator can
barely distinguish between real and fake images.
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Some ISAR images obtained from measured data have small sizes and low resolution
due to the small number of range samples or azimuth samples. Existing data-driven DL
imaging methods generally directly input the small-size and low-resolution images to
neural networks, and the restoration effect is limited by the small number of pixel points of
the images. The network cannot learn enough features to recover the details and textures
of the images and, therefore, cannot obtain high-quality ISAR images.

In this paper, we add a “resize” operation in the training stage and testing stage to
increase the size of small images by performing BiCubic interpolation before they are input
to the network. Moreover, delicate label images with higher resolution and finer details are
also presented. Ideal ISAR images are obtained by convolving the coordinates of simulated
scattered points with PSF, so it is easy to obtain delicate label images by the simulated
training data. This operation has two benefits. Firstly, it helps the network to learn more
hidden layer features and obtain high-quality ISAR images. Secondly, the image is resized
before it is input to the network so that the network can keep the input and output images
with the same resolution, thus avoiding the need to adjust the network parameters and
retrain when the input and output images are of different sizes.

In the testing stage, due to the publicly available measured echo data of maneuvering
targets being rare, we used the ISAR-measured echo data of smooth targets to equivalently
generate the echoes of maneuvering targets by means of the Fourier interpolation method.
The details of the method are given in Section 4.



Remote Sens. 2022, 14, 5270 7 of 29

3.2. Design of the Proposed UFGAN

In our design of UFGAN, the adversarial mode of GAN is adopted to make the de-
blurred images generated by the network closer to the ideal high-quality ISAR images.
The locally-enhanced window (LeWin) Transformer blocks and the learnable multi-scale
restoration modulators are used to build a novel generator to restore more image details.
Global GAN and PatchGAN are combined to construct a new Transformer-based discrim-
inator to improve the discrimination criteria of generated images by comprehensively
evaluating global information and texture features. The Charbonnier loss, perceptual loss,
and adversarial loss are combined to construct a comprehensive loss function to match the
design of the network.

3.2.1. Generator

The overall architecture of the proposed generator is a symmetric hierarchical structure
following the spirits of U-Net, as shown in Figure 3. The generator consists of an encoder,
a bottleneck, a decoder, and several multi-scale restoration modulators. The input is the
blurred ISAR image represented by Ib ∈ RH×W×3, with the image size of H ×W and the
channels of 3. Firstly, a 3× 3 convolution with LeakyReLU is adopted to extract the shallow
features represented by X0 ∈ RH×W×C. Then X0 is fed into four consecutive encoder
levels. Each level includes several LeWin Transformer blocks connected in series and a
down-sampling operation of a 4 × 4 convolution with stride two. After each level, the
height and width of the feature maps are halved while the feature channels are doubled.
Next, LeWin Transformer blocks connected in series as the bottleneck layer are used to
capture longer dependencies.
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The decoder has a symmetric structure with the encoder. Similarly, each decoder level
consists of an up-sampling operation of 2 × 2 transposed convolution with stride two and
a group of LeWin Transform blocks. Each level doubles the height and width of the feature
maps while halving the feature channels. Owing to the design of the skip connection, the
feature maps fed into the next decoder level are the concatenation of the output of the
up-sampling layer and the features from the corresponding encoder level.

The multi-scale restoration modulators are denoted as learnable tensors with the shape
of M×M× C, where M indicates the size of the window. The modulators are attached
to all non-overlapping windows separately and act as a shared bias to calibrate features,
which improves the adaptability of the network and promotes recovering more detail.

At last, the feature maps output from the encoder are flattened to two-dimensional
feature maps and sent to the output projection layer with a 3 × 3 convolution. Then the
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residual image Ir ∈ RH×W×3 is produced and superimposed on the input image to generate
a deblurred high-resolution ISAR image I0 = Ib + Ir(I0 ∈ RH×W×3).

3.2.2. Discriminator

Traditional global discriminator aims to distinguish between the generated and real
images by considering images holistically without focusing on whether the patches are
well-matched to the global image. In contrast, PatchGAN [32] slides a window over the
input image and obtains a scoring matrix to judge whether each patch is real or fake, which
is more effective in revealing local details and capturing high-resolution.

In the design of our proposed discriminator, as shown in Figure 4, global GAN
and PatchGAN are fused. Firstly, a shared layer consisting of LeWin Transform blocks
and down-sampling layers is presented to extract shallow features, which have a similar
structure to the encoder in the generator. After three levels, the network is divided into
two paths. In one path, two dense layers are used, with channels 512 and 1 following an
encoding layer to extract the global features. The other path employs a 3 × 3 convolutional
layer to output a feature matrix containing all patch-level features for evaluating the local
texture details.
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By incorporating the two paths of global GAN and PatchGAN, the overall architec-
ture integrates the local context and global information and provides a comprehensive
evaluation of the image as a whole, as well as the consistency in local details.

The performance of the generator and discriminator is constantly improved as they
work against each other, and the network eventually outputs deblurred images close to the
real ISAR images.

3.2.3. LeWin Transformer Block

Standard Transformer structure has two disadvantages in image restoration. Firstly,
it exploits the global self-attention on feature maps, leading to high computational costs
as quadratic to the size of the feature maps. Secondly, the Transformer suffers a limited
capability of leveraging local context, which is significant to restore deblurred ISAR images
with high resolution.

Unlike the standard Transformer, the LeWin Transformer block performs a multi-head
self-attention (W-MSA) for the non-overlapping local windows to reduce the computational
cost, as shown in Figure 5. Moreover, the traditional Feed-Forward network is improved
by adding a deep convolutional layer to enhance its local expression ability as the Locally-
enhanced Feed-Forward Network (LeFF).
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Figure 6 illustrates how the feature map is divided into non-overlapping windows.
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Suppose the feature map Xinput ∈ RH×W×C is partitioned into non-overlapping win-
dows of the size of M×M, the feature map in the i-th window Xi

input ∈ RL×L×C is flattened

and transposed to be as Xi ∈ RM2×C, where i ∈ {1, 2, . . . , N}, N = HW/M2. Next, by
applying self-attention, Xi is projected to the query, key and value represented by Qi, Ki

and Vi ∈ RL2×C, respectively:

Qi = XiWQ, Ki = XiWK, Vi = XiWV (16)

where WQ, WK and WV are the projection matrices. Next, Qi, Ki and Vi are respectively
divided into k heads:

Qi =
{

Qi
1, . . . , Qi

k

}
, Ki =

{
Ki

1, . . . , Ki
k

}
, Vi =

{
Vi

1, . . . , Vi
k

}
(17)

The Self-Attention (SA) for the j-th head can be written as:

SA
(

Qi
j, Ki

j, Vi
j

)
= softmax

(
Qi

jK
i
j
T

√
C/k

)
Vi

j (18)

The output feature map Xi
output ∈ RL×L×C of the i-th window can be obtained by

concatenating the above attention value and being reshaped:

Xi
output = Reshape(

k
Concat

j=1
(SA(Qi

j, Ki
j, Vi

j))W
O + P) (19)

where Reshape(·) presents the reshaping operation and Concat(·) presents concatenating,
WO ∈ RC×C denotes learnable parameters, and P ∈ RM2×C denotes the embedding position
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information. At last, the output feature maps of all image patches
{

X1
output, X2

output, . . . , XN
output

}
are combined to obtain the overall feature map of the entire image Xoutput ∈ RH×W×C.

Adjacent pixels are the essential references for image restoration, but the present
Feed-Forward Network (FFN) in the standard Transformer shows a limitation in extracting
local context information. The design of LeFF overcomes this drawback by adding a
3 × 3 depth-wise convolutional layer to the Feed-Forward Network.

The design of the LeWin Transformer Block can obviously reduce the computational
cost. Given the feature map Xinput ∈ RH×W×C, the computational complexity of the
standard Transformer is O

(
H2W2C

)
, while the computational complexity of the LeWin

Transformer module is O
(

HW
M2 M4C

)
= O

(
M2HWC

)
.

3.3. Loss Function

The role of the loss function is to optimize the network in the expected direction during
training. Different designs of the loss function will improve the performance of the output
images in different aspects. Using a combination of several kinds of loss functions can
improve the overall performance of the output images.

3.3.1. The Charbonnier Loss

Exploiting Mean Square Error (MSE) as the loss function promotes a high peak signal-
to-noise ratio (PSNR) of the reconstruction results. However, the high-frequency informa-
tion is easily lost, and the over-smooth texture will appear by MSE, which will make some
weak scatterers disappear in ISAR images. In order to overcome this issue, the Charbonnier
loss function is adopted as follows:

Lchar(Io, I) =
√
‖Io − I‖2 + ε2. (20)

where Io is the output deblurred ISAR image, I is the ideal unblurred ISAR image, and
ε =10−3 [31,36,37] is a constant to stabilize the value in experiments.

3.3.2. The Perceptual Loss

In order to achieve high-quality ISAR imaging while removing the blur, the perceptual
loss focusing on image texture and edge features is used. Instead of calculating the loss
between the output image and the ideal image directly, the key idea of perceptual loss is
to compare the feature maps of the real image and the generated image, enhancing the
similarity in feature space. The perceptual loss can be formulated by:

Lperc(Io, I) =
1

HiWiCi
‖Xi

output−ϕ(IH)‖
2
2

(21)

where Hi, Wi,Ci represent the height, width and channel of the feature map, Xi
output repre-

sents the output feature map of the i-th layer and ϕ(·) is a function to obtain the feature
map of an image. We select the fourth layer to calculate the perceptual loss.

3.3.3. The Adversarial Loss

The classic generative adversarial loss of GAN suffers from training difficulties, unsta-
ble gradients and mode collapse, etc. In order to train the network stably, the adversarial
loss function of Wasserstein GAN with gradient penalty (WGAN-GP) proposed by Ishaan
et al. is used [38]. WGAN-GP presents the definition of the Earth-Mover (EM) distance,
and the objective function can be derived as:

min
G

max
D

V(G, D)= −EIO∼P(IO)[D(G(IO))] + EI∼P(I)[D(I)]−λEIPena∼P(IPena)

[
(‖∇D(IPena)‖2 − 1)2

]
(22)

where E represents taking average value, IPena represents the sample image imposed a
penalty. P(·) indicates the distribution of the image, G(·) and D(·) indicate the output of
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the generator and discriminator, respectively. ∇ indicates the gradient, λ is the gradient
penalty coefficient and the last term is the additional gradient penalty to constrain network
training. The discriminator loss and generator loss with gradient penalty can be written as:

LD
adv = EIO∼P(IO)[D(G(IO))]− EI∼P(I)[D(I)]+λEIPena∼P(IPena)

[
(‖∇D(IPena)‖2 − 1)2

]
(23)

LG
adv = −EIO∼P(IO)[D(G(IO))] (24)

3.3.4. The Overall Loss Function

Finally, the overall loss function can be obtained by the weighted sum of the above
three loss functions:

L = Lchar(Io, I) + λ1Lperc(Io, I) + λ2

(
LD

G-adv + LG
G-adv

)
+ λ3

(
LD

P-adv + LG
P-adv

)
(25)

where λ1, λ2, λ3 are three tradeoff parameters to control the balance of the combination
of loss functions. In specific, the generator parameters are updated by overall loss L,
the global GAN path and the PatchGAN path are trained by λ2

(
LD

G-adv + LG
G-adv

)
and

λ3
(
LD

P-adv + LG
P-adv

)
, respectively. The generator and discriminator are trained in steps.

During each mini-batch, firstly, the discriminator is fixed when training the generator, and
then the generator is fixed when training the discriminator.

4. Data Generation
4.1. Generation of Simulated Targets

In practice, the scattering points on a target do not always emerge individually but
exist in the form of regions or blocks. According to the scattering distribution characteristics
behaved in ISAR images, we divide the imaging targets into two categories, i.e., point
targets and block targets. Point targets are composed of individual scattering points and
can be easily simulated by setting up randomly distributed scattering points. However,
for a block target, the spectrum of the ISAR image is mixed and superimposed due to the
aggregation characteristics of the scattering points, leading to rich image details and texture
information. The block targets simulated by simple shapes are quite different from the
real data.

Existing data-driven DL methods directly use the network trained by simulated point
targets to image the measured block targets. However, this approach only preserves the
pixels with large magnitudes as the individual scattering points, ignoring the weak scatters
around and losing a lot of image details. In this paper, we propose a pseudo-measured data
generation method to generate a variety of block targets with similar scattering distributions
of the real measured data. Due to our focus on imaging for aircraft targets, the generation
of various pseudo-measured aircraft block targets is taken as an example, as shown in
Figure 7.

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 24 
 

 

 
Figure 7. The generation process of pseudo-measured aircraft block targets. 

  

Figure 7. The generation process of pseudo-measured aircraft block targets.



Remote Sens. 2022, 14, 5270 12 of 29

The processing steps of the method can be presented as follows:
The first step is to acquire varieties of aircraft geometric outlines. We use the images

under “aeroplane” category in the PASCAL VOC2012 Augmented Dataset [39] to train the
DeepLabv3+ network to be able to specifically segment geometric outlines from images
containing aircraft targets. Next, by inputting images under the categories of “airliner” and
“warplane” in the ImageNet2012 dataset [40] at a total of 2602 into the trained network
model, 2602 images of aircraft geometric outlines are finally obtained.

The second step is gridding. Each aircraft geometric outline is meshed and mapped to
a plane Cartesian coordinate with the size of 40 m × 40 m.

The third step is to generate random blocks within the gridded aircraft geometric
outlines. The Diamond-Square algorithm is a random terrain generation algorithm that can
randomly generate terrains with various shapes, such as mountains, hills, and oceans, in
the grid of virtual scenes. Inspired by this, we refer to the Diamond-Square algorithm to
randomly generate continuous scattering blocks within the aircraft’s geometric outlines.

Starting from the initial conditions, the scattering coefficient grid is continuously
refined and calculated through the Diamond step and the Square step. The Diamond step
is to calculate the scattering coefficient of the intersection of the square diagonals by a 2D
random midpoint displacement algorithm, and the Square step is to calculate the scattering
coefficients of the midpoint of each side of the square with the same random offset as the
Diamond step. The detailed algorithm steps can be found in Appendix A.

Through the iterative calculation of the two steps, the scattering coefficients of all
grid points can be obtained. Some examples of the generated block targets are shown in
Figure 8.
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4.2. Acquisition of Blurred ISAR Images

For simulated targets, the blurred ISAR images of maneuvering targets can be easily
obtained according to Equation (15). However, for real data, most of the publicly available
ISAR-measured data are collected from the detection of stationary moving targets. To
address the problem that the measured ISAR data of real maneuvering targets are scarce,
the Fourier interpolating re-sampling method is used to generate the equivalent ISAR echo
data of maneuvering targets based on the existing measured data of smooth targets.

As indicated in Section 2, for a maneuvering target, the uniform motion or uniform
acceleration motion model is not enough to accurately describe the motion state of the
target. By retaining the third derivative term of displacement with respect to time, the
motion state of the target is modeled as a variable acceleration motion as:

ω =ω0+βt+
1
2

γt2 (26)
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where ω0, β, k represent the angular velocity, the angular acceleration and the angular jerk
of the target, respectively.

Assuming that the slow time sampling interval is Tl and the number of azimuth
sampling is Nl when the target rotates at a uniform angular velocity ωl , and the total angle
the target rotates during the CPI can be calculated by:

Ω =ωl(Nl − 1)Tl (27)

When the target rotates the same angle Ω with variable acceleration as shown in
Equation (26), assuming that the angular velocity increment caused by angular acceleration
is Pω0, the angular acceleration increment caused by the angular jerk γ is Qβ, the radar
slow time sampling interval is T′, and the number of sampling is N′, we can obtain:

ωl(N−1)Tl = ω0(N′−1)T′+ 1
2 β[(N′−1)T′]2 + 1

6 γ[(N′ − 1)T′]3

Pω0= β(N′−1)T′+ 1
2 γ[(N′−1)T′]2

Qβ = γ(N′−1)T′

(28)

The above system of equations can be solved as:

T′ = Nl−1

(N′−1)
(

3+Q
3Q+6 P+1

)
ω0

β =

(
3+Q

3Q+6 P+1
)

Pω0
2

(Nl−1)(0.5Q+1)

γ =

(
3+Q
3Q+6 P+1

)2
PQω0

3

(Nl−1)2(0.5Q+1)

(29)

When observing the variable acceleration moving target, the rotation angle at the n-th
(n ∈ [0, N − 1]) sample point can be calculated as

Ω′n = ω0T′n +
1
2

β
(
nT′
)2

+
1
6

γ
(
nT′
)3

=
Nl − 1
N′ − 1

ξ(P, Q)n +
(Nl − 1)P

(N′ − 1)2(Q + 2)
ξ(P, Q)n2 +

(Nl − 1)PQ

(N′ − 1)3(3Q + 6)
ξ(P, Q)n3

(30)

where ξ(P, Q) = 3+Q
3Q+6 P+1.

Since the radar pulse repetition interval is fixed, the uniformly moving target is sam-
pled with an equal interval, while the variable-speed moving target is sampled with an un-
equal interval. Therefore, the slow-time sampling signal of the variable-acceleration moving
target can be obtained by performing interpolating re-sampling on the echo of the uniform
moving target according to the displacement change rule indicated by Equation (30).

Suppose the slow time sampling signal of the uniform moving target is s(Ωn), by
converting the distance axis of the signal into the time axis, the slow time sampling sequence
s(n) can be obtained. The discrete Fourier transform of s(n) is:

X(k) =
N−1

∑
n=0

s(n) · exp(− j2kπ
n
N
), k ∈ [−(N−1)/2, (N−1)/2] (31)

Assuming that the slow time sampling signal of the variable acceleration moving
target is s(Ω′n), the interpolated slow time sampling sequence of the variable acceleration
moving target s′(n) can be obtained by inverse Fourier transform as:
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s′(n) = s(Ω′n)

= s
(
(Nl−1)ξ(P, Q)

[
n

N′−1 + Pn2

(N′−1)2(Q+2)
+ PQn3

(N′−1)3(3Q+6)

])
= 1

Nl

k=(Nl−1)/2
∑

k=−(Nl−1)/2
S(k) · exp

{
j 2π

Nl
ξ(P, Q)(Nl − 1)

[
n

N′−1 + Pn2

(N′−1)2(Q+2)
+ PQn3

(N′−1)3(3Q+6)

]}
, n ∈ [0, N′−1]

(32)

According to Equation (32), once we know the velocity increment P and acceleration
increment Q of the variable acceleration movement during the CPI period, we can perform
interpolating re-sampling through the slow time sampling sequence of uniform motion
with the same moving distance and obtain the equivalent slow time sampling sequence of
the maneuvering target.

4.3. Acquisition of Label ISAR Images

As shown in Figure 1, assuming the total rotation angle during CPI is Ω, the echo
signal of the target can be regarded as the sum of the backscattered field of each scattering
point as:

ES(k,Ω) =
N

∑
i=1

σi · exp[−j2(kcosΩ · xi+ksinΩ · yi)] (33)

where N represents the total number of scattering points on the target, σi is the scattering
coefficient, and (xi, yi) is the coordinate location for the i-th scattering point. k repre-
sents the wave number. Under the condition of small angle, k can be approximated as
k ≈ kc = 2π fc/c, where fc is the center frequency and kc is the wave number. Therefore,
Equation (33) can be simplified as:

ES(k,Ω) =
N

∑
i=1

Ai · exp
(
−j

2π fc

c
xi

)
· exp

(
−j

2πΩ

λ
yi

)
(34)

For ISAR imaging, the two-dimensional point spread response (PSR) of range direction
and azimuth direction can be expressed by:

h(x, y) =
[

2B
c

sin c
(

2B
c

x
)

exp
(

j
4π fc

c
x
)]
·
[

2Ω

λ
sin c

(
2Ω

λ
y
)

exp
(

j
4πΩc

λ
y
)]

(35)

where B represents the bandwidth of the transmitting signal. Ωc represents the central
value of the coherent accumulation angles.

The ideal ISAR imaging of all scattering points on a target can be obtained by 2D
inverse Fourier integral (2D-IFFT) of the echo signal ES(k,Ω) as:

ISAR(x, y) =
N

∑
i=1

kmax∫
kmin

Ωmax∫
Ωmin

ES(k, Ω) · exp[j2(k cos Ω · xi + k sin Ω · yi)]d
(

2 f
c

)
· d
(

kcΩ

π

)

=
N

∑
i=1

Ai · δ(x− xi, y− yi) ∗ h(x, y)

(36)

where kmin and kmax represent the minimum and maximum values lower of the
spatial frequency. Ωmin and Ωmax represent the initial and final look-angles, δ(x, y) is the
impulse response.

It can be seen from Equation (36) that the 2D ISAR imaging result is nothing but the
convolution of the position coordinates of all scattering points on the target with the 2D
PSF function.
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5. Experiments

In this section, we conduct simulation and measured experiments on ISAR imaging
for maneuvering point targets and block targets based on the proposed UFGAN. The
imaging results and imaging times are compared with the classical RD algorithm, which
is for smooth targets, and STFT, WVD, SPWVD, and RWT algorithms which are used for
maneuvering targets. The image entropy (IE), structural similarity (SSIM), target-to-clutter
ratio (TCR), and imaging time are used as evaluation metrics to quantitatively evaluate the
performance of different methods.

5.1. ISAR Imaging for Maneuvering Point Targets

The publicly available Boeing-727 data from V.C. Chen [41] are typical echo data of a
point target. The numbers of range cells and azimuth cells are 64 and 256, respectively. The
radar transmits a signal with a bandwidth of 150 MHz and a PRF of 20 KHz. The carrier
frequency is 9 GHz. In order to ensure the best performance of the proposed method on
Boeing-727 data, the same radar parameters are set for all simulated scattering point targets.
The training set consists of 500 point targets, which are composed of randomly distributed
scatter points.

As analyzed in Section 2, the blurring level of the image depends on the parameters
Kβω and Kγβ. Considering the achievability of the maneuver, in reality, we first restrict the
value of Kβω and Kγβ to be randomly taken between 0 to 5. Then the initial angular velocity
ω0 is set to be randomly taken in the range of 0.01~0.1 rad/s. The angular acceleration β
and the jerk γ can be naturally determined by the above three parameters. In other words,
ω0, Kβω and Kγβ completely determined the motion state of the target. In order to improve
the imaging performance of the network under sparse aperture and low SNR, the echo
is added with the additive white Gaussian noise (AWGN) of SNR = −10 dB~10 dB and
down-sampled at the sampling ratio of 20−80% in the azimuth direction. In this paper, the
sampling ratio indicates the ratio of the number of retained samples after down-sampling
to the total number of samples. The training stage went through 250 epochs and cost 3 h
in total.

Figure 9 shows a training sample. Figure 9a presents the coordinate distribution
of the scattering points on the point target. The motion parameters are: ω0 = 0.024 rad/s,
Kβω = 3.5, Kγβ = 4.5, thus the angular acceleration and the jerk can be calculated as
β = ωKβω = 0.084 rad/s2, γ = βKγβ = 0.378 m/s3. Figure 9b presents the blurred imaging
result by the RD method under a 30% sampling ratio with SNR = 0 dB. The ideal ISAR image
without any phase error is generated according to Equation (36), as shown in Figure 9c.
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5.1.1. Simulated Experiments

A simulated aircraft model of 74 points, as shown in Figure 10, is used to test the
trained UFGAN network.
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Figure 10. The simulated aircraft model: (a) The coordinate distribution of the scattering points;
(b) The ideal ISAR image.

Assuming that the motion compensation has been completed, the target equivalently
rotates at a variable acceleration. We set different motion parameters and conducted three
experiments with different noise levels and sampling ratios. The motion parameters and
imaging conditions are presented in Table 1.

Table 1. The motion parameters and imaging conditions of the three experiments.

Parameters and Conditions Experiment 1 Experiment 2 Experiment 3

angular velocity(rad/s) 0.08 0.06 0.03
angular acceleration(rad/s2) 0.16 0.12 0.12

angular jerk(rad/s3) 0.16 0.48 0.48
relative acceleration ratio 2 2 4

relative jerk ratio 1 4 4
SNR ∞ −3 dB −7 dB

sampling rate 100% 70% 30%

The imaging results of the three experiments are presented in Figure 11. We can see
that the high-resolution deblurred ISAR images can always be recovered with different
motion parameters and signal conditions.

According to Table 1 and Figure 11, several conclusions that concluded from Equation
(15) can be verified: (i) The degree of blurring of the ISAR image for a maneuvering
target obtained by RD algorithm does not depend on the magnitude of its angular velocity,
angular acceleration or angular jerk, but on their proportional relationship, i.e., the value of
relative acceleration ratio Kβω and relative jerk ratio Kγβ. (ii) The blurring of the target is
gradually serious as Kβω and Kγβ increase. In the case of short imaging time, Kγβ has less
effect on the degree of image blurring than Kβω.

5.1.2. Imaging Experiments of Public BOEING-727 Data

Boeing-727 data from Victor C. Chen are used to verify the effectiveness of the pro-
posed method on real ISAR data. In order to demonstrate the superiority of the proposed
method, we select several traditional methods for comparison.

Figure 12 presents the imaging results of different methods under full aperture without
adding any noise. It can be seen that the imaging result by RD method is heavily blurred
in the azimuth direction. STFT method has eliminated the main blurring of the image
but suffers a low time-frequency resolution. ISAR images by WVD method have a better
resolution, but cross-terms appear, degrading the quality of the imaging result. SPWVD
method succeeds in suppressing the cross-terms but reduces the frequency resolution and
loses some weak scattering points. RWT method effectively improves the azimuth focusing
of the image, but there still exists some blurring and smearing. Compared with the above
traditional methods, the proposed method achieves high-resolution restoration of the ISAR
images without any blurring.
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Figure 11. Imaging results of simulated aircraft model with the motion parameters and imaging
condition as listed in Table: (a–c) Imaging results by RD method; (d–f) Imaging results of the
proposed method.
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Figure 12. Imaging results of Boeing-727 data under full aperture without noise by different methods:
(a) RD algorithm; (b) STFT algorithm; (c) WVD algorithm; (d) SPWVD algorithm; (e) RWT algorithm;
(f) the proposed method.
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The second experiment is to verify the imaging performance of the proposed method
under low SRN conditions by adding noise to the Boeing-727 echo. Figure 13 presents
the imaging results under SNR = −10 dB by different methods. It can be seen that the
ISAR images obtained by traditional methods are seriously degraded, that the target can be
barely distinguishable due to the interference of the noise. By contrast, Figure 13f shows
that the UFGAN network can effectively restore the blurred image even in a scenario with
strong noise. Although there exist several hot pixels in the background, the target subject is
still reconstructed with high quality.
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Figure 13. Imaging results of Boeing-727 data with SNR = −10 dB by different methods: (a) RD
algorithm; (b) STFT algorithm; (c) WVD algorithm; (d) SPWVD algorithm; (e) RWT algorithm; (f) the
proposed method.

Table 2 gives the values of the evaluation indicators of the traditional algorithms and
the proposed method for Figure 13. For the Boeing-727 data, we cannot obtain the label
ISAR image, so the SSIM could not be used as evaluation indicator in this experiment.
The RD algorithm is far superior to other traditional algorithms in imaging time, but the
image quality is the worst according to the value of IE and TCR. The proposed method
outperforms other traditional algorithms a lot in imaging quality and imaging time.

Table 2. The evaluation indicators of different methods under SNR = −10 dB.

Method IE TCR/dB Imaging Time/s

RD 5.7428 40.1519 0.0172
STFT 5.5962 48.6892 2.9459
WVD 4.3157 57.6743 10.2687

SPWVD 4.5298 46.4851 41.9245
RWT 3.4477 64.5826 16.7458

Proposed method 0.8452 87.7593 0.1903

The third experiment is to verify the imaging performance of the proposed method
under sparse aperture. Figure 14a gives the down-sampled echo signal with a sampling
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ratio of 40%. Figure 14b–f presents the imaging results under sparse aperture by different
methods. It can be seen that the target is subject to different degrees of spectral occlusion
by traditional algorithms. By contrast, a high-resolution image with clear background is
obtained by the proposed method.
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Figure 14. Imaging results of Boeing-727 data under 40% sampling ratio by different methods:
(a) The down-sampled echo signal; (b) RD algorithm; (c) STFT algorithm; (d) SPWVD algorithm;
(e) RWT algorithm; (f) the proposed method.

Table 3 gives the values of the evaluation indicators by the traditional algorithms and
the proposed method for Figure 14. It can be seen that the proposed method achieves
superior performance compared with the traditional method, and the imaging is shorter
than traditional methods except RD algorithm.

Table 3. The evaluation indicators of different methods under sparse aperture.

Method IE TCR/dB Imaging Time/s

RD 4.7843 43.4688 0.0154
STFT 4.8854 51.0240 2.6851

SPWVD 3.3482 57.9647 38.4186
RWT 1.5861 72.4875 15.2943

Proposed method 0.7585 85.4582 0.1884

5.2. ISAR Imaging for Maneuvering Block Targets

In this section, we use the pseudo-measured dataset presented in Section 4 to carry out
imaging experiments for maneuvering block targets. The radar parameters are set as the
same as measured Yak-42 data, where the size of the echo matrix is 256 × 256, the carrier
frequency is 5.52 GHz, the bandwidth is 400 MHz, the pulse width is 25.6 µs, and the PRF
is 400 Hz.

The motion parameters of the training data are set as the same as the training point
targets in Section 5.1. Then the blurred ISAR images and ideal label ISAR images are
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generated according to Equation (15) and Equation (36), respectively, which together form
the paired pseudo-measured ISAR image sets.

In order to enhance the robustness of the network, sparse aperture and low SNR
are considered. The noise of SNR randomly distributed in the range of −10 dB~10 dB is
added to the pseudo-measured echoes, and the sampling ratio is randomly distributed
in the range of 20–80%. We allocate 80% of the paired images as the training set and the
remaining 20% as the test set to train the UFGAN network. The training stage went through
300 epochs and cost 7 h in total.

Figure 15 gives a sample of the training set. Figure 15a presents the coordinate
distribution of the scattering points on the block target. The motion parameters of the
block target are: ω0 = 0.072 rad/s, Kβω = 4.0, Kγβ = 1.5, thus the angular acceleration
and the jerk can be calculated as β = ωKβω = 0.288 rad/s2 and γ = βKγβ = 0.432 m/s3.
Figure 15b presents the blurred ISAR imaging result by RD method under 35% sampling
ratio with the noise level of SNR = 0 dB. Figure 15c presents the ideal imaging result.
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Figure 15. An example of the training data: (a) The coordinate distribution of the scattering points on
the block target; (b) The blurred ISAR image as the input of UFGAN; (c) The ideal image as the label
of the UFGAN.

5.2.1. Simulated Experiments

We chose a block target from the test set to test the effectiveness of the trained UFGAN
network. The coordinate distribution and ideal ISAR image of the block target are shown
in Figure 16.
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We conducted four experiments with different motion parameters and imaging condi-
tions, as presented in Table 4.



Remote Sens. 2022, 14, 5270 21 of 29

Table 4. The motion parameters and imaging conditions of the four experiments.

Parameters and Conditions Exp.1 Exp.2 Exp.3 Exp.4

angular velocity (rad/s) 0.02 0.04 0.06 0.08
angular acceleration (rad/s2) 0.08 0.04 0.12 0.24

angular jerk (rad/s3) 0.08 0.16 0.36 0.48
relative acceleration ratio 4 1 2 3

relative jerk ratio 1 4 3 2
SNR ∞ 0 dB −8 dB −12 dB

sampling ratio 100% 45% 25% 15%

Figure 17 shows the imaging results of the four experiments. It can be seen that under
the condition of acceptable noise level and sampling ratio, the blurred ISAR images of
the maneuvering block targets can be effectively restored by the network to high-quality
images without phase error. Even under more extreme imaging conditions, as shown in
Figure 17d,h, the target subject region of the image can still be deblurred though there
appear some hot pixels.
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Figure 17. Imaging results of the block target with the motion parameters and imaging condition as
listed in Table 2: (a–d) Imaging results by RD method; (e–h) Imaging results be the proposed method.

5.2.2. Measured Experiments

In the data acquisition process of Yak-42 aircraft by ISAR experimental radar, the
movement with little maneuver can nearly be considered as a uniform motion during CPI.
The Yak-42 echo can be imaged by RD algorithm to receive the unblurring ISAR image as
shown in Figure 18.
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To verify the performance of the trained UFGAN in maneuvering block target imaging,
we adopt the Fourier interpolation re-sampling method as given in Section 4 to generate the
echo data of the maneuvering target on the basis of the original Yak-42 data. The motion
parameters are set as: the angular velocity of 0.03 rad/s, angular acceleration of 0.1 rad/s2,
and angular jerk of 0.4 rad/s3. Several time-frequency analysis methods and parameter
estimation methods are also presented to be compared with the proposed method. For the
reason that cross-term issues of the WVD method have particularly serious impact on block
targets, leading to a poor imaging result, it is no longer used as a comparison algorithm in
the Yak-42 imaging experiment.

Figure 19 shows the imaging results without adding extra noise under full aperture.
Figure 19a presents the “dechirped” echo after motion compensation. Figure 19b–f presents
the imaging results by several traditional algorithms. It can be seen that the spectrum is
heavily expanded along azimuth direction by RD algorithm. STFT algorithm alleviates
the blurring issue of the image but has a low time-frequency resolution. The SPWVD
method suppresses the cross-terms at the expense of stretching the spectrum in the azimuth
direction, and the image contrast is severely decreased. RWT method improves the time-
frequency resolution but has a weak ability to distinguish weak scattering areas from
background noise, leading to a structural loss of the target scatterers. By contrast, the
proposed method achieves superior performance, reconstructing a high-resolution ISAR
image with rich details and fine textures.
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Figure 19. Imaging results of Yak-42 measured data under full aperture without noise by different
methods: (a) echo after translational motion compensation; (b) RD algorithm; (c) STFT algorithm;
(d) SPWVD algorithm; (e) RWT algorithm; (f) The proposed method.

Figures 20 and 21 present the imaging results under the condition of different noise
levels and sparse aperture. Figures 20a and 21a present the down-sampled echo at the
sampling ratio of 50% and 25% with SNR = 0 dB and −10 dB, respectively. Figures 20b–f
and 21b–f present the imaging results of different methods. The motion parameters are
set as: the angular velocity of 0.05 rad/s and 0.08rad/s, angular acceleration of 0.2 rad/s2

and 0.24 rad/s2, and the angular jerk of 0.8 rad/s3 and 0.72 rad/s3, respectively. It can
be seen that due to the presence of noise and sparse aperture, the quality of ISAR images
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obtained by traditional methods declined sharply. Especially under the condition of strong
noise and low sampling ratio, as shown in Figure 20, the target has been nearly completely
submerged in noise and spectral occlusion, to be hardly distinguished from the degraded
images. However, the deblurred high-resolution ISAR image with rich details and fine
textures can still be restored by UFGAN network, though several hot pixel blocks appear
in the background.

Remote Sens. 2022, 14, x FOR PEER REVIEW 20 of 24 
 

 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 20. Imaging results of Yak-42 under 50% sampling ratio with SNR = 0 dB by differ-
ent methods: (a) echo after translational motion compensation; (b) RD algorithm; (c) STFT 
algorithm; (d) SPWVD algorithm; (e) RWT algorithm; (f) The proposed method. 

  

Figure 20. Imaging results of Yak-42 under 50% sampling ratio with SNR = 0 dB by different methods:
(a) echo after translational motion compensation; (b) RD algorithm; (c) STFT algorithm; (d) SPWVD
algorithm; (e) RWT algorithm; (f) The proposed method.
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Figure 21. Imaging results of Yak-42 under 25% sampling ratio with SNR = −10 dB by different
methods: (a) echo after translational motion compensation; (b) RD algorithm; (c) STFT algorithm;
(d) SPWVD algorithm; (e) RWT algorithm; (f) The proposed method.

Table 5 gives the evaluation indicators of the imaging results of the above two exper-
iments by traditional algorithms and the proposed method for Figures 20 and 21. Due
to the Yak-42 data being collected from smooth target, the imaging result of the original
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echo by RD algorithm is unblurred, which can be used as the ideal image to calculate the
SSIM. It can be seen that under the condition of sparse aperture and low SNR, the imaging
performance of traditional methods seriously deteriorated, while the proposed method
achieves fast and high-quality reconstruction of the ISAR images.

Table 5. The evaluation indicators of different methods under sparse aperture.

Experiment Method IE SSIM TCR/dB Imaging Time/s

Exp.1: 50% sampling ratio,
SNR = 0 dB

RD 4.8816 0.1256 56.8569 0.014
STFT 4.6124 0.1921 61.5164 2.8795
RWT 4.1125 0.0845 55.5218 16.2416

SPWVD 3.3162 0.0917 67.5682 38.1458
Proposed method 2.4356 0.8163 91.2041 0.195

Exp.2: 25% sampling ratio,
SNR = −10 dB

RD 6.0847 0.0933 41.2958 0.0015
STFT 5.8726 0.1284 44.5291 2.8851
RWT 4.5482 0.0684 47.5126 16.2541

SPWVD 3.7159 0.0761 58.1259 37.1567
Proposed method 2.5214 0.8047 89.4582 0.186

5.3. Performance Comparison with Existing Data-Driven Methods

To demonstrate that the proposed UFGAN-based method shows better performance
in restoring the details and texture features of ISAR images compared with the existing
data-driven methods, we selected an ISAR super-resolution imaging method based on
improved GAN recently proposed by Wang H et al. [22]. It is a typical data-driven method,
and, like most data-driven methods, it uses randomly distributed scattering points as the
training set. We conducted an imaging comparison experiment on the measured Yak-42
data. Figure 22 presents the imaging results of the measured Yak-42 data. The first, second,
and third lines give the imaging results under ideal imaging conditions, SNR = 0 dB at
50% sampling ratio and SNR = −10 dB at 25% sampling ratio, respectively. It can be seen
that the imaging result by RD algorithm is seriously blurred along azimuth direction. The
imaging result by method in [22] achieves super-resolution, but the ISAR images lose a lot
of fine structural information, as shown in Figure 22b,e,h, and the outline of the target in
the obtained ISAR image are stretched along the azimuth, and the shape of the target is
distorted due to the maneuverability of the target. In contrast, the proposed method can
achieve unblurring ISAR imaging with more details and fine textures, reconstructing the
geometric shape and structure of the target more accurately.

To verify the robustness of the proposed UFGAN, Figure 23 presents the performance
curves of more comparison results of the proposed DL-based methods with the traditional
methods and method in [22] under the condition of different SNR and different sampling
ratios. The motion parameters of Yak-42 data are kept unchanged, which is the same as the
experiment presented in Figure 19. In order to control variate, the sampling ratio is fixed
to be 50% in Figure 23a, and the SNR is fixed to be 0 dB in Figure 23b. It can be seen that
imaging results by the proposed method have the minimum IE under various SNR and
sampling rate conditions compared with the traditional methods.
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(a) Performance curves of IE versus SNR; (b) Performance curves of IE versus sampling ratio.
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It is worth noting that although some evaluation indicators, e.g., the IE, of the method
in [22] are smaller than that of the proposed method under various SNR and sampling rate
conditions, it loses many weak scattering points in the ISAR image and could hardly restore
the details and texture features of the image as shown in Figure 22, leading to the distortion
of the ISAR images in detail, while the proposed method performs better in unblurring
reconstruction of high-quality ISAR images, retaining more detail and texture features.

6. Conclusions

For ISAR imaging of maneuvering targets, the existing deep learning methods could
not avoid the blurring of ISAR images without the assistance of traditional methods such
as RID and show a weak ability to restore image details and textures. In this article, a
novel unblurring ISAR imaging method for maneuvering targets based on UFGAN is
proposed. Firstly, according to the derivation of the azimuth echo signal with the form
of a QFM signal, the blurred ISAR images for network training are obtained. To improve
the generalization in measured data, we propose a pseudo-measured data generation
method based on the DeepLabv3+ network and the Diamond-Square algorithm. Then we
use the LeWin blocks and multi-scale restoration modulators to build a novel UFGAN,
which can effectively restore the image details. The discriminator is designed by combining
the PatchGAN and global GAN to aggregate the local and global information to provide
a comprehensive evaluation of the image as a whole as well as the consistency in local
details. A comprehensive loss function to consider both perceptual loss and adversarial
loss is designed to match the performance of the network. In the test stage, to verify the
effectiveness of the network on the measured data, Fourier interpolating re-sampling is
used to obtain the equivalent ISAR echo of maneuvering targets. Finally, we conducted
simulated and measured experiments and comparisons under sparse aperture and low
SNR conditions to verify the effectiveness and efficiency of the proposed method.

Noticing that the proposed method cannot succeed in effectively imaging multiple
maneuvering targets because the motion parameters of each target are different. In order to
cope with the issue, a recognition module might be needed to distinguish different objects
in one imaging scene according to the degree of blurring, and then different partitions of
the image can be processed separately.
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writing—review and editing, W.L., Y.Y., Y.Z. and Y.L. All authors have read and agreed to the
published version of the manuscript.
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Appendix A

As shown in Figure A1, the solid circles represent the newly calculated scattering
points, and the hollow circles represent the known grid points with the scattering coeffi-
cients to be updated at the same time.
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The algorithm is initialized by planting several random seeds for the vertices of the
square as their scattering coefficient values. The key calculation steps are:

1. Diamond Step: As shown in Figure A1b,d, suppose the coordinates of the lower
left corner of the current square is (x, y), calculate the scattering coefficient of the
intersection of the diagonals of the square as follows:

h(x + s/2, y + s/2) =
h(x, y)+h(x + s, y)+h(x, y + s)+h(x + s, y + s)

4
+ ri

m (A1)

where s is the iteration step, which is initialized as S and is halved at each iteration.

ri
m =

√
1−22rh−2 · (di)

rh · rand (A2)

where di represents the segment spacing after subdivision, rh represents the given
roughness and rand represents the random numbers obeying standard normal distribution.

2. Square Step: As shown in Figure A1c,e, the scattering coefficient of the midpoint of
each side of the square is calculated as:

h(x + s/2, y) =
h(x, y) + h(x + s, y)

2
+ ri

m, h(x, y + s/2) =
h(x, y) + h(x, y + s)

2
+ ri

m (A3)
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