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Abstract: Ubiquitous and seamless indoor-outdoor (I/O) localization is the primary objective for
gaining more user satisfaction and sustaining the prosperity of the location-based services (LBS)
market. Regular users, on the other hand, may be unaware of the impact of activating multiple
localization sources on localization performance and energy consumption, or may lack experience
deciding when to enable or disable localization sources in different environments. Consequently, an
automatic handover mechanism that can handle these decisions on a user’s behalf can appreciably
improve user satisfaction. This study introduces an enhanced I/O environmental awareness service
that provides an automated handover mechanism for seamless navigation based on multi-sensory
navigation integration schemes. Moreover, the proposed service utilizes low-power consumption
sensor (LPCS) indicators to execute continuous detection tasks and invoke GNSS in confusion
scenarios, and transition intervals to make the most firm decision on the credibility of the LPCS-
triggered transition and compensate for indicator thresholds. In this manner, GNSS are used for short
intervals that help reduce detection latency and power consumption. Consequently, the proposed
service guarantees accurate and reliable I/O detection while preserving low power consumption.
Leveraging the proposed service as an automated handover helped realize seamless indoor-outdoor
localization with less switching latency, using an integrated solution based on extended Kalman
filter. Furthermore, the proposed energy-efficient service was utilized to confine crowdsourced
data collection to the required areas (indoors and semi-indoors) and prevent excess data collection
outdoors, thereby reducing power drainage. Accordingly, the negative impact of data collection on
the user’s device can be mitigated, participation can be encouraged, and crowdsourcing systems can
be widely adopted.

Keywords: indoor-outdoor environmental awareness; seamless navigation; indoor positioning;
ubiquitous localization; multi-sensor fusion; crowdsourcing; WiFi positioning; location-based
services (LBS)

1. Introduction

Location and environmental awareness (i.e., indoor-outdoor (I/O) detection) are
crucial contexts for many services. A location-aware application can adapt itself to instan-
taneously provide the most convenient services, improve the quality of the experience,
increase user satisfaction, and avoid churn. It is crucial to be aware of the user’s location to
provide lifesaving healthcare services such as surveillance programs, first responders, and
firefighters. In addition to helping save lives, location awareness is used to improve busi-
ness operations. Location-based services (LBS) are in continuous demand for commercial
purposes. However, it is important to note that there is a need to gain more user satisfaction
to sustain the prosperity of the LBS market. Offering more facilitation in users’ daily lives
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by improving performance and extending the availability of LBS can help achieve such an
objective. In practice, it is possible to obtain most outdoor localization services using global
navigation satellite systems (GNSS). However, accurate GNSS services are unavailable in
enclosed places, such as indoor and deep urban environments, owing to satellite signal
blocking and attenuation. The unfortunate fact is that this is where most people spend the
majority of their time. The lack of accurate localization services in these areas and when
shuttling from indoor to outdoor areas hinders ubiquitous and seamless navigation.

To this end, the development of seamless and ubiquitous navigation systems (SUNS)
has attracted significant attention from both the academic and industrial communities.
As shown in Figure 1, existing seamless positioning studies can be classified into two
main categories: systems-based unified signals, and systems-based integrated outdoor and
indoor techniques. Pertaining to the former category, LOCATA, developed by Rizos and
Yang [1], utilizes the same terrestrial signal and unified receivers indoors and outdoors
to ensure navigation continuity. An indoor messaging system (IMES), developed by
Kohtake, et al. [2], proposes to deploy anchor nodes that transmit signals with a similar
GPS structure. In the IMES, the same GPS chipset receiver can be used indoors and outdoors;
however, dedicated transmitters are required. Similarly, Zou, et al. [3] proposed deploying
sources for an inverse GNSS signal in each building room. These systems-based unified
signals can be beneficial in buildings with open budgets (e.g., airports) and large open
spaces with a clear line of sight, but it would be costly to generalize them as a universal
solution [4]. Fortunately, sensors and communication receivers embedded in modern
smartphones eliminate the cost barrier of end-user devices to adopting systems-based
multi-sensory integration for SUNS. Consequently, integrating off-the-shelf indoor and
outdoor technologies is more cost-effective than a systems-based unified signal, and is
preferred as a low-cost and ubiquitous system.
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Wireless positioning systems based on signals observed from the ambient environment,
and inertial navigation systems based on infrastructure-free measurements are typically
integrated. Wireless localization has significantly advanced over the past few decades.
Despite advancements in GNSS-based outdoor navigation, indoor positioning remains an
open issue and hinders the widespread use of LBS. Indoors, the absence or degradation
of GNSS signals, complexity of indoor environments, signal propagation, and the need
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to use low-grade devices hinder the achievement of accurate and ubiquitous LBS using
wireless localization.

Several indoor positioning technologies have been proposed to extend the coverage
of LBS, such as WiFi, cellular, Bluetooth Low Energy (BLE), ultra-wideband (UWB), light,
sound, and magnetic field (MF) [5]. Among these technologies, pervasive signals, such
as WiFi-based received signal strength (RSS), have been extensively studied to achieve
widespread adoption. In contrast to multi-trilateration-based solutions, fingerprinting
provides a more accurate solution owing to the mitigation of multipath effects. As a result
of using the fingerprinting localization method, the system comprises online and offline
stages. In the online localization phase, the continuous activation of the sensors required
for indoor and outdoor localization to cover all scenarios is energy-intensive, because the
most commonly used outdoor and indoor receivers (GNSS and WiFi) are power-hungry.
On the other hand, leaving the onus of activating the sensors required for each environment
as user-borne is user-unfriendly.

The requirements of the offline fingerprinting stage must be considered when in-
corporating fingerprinting techniques into a self-deployable and ubiquitous localization
system. The common manual training and updating approaches for offline fingerprinting
databases are time-consuming and labor-intensive [6], limiting the scalability of such perva-
sive technologies. The autonomous generation of these databases is a way to leverage such
ubiquitous technologies for developing self-deployable systems. Crowdsourcing-based
indoor positioning systems have been proposed as a part of the offline database generation
phase. With these systems, rather than hiring professionals, data from a building’s users
are effortlessly collected and then used to generate databases autonomously. Such systems
can promote the development of self-deployable systems.

In the existing indoor positioning systems (IPS)-based crowdsourcing, several improve-
ments related to post-collection processes have been studied to enhance the quality of offline
databases and the performance of fingerprinting solutions. For example, Zhang, et al. [7]
proposed quality assessment criteria to select qualified inertial sensor data. Li, et al. [8] in-
troduced accuracy indicators for fingerprinting solution based on crowdsourced databases.
Indeed, improvements related to post-collection processes are crucial to achieving better
database quality and online localization accuracy; however, the factors that facilitate the
data collection process are essential to ensure the applicability and widespread use of such
ubiquitous methods. To arouse the interest of smartphone users in participating in the data
collection task, Yu, et al. [9] proposed an incentive mechanism by leveraging appropriate
motivation measures. Attracting users through incentive schemes is vital for the adoption
of crowdsourcing approaches. However, even with incentive motivations, ignoring the
negative impact of data collection on users’ devices may bore them and discourage their
participation. Consequently, the cost borne by the user device for collecting this data should
be considered. To the best of our knowledge, almost all existing crowdsourcing systems
assume explicit prior knowledge of the environment type. In real-world scenarios, this
assumption keeps the devices continuously collecting data indoors and outdoors, which
drains the batteries. From a broader perspective, existing IPS-based crowdsourcing studies
neglect the cost borne by the user device while voluntarily collecting this data, even though
user roles are the backbone of such systems.

A glaring gap revealed by investigating the existing seamless systems-based integrated
techniques is that the handover algorithms that automatically switch between the inte-
grated techniques hinder the development of such SUNS. Certain studies used low-power
consumption sensors (LPCS) (e.g., light, magnetometer, cellular, and proximity) to design
lightweight handover services. However, the indicators extracted from these LPCS have
some limitations that could lead to errors in the detection results, thereby reducing the
detection reliability [10]. Other studies incorporated GNSS indicators into LPCS indicators
to enhance detection reliability. However, relying on GNSS (i.e., the most power-hungry
receiver) for continuous I/O detection rapidly drains the power battery. A close analysis of
both studies revealed tradeoffs between service reliability and energy consumption. Studies
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that developed lightweight services sacrificed reliability, while studies that combined GNSS
with low-power sensors maintained their service reliability at the expense of power-saving.
Both categories of existing handover mechanisms hinder the development of SUNS, as
power-saving and reliable detection are required for SUNS.

In this study, handover mechanism based on an enhanced I/O detection approach is
proposed. Compared to existing I/O detection services, our mechanism smartly guarantees
reliable environmental detection while maintaining low power consumption. The benefits
of the proposed I/O detection mechanism extend over both offline and online phases. In
the online localization phase, seamless LBS can be realized by automatically invoking the
localization technique for the corresponding environment, thereby reducing superfluous
WiFi scanning outdoors and deactivating GNSS indoors. In the offline phase, I/O aware-
ness is leveraged to manage the collection process of the crowdsourced data required for
the autonomous generation of offline databases. The contributions of our study can be
summarized as follows:

1. An enhanced I/O detector for smartphones with limited power budgets was proposed
to achieve reliable environmental detection and maintain low power consumption;

2. A seamless indoor-outdoor localization scheme based on extended Kalman filter (EKF)
was proposed by leveraging the proposed I/O detection service as an automated
handover mechanism. Furthermore, the proposed service is utilized to manage the
collection process of crowdsourced data, reduce the cost borne by the user device, and
ensure widespread adoption of SUNS.

The remainder of this article is organized as follows. Related works are reviewed in
Section 2. Section 3 describes the system development, proposed handover mechanism,
and positioning estimation. The experiments, results, and evaluations are presented in
Section 4. Finally, the conclusions and future work are presented in Section 5.

2. Related Work

In this section, we shed light on the existing works on two topics related to the
development of ubiquitous and seamless navigation systems: handover mechanism based
on I/O detection and indoor localization.

2.1. Handover Mechanism Based on Indoor-Outdoor Detection

This section reviews the existing I/O detection approaches that can act as a handover
mechanism to automatically switch between the indoor and outdoor localization tech-
niques, and achieve seamless navigation based on multi-sensory integration schemes. The
handover process starts when trigger conditions are met. Such conditions can be derived
by observing features that reflect approaching or departing from a positioning system
domain to another. In fact, various indicators can be extracted from signal, environmental,
and positioning system characteristics [4]. Other indicators can also be obtained from a
priori navigation information, such as user path planning. Indoor and outdoor environ-
ments have distinct features that can be used to obtain trigger conditions. For SUNS-based
multi-sensory integration, the handover mechanism should satisfy four stringent criteria,
including: (a) high detection accuracy, such that when I/O results are accurate, appropriate
navigation techniques are invoked and smooth navigation is ensured; (b) fast switching,
because if a response is delayed, the detection results could become obsolete and posi-
tioning techniques might be incorrectly selected, resulting in lower positioning accuracy;
(c) energy-saving, since the I/O detection runs as a background service, so the selected
sensors for the detection task should be energy-efficient to be suitable for devices with con-
strained energy budgets; and (d) pervasive applicability, whereby the proposed mechanism
should not rely on pre-surveys, external sources, or explicit user feedback.

In the literature, as listed in Table 1, several I/O detection approaches [11–28] were
proposed based on features extracted from a single sensor and multiple sensors. Many
indicators can be extracted from a single sensor, such as GNSS [11,12], WiFi [18,19], cellu-
lar [20–22], BLE [25], microphone [23], and magnetometer [24]; however, relying solely on
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one sensor’s indicators may degrade the detection robustness under complex scenarios.
Ensuring high detection reliability under different conditions is crucial while developing a
handover mechanism for SUNS. Incorporating multiple sensors can provide complemen-
tary characteristics to enhance detection robustness, overcoming limitations associated
with relying solely on one sensor. In [13–17,26–28], several sensors were utilized, including
accelerometers, GPS, light, magnetometer, proximity, cellular, microphone, temperature,
pressure, and WiFi. IODetector [26] is an example of a lightweight I/O detection service
that depends only on LPCS (i.e., light, MF, and cellular detection); however, such service is
marred by low detection reliability [27]. Several studies utilized GNSS [13] or WiFi [14–17]
together with LPCS to ensure high detection accuracy; however, such methods significantly
consume the battery power. Table 1 summarizes the pros and cons of the existing I/O
detection approaches. In summary, the existing handover I/O detection approaches have
limitations regarding the development of energy-efficient and reliable I/O detection. The
studies that developed lightweight services sacrificed detection reliability; in contrast,
the studies that combined GNSS to LPCS maintained the service reliability but lost the
advantage of energy saving. Both categories could hinder the development of SUNS since
power saving together with reliable detection are highly required for user-friendly SUNS.

Table 1. The state-of-the-art of indoor-outdoor detection approaches.

Approach Sensors Used for Detection Low
Power

High
Reliability

Fast
Switching UbiquityBLE MF Light Prox. Cell WiFi GPS Press. Sound Temp.

Po
w

er
-c

on
su

m
in

g
ap

pr
oa

ch
es

[11] • 7 7 7 3
[12] • 7 7 7 3
[13] • • • • 7 3 7 3
[14] • • • • • 7 3 7 3

NeuralIO [15] • • • • • • • • 7 3 7 3
SenseIO [16] • • • • 7 7 3 3

[17] • • 7 7 7 3
WIFI Boost [18] • 7 7 7 3

[19] • 7 7 7 3

Po
w

er
-s

av
in

g
ap

pr
oa

ch
es

[20] • 3 7 3 3
[21] • 3 7 3 3
[22] • 3 7 3 3
[23] • 3 7 3 3

MagIO [24] • 3 7 3 3
BlueDetect [25] • 3 7 3 7
IODetector [26] • • • • 3 7 3 3

[27] • • • 3 7 3 3
[28] • • • • 3 7 3 3

2.2. Indoor Localization Systems for Ubiquitous Navigation

The indoor environment is defined as a “seam” or blind area of GNSS services. In
a broader sense, indoor areas and junctions between indoor and outdoor areas can be
described as seams of LBS [4]. Extending localization availability to these areas ensures
smooth and ubiquitous LBS. In the last two decades, several technologies have been
proposed for the development of IPS. Different inertial and wireless technologies are
utilized for IPS. Based on off-the-shelf inertial sensors, pedestrian dead reckoning (PDR)
methods have been commonly used to provide reliable short-term localization and support
the development of self-deployable IPS, by bridging the wireless localization outages [29].
Seamless positioning schemes were proposed in [30,31] based only on an inertial navigation
system. However, the sole reliance on inertial sensors makes the navigation system highly
prone to inertial sensor problems, such as heading drift, sensor bias, and the misestimation
of attitude angles due to the flexible portability of handheld devices. Additionally, inertial
systems require position and heading initialization. Smartphones’ richness with multiple
sensors empowers utilizing wireless signals to update the PDR solution and curb heading
drift [32].

As mentioned earlier, several wireless technologies have been proposed for the devel-
opment of IPS. Jiang, et al. [33] proposed integrating UWB with GNSS and inertial sensors
to provide seamless positioning; however, the reliance on UWB transmitters as base sta-
tions hinders the ubiquity of the proposed system and requires pre-knowledge of the base
stations’ locations. WiFi is primarily used for networking and internet connection. These
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functions contribute to the widespread deployment of WiFi access points (APs) in current
buildings and the inclusion of WiFi chips in almost all mobile devices. Therefore, WiFi RSS
is commonly employed for the development of IPS. It is worth noting that strict restrictions
from large service providers, such as Apple or Google, are applied on obtaining WiFi RSS
measurements or using them for localization purposes. Indeed, such restrictions curb the
widespread leveraging of WiFi RSS; however, the development of IPS-based WiFi RSS is
still a hot research area since these omnipresent measurements do not add an additional
cost to the developed IPS. In recent years, BLE beacons have been compatible with differ-
ent smartphone models and have gained increasing popularity for positioning purposes;
however, the replacement of pervasive WiFi APs with BLE beacons is not cost-effective
while developing ubiquitous localization systems. Relying only on auxiliary anchor nodes
such as BLE beacons requires an additional deployment cost, makes the developed IPS
applicable to only small-scale domains (such as malls, factories, hospitals, and airports),
and limits LBS ubiquity.

As mentioned, WiFi fingerprinting approaches provide a more accurate solution than
multi-trilateration-based solutions. However, the common manual training and updating
approaches for offline fingerprinting databases are time-consuming and labor-intensive [6],
and hinder the development of a self-deployable and ubiquitous localization system. A
3D graph was proposed by Pendão and Moreira [34], Ref. [35] to rapidly model the radio
propagation environment without previous knowledge about the environment. In the liter-
ature, different regression and interpolation models have been proposed to reduce human
intervention and accelerate the generation process [36–38], especially when databases are
generated using traditional training methods, such as static surveying or dynamic walking.
However, a certain level of supervision is still required for such approaches. Self-deployable
systems can be developed by autonomously generating the offline databases from perva-
sive resources. Crowdsourcing systems can promote the development of self-deployable
systems. Utilizing regression and interpolation models together with crowdsourcing sys-
tems can boost generation processes and extend spatial database coverage. However,
almost all existing IPS-based crowdsourcing was focused on improving post-collection
processes, such as the quality of offline databases and the performance of fingerprinting
solutions. Nevertheless, it is essential to facilitate the process of data collection to ensure the
widespread use and applicability of crowdsourcing systems. In practical use, data collection
management should be considered to avoid annoying users. Indeed, this management
requires an enhanced I/O detection approach to reduce the impact of data collection on
users’ devices.

3. Methods
3.1. System Development

An Android application was developed to apply the proposed system to real-world
scenarios. The developed application was written in Java code and utilized a Google
Maps API as the user interface to display the user’s location (see the middle panel in
Figure 2). The developed application comprises a real-time navigation system. In addition
to providing real-time navigation, this application can collect pervasive data from end-
users. The collected data were uploaded to a real-time Google cloud server service called
“Firestore” that was also utilized to retrieve the offline signatures of the generated database.
Firestore is a flexible, scalable database designed for mobile, web, and server development.
Through real-time listeners, Firestore keeps data synchronized across client apps regardless
of network latency or Internet connection. Reads and writes to Firestore can be performed
with a latency of less than 10 milliseconds. Furthermore, data were secured using the
Cloud Firestore Security Rules and Identity and Access Management (IAM); refer to [39]
for more details.
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Regarding the handover mechanism, as mentioned earlier, a handover process can be
implemented automatically, as shown in the lower part of Figure 2, or manually, depending
on user participation; an example of manual handover can be found in the upper part of
Figure 2 (notably, this panel was implemented for testing purposes). However, leaving
the onus of the handover process on the user (as in manual handover) is user-unfriendly
and requires experienced users. A live chart was developed for the simultaneous and
continuous monitoring of the results of the proposed automatic I/O detection (see the
lower panel in Figure 2). The results of I/O detection were utilized to automatically
alter the localization techniques required for the ambient environment and to manage
data collection.

3.2. System Overview

Figure 3 presents a schematic of the proposed system for seamless and ubiquitous
navigation. As shown in Figure 3, as soon as the user requested a navigation service,
the first step was to estimate the initial position and heading. Subsequently, handover
mechanism based on I/O detection was invoked to determine the ambient environment
type; refer to Section 3.4 for more details. The handover mechanism was utilized to alter
the localization techniques and update the user’s position, as described in Section 3.5. In
order to update the PDR solution, fingerprinting approach-based WiFi RSS was utilized
since fingerprinting mitigates multipath effects and provides a more accurate solution than
multi-trilateration. To overcome the manual training and updating of offline fingerprinting
databases, crowdsourced data were collected, to autonomously generate the required offline
fingerprinting databases [40] and enable the leveraging of pervasive signals to develop a
self-deployable and ubiquitous system. Accordingly, the proposed scheme comprises an
offline engine to store the collected crowdsourced data and generate offline fingerprinting
databases, and an online engine to localize the user.
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In the online engine, the GNSS solution was fused with estimated inertial positioning
solution-based PDR if the I/O detection service distinguished the ambient environment
as an outdoor area. Indoors, the fingerprinting solution was estimated and integrated
with the PDR solution. Both GNSS and WiFi fingerprinting solutions were integrated with
the PDR solution for semi-indoor scenarios. An EKF was used in all scenarios to fuse the
available solutions. Additionally, when the ambient environment was distinguished as
an indoor or semi-indoor area, the developed application activated the collection mode of
crowdsourced data. This prevented excessive data collection in outdoor areas and reduced
power drainage.

3.3. Initial Position and Heading

We estimated the initial absolute position using GNSS measurements. The initial
GNSS position was used to display the map of the user’s location in the interface. The
basic service set identifiers (BSSID) of the WiFi APs obtained from the initial online WiFi
scan were utilized to invoke the offline fingerprinting databases in case the detected
environment was an indoor area. The initial heading was estimated using the acceleration
and magnetic field data. First, the roll ϕ and pitch θ angles were estimated from the
acceleration measurements as:

ϕ = arctan
(
ay, az

)
θ = arctan

(
−ax, aysinϕ + azcosϕ

)
, (1)

where ax, ay, and az are the acceleration values relative to the device coordinate system
(DCS) in the x, y, and z directions. The accelerometer measurements could not be used
to estimate the change in the heading angle around the z-axis. Thus, the acceleration
vector was used to rotate the device frame parallel to the horizontal navigation plane.
The magnetometer was then used to estimate the magnetic heading angle ψmag measured
relative to the magnetic north, as follows:

ψmag = arctan
(

mycosϕ + mxsinϕsinθ −mzsinϕcosθ,
mxcosθ −mzsinθ

)
(2)

where mx, my, and mz are the magnetic field values relative to the DCS in the x, y, and z
directions. The magnetic declination (δdec) was considered to estimate the heading angle
relative to the North Pole (ψ) as follows: ψ = ψmag − δdec. Notably, the inertial sensor
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measurements were converted from the DCS to the navigation coordinate system (NCS)
using the quaternion. The proposed I/O detection service was then invoked to decide the
ambient environment type, as discussed in the following section.

3.4. Handover Mechanism Based on Environmental Awareness
3.4.1. Rationale

In our framework, we propose handover mechanism based on I/O detection that
smoothly runs on any smartphone and satisfies four conditions: (a) high detection accuracy;
(b) fast switching; (c) energy efficiency; and (d) pervasive applicability. As mentioned
previously, smartphones contain different types of sensors that can provide distinct features
for I/O detection. We initially checked the power consumed by each sensor to select power-
saving sensors to implement an energy-efficient detection approach. The study performed
by Khan, et al. [41] investigated the power consumption of the smartphone sensors. They
computed the power consumed by each sensor while the user was stationary or walking in
indoor and outdoor environments (refer to [41] for more experimental details). From the
investigation results, it was observed that: (1) GPS and WiFi are the most power-hungry
receivers while walking or stationary; (2) light, proximity, and accelerometer are the lowest
power-consuming sensors in all test cases; and (3) the magnetometer consumes less power
but more than the light and proximity sensors.

To select the appropriate sensors, we applied an exclusion strategy (i.e., eliminating
sensors that did not meet the four most common conditions). The first sources discarded
were Bluetooth receivers, because of their limited applicability. WiFi was the next source
excluded even though it complies with the pervasive applicability criterion because it
apparently consumes high levels of power while providing variant detection capability
under complex scenarios. Owing to their primary functionality, smartphones remain
connected to nearby cellular towers. Therefore, the marginal power consumption of the
collecting-cell RSS for I/O detection was negligible. On this basis, cellular RSS is utilized for
I/O detection. Light, magnetometers, and proximity sensors were considered because of
their low power consumption. Their mere reliance on LPCS guarantees that energy-efficient
services can be obtained. However, the indicators extracted from these sources have some
limitations in different scenarios (as will be discussed in detail in the following subsections)
that could lead to misdetection results and reduce detection reliability.

For our I/O detection method, we mainly depended on energy-efficient sensors (i.e.,
light, proximity, cellular, and magnetometer) for continuous I/O detection (i.e., the green
area in Figure 4) to save battery power. These sensors were also utilized to observe the
intervals of the sudden change from the indoor to outdoor state or vice versa (see Figure 4)
to invoke the GNSS receiver to give the firmest decision on the credibility of the transition.
Subsequently, GNSS were activated for short intervals (i.e., the transition intervals plotted
by the yellow area in Figure 4). Consequently, in contrast to the existing studies, we
obtained reliable detection while saving battery power. The following subsections illustrate
the utilization of each sensor in the I/O detection service.

3.4.2. Utilizing Light Intensity as an I/O Detection Indicator

Even on cloudy or rainy days, sunlight has a much higher visible spectrum than
indoor artificial light. Light sensors can detect light in invisible ranges such as infrared
or ultraviolet wavelengths [27]. Inspired by this, the apparent differences between the
detected light intensity indoors and outdoors were used as an indicator for I/O detection.
However, at night (i.e., in the absence of sunlight), the utilization of artificial light sources
indoors and outdoors provides the same range of light intensity, which makes the light
indicator useless. Additionally, blocking the light from reaching the light sensor (e.g.,
placing the smartphone in a pocket, bag, or over the ear while calling) is another obstacle
to exploiting light as an I/O indicator. Such blockage hinders the measurement of the
actual light intensity and results in false detections. To identify whether the light sensor
was exposed or blocked, the proximity sensor, embedded in the same position as the light
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sensor, was exploited. The proximity sensor returns a distance in cm (dprox) that reflects the
vacancy surrounding the device. From a power-saving perspective, the proximity sensor
requires a low level of power [41] and can be leveraged to ensure the reliability of the light
indicator. A proximity distance threshold (i.e., 3.0 cm) was defined to determine whether
the measured light intensity could be used as an I/O indicator. The detected light intensity
was denoted by I. Initially, sunrise–sunset intervals were computed to determine the
sunlight intervals. During the day, the proximity distance was inspected; if dprox was higher
than 3 cm, the measured light intensity was utilized as an I/O indicator. I was compared
to the light intensity threshold τIout (i.e., 3000 Lux) that was used to define the default
threshold for maximum I outdoors. Notably, with changes in weather conditions (e.g.,
sunny, foggy, rainy, and cloudy), the light intensity threshold was accordingly adjusted.
For example, on a sunny day, at noon, light could have an intensity higher than the
default threshold (i.e., I > τIout), and outdoor detection with a high confidence could be
confirmed; τIout could automatically be compensated for after checking the confidence of
the GNSS indicators. For more clarification, if the detected light intensity was higher than
3000 Lux, the user was almost certainly exposed to sunlight because the light intensity of
artificial light indoors cannot achieve such levels. On a sunny day, light intensity could
exceed 3000 Lux, and confidence of the user being outdoors could then increase if the
threshold used to define the maximum intensity was constant at 3000 Lux; however, the
detected intensity would give the same outdoor confidence of other days with other weather
conditions because the change would be in the weather, not in the type of environment.
Therefore, the algorithm was designed to self-compensate the light intensity threshold to
avoid over- or under-estimation of I/O confidence in these scenarios. In contrast, during
the night or during sensor blocking, other sensor indicators were utilized to distinguish the
ambient environment.

Remote Sens. 2022, 14, x FOR PEER REVIEW  10  of  31 
 

 

 

Figure 4. Utilizing GNSS and LPCS indicators in the proposed I/O detection approach. 

3.4.2. Utilizing Light Intensity as an I/O Detection Indicator 

Even on cloudy or rainy days, sunlight has a much higher visible spectrum than in‐

door artificial light. Light sensors can detect light in invisible ranges such as infrared or 

ultraviolet wavelengths [27]. Inspired by this, the apparent differences between the de‐

tected light intensity indoors and outdoors were used as an indicator for I/O detection. 

However, at night (i.e., in the absence of sunlight), the utilization of artificial light sources 

indoors and outdoors provides the same range of light intensity, which makes the light 

indicator useless. Additionally, blocking  the  light  from  reaching  the  light  sensor  (e.g., 

placing the smartphone in a pocket, bag, or over the ear while calling) is another obstacle 

to exploiting light as an I/O indicator. Such blockage hinders the measurement of the ac‐

tual light intensity and results in false detections. To identify whether the light sensor was 

exposed or blocked, the proximity sensor, embedded in the same position as the light sen‐

sor, was exploited. The proximity sensor returns a distance in cm (𝑑 ) that reflects the 

vacancy surrounding the device. From a power‐saving perspective, the proximity sensor 

requires a low level of power [41] and can be leveraged to ensure the reliability of the light 

indicator. A proximity distance threshold (i.e., 3.0 cm) was defined to determine whether 

the measured light intensity could be used as an I/O indicator. The detected light intensity 

was denoted by  𝐼. Initially, sunrise–sunset intervals were computed to determine the sun‐

light intervals. During the day, the proximity distance was inspected; if  𝑑  was higher 

than 3 cm, the measured light intensity was utilized as an I/O indicator.  𝐼 was compared 

to the light intensity threshold  𝜏   (i.e., 3000 Lux) that was used to define the default 

threshold for maximum  𝐼  outdoors. Notably, with changes in weather conditions (e.g., 

sunny, foggy, rainy, and cloudy), the light intensity threshold was accordingly adjusted. 

For example, on a sunny day, at noon, light could have an intensity higher than the default 

threshold  (i.e.,  𝐼 𝜏 ), and outdoor detection with a high  confidence  could be  con‐

firmed;  𝜏   could automatically be compensated for after checking the confidence of the 

GNSS  indicators. For more clarification,  if  the detected  light  intensity was higher  than 

3000 Lux, the user was almost certainly exposed to sunlight because the light intensity of 

artificial light indoors cannot achieve such levels. On a sunny day, light intensity could 

exceed 3000 Lux, and confidence of  the user being outdoors could  then  increase  if  the 

threshold used to define the maximum intensity was constant at 3000 Lux; however, the 

detected  intensity would  give  the  same  outdoor  confidence  of  other  days with  other 

weather conditions because the change would be in the weather, not in the type of envi‐

ronment. Therefore,  the algorithm was designed  to  self‐compensate  the  light  intensity 

threshold to avoid over‐ or under‐estimation of I/O confidence in these scenarios. In con‐

trast, during the night or during sensor blocking, other sensor indicators were utilized to 

distinguish the ambient environment. 

Figure 4. Utilizing GNSS and LPCS indicators in the proposed I/O detection approach.

3.4.3. Utilizing Cellular RSS as an I/O Detection Indicator

The epoch-by-epoch values of cellular RSS vary over time, place, and antenna mod-
els [26]. In contrast, RSS variations within short intervals are indicative of environmental
changes. When the ambient environment changes, abrupt variation in cellular RSS can be
observed because the walls can block line-of-sight paths to cell towers. RSS variation can
help minimize the possibility of false detection compared with using the epoch-by-epoch
RSS value, especially when applied to a variety of devices and places. In summary, cellular
RSS variation is independent of factors that could hinder its universal application. How-
ever, the RSS variation in a single tower has two inherent limitations. First, the handover
from one tower to another normally causes a significant change in cellular RSS. Here, the
RSS variation may not correctly indicate I/O transition. Second, the user may experience
dramatic changes (false bursts) in cellular RSS in a semi-outdoor environment when turning
around at a corner [21]. Corner effects may lead to incorrect transitions and detections.
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When a smartphone is within the range of multiple cell towers, the detection accuracy
can be improved by leveraging all visible cell towers instead of only the connected tower.
Thus, the signal strength of all cell towers and their RSS variations were measured. This
provided a solution to the tower handover problem because the cell tower connected to
the device may have been one of the observed cell towers. Exploiting the observed set
of cell towers helped mitigate false bursts and corner effect problems. An indication of
false bursts was obtained when the RSS of the connected cell tower varied significantly,
although the RSS of other towers remained unchanged. On this basis, for the ith observed
tower (0 ≤ i ≤ n), the change in the observed RSS over the last N seconds (i.e., N = 10)
was estimated as: ∆Rssi = Rsst − Rsst−N . The positive change in ∆Rssi over the threshold
τ∆Rss (i.e., τ∆Rss = 10 dBm) was considered a transition from indoors to outdoors and vice
versa. The confidence C∆Rss of this transition was computed based on the change observed
from the other towers as: C∆Rss = ∆Rss.s/n, where s is the number of towers observed
with a positive ∆Rss and n is the total number of observed towers.

3.4.4. Utilizing Magnetic Fields as an I/O Detection Indicator

Indoors, metallic structures and electrical cables interfere with magnetic field signals
and cause higher MF disturbances than outdoors. The difference between the observed
indoor and outdoor variation can be used as an I/O indicator. However, the glaring
impact of this phenomenon can be observed while the user is walking, yet decays in static
mode [24,26]. Thus, in our I/O detection approach, the stationary and moving modes were
checked first. While moving, the MF detector determines the average variance over the last
recorded N seconds (i.e., N = 10) to serve as an I/O indicator. If the average MF variance
is larger than the threshold τm (i.e., 150 µT), the MF detector provides an indication of the
indoor environment. Therefore, I/O confidence was estimated as a function of magnetic
variation and pedestrian speed. At stationary intervals, the small variance detected in all
scenarios hinders using the MF variance as an I/O indicator.

3.4.5. Utilizing GNSS Measurements as an I/O Detection Indicator

As discussed in the previous subsections, the indicators of LPCS have different lim-
itations. GNSS indicators are trusted sources and can make final decisions when LPCS
are exposed to confusion. Thus, we utilized GNSS indicators in intervals (see Figure 4,
yellow zones) when the LPCS triggered an I/O transition. GNSS indicators were employed
at these intervals to inspect and confirm the decisions of the LPCS. Two types of GNSS
measurements were used to determine whether the user was outdoors or indoors, including
the ratio of the signal power to the noise power (snr), and the number of observed satellites
(ns) (i.e., observed with snr > 0). A high ns and snr indicates high confidence of being
outdoors. The ns was directly used to estimate the detection confidence as: Cns = ns/nsout,
where nsout is the threshold used to define the maximum number of satellites in open sky
areas (i.e., nsout = 9 with snr > 0).

The confidence of being outdoors was computed based on snr as: Csnr = sn/snrout,
where snrout is the threshold used to define the maximum snr in open sky areas (i.e.,
snrout = 25). Additionally, the maximum change in the snr over the last N seconds was
estimated to represent the variation in the snr, as follows:

Ωsnr = max
(

snri − snri+(N/2)−1

)
(3)

Higher values of Ωsnr increase the probability of being indoors. For example, when
Ωsnr is observed higher than the threshold τΩsnr (i.e., 7) together with a low ns, it provides
a powerful indication of being indoors. Accordingly, the confidence in being outdoors was
computed based on Ωsnr as CΩsnr = τΩsnr/Ωsnr.
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3.4.6. Integration of I/O Indicators

The indicators of the sensors used have weaknesses and strengths. The light indicator
enables precise detection and fast switching [22]. However, the effectiveness of such an
indicator is limited to the availability of sunlight and exposed light sensors. The MF
variation indicator is only effective in the dynamic mode. The credibility of cellular RSS
variation must be supported by another source in confusing situations (e.g., corner effects
and false bursts). GNSS can provide a reliable decision, but they can slow down the
response and drain battery power. The integration of these sources can help in achieving
arbitrated decisions.

Figure 5 shows a flowchart of the proposed I/O detection algorithm. The algorithm
procedure is as follows. Acceleration data was frequently observed to monitor stationary
and moving intervals. After passing a certain period in the stationary mode, the status of
the user environment is considered unchanged, and the I/O detection service returns the
last estimated decision once the firmest I/O decision has been made. In the moving mode,
first, the day and night were distinguished, and the proximity distance was determined
to check the usability of the light intensity as an I/O indicator. The indicators of LPCS
were then invoked for continuous I/O detection. To mitigate false extremes and obtain
indicators with less noise, the raw measurements were filtered using a low-pass filter, and
the filtered current measurement x̀t was estimated as follows:

x̀t = αxt + (1− α)x̀t−1 (4)

where xt is the current measurement, x̀t−1 is the filtered value of the previous epoch,
and α is a constant between 0 and 1 that represents the influence of the previous state
on the current state. Subsequently, the confidence levels for the possible environments
were estimated using the filtered measurements for each indicator. Algorithms 1 and 2
present the aggregated I/O decision based on LPCS and GNSS indicators, and LPCS
only, respectively.

3.5. Position Estimation
3.5.1. Position Estimation Based on EKF

The I/O detection service was utilized to determine the appropriate localization
technique by distinguishing the ambient environment and switching between localization
techniques when the user shuttled from indoors to outdoors or vice versa. Based on the
ambient environment, GNSS or WiFi were then requested and utilized to update the inertial
positioning solution. PDR was preferred to establish the fusion model and update the
user location, because step detection fit the low precision of low-cost accelerometers in
smartphones [42]. Owing to the nonlinearity of the PDR model, the EKF, a nonlinear
version of the Kalman filter with a simple and effective computational estimation process,
was used [43] to fuse the PDR and GNSS or WiFi fingerprinting solutions. Based on the PDR
method, the user position (xk, yk) was updated as soon as a new step k was triggered. The
following formula expresses the position and heading updates based on the PDR method:

xk = xk−1 + (1 + sk) slksin(hk) + σx
yk = yk−1 + (1 + sk) slkcos(hk) + σy
sk = sk−1 + σs
hk = hk−1 + ∆hk + σh

(5)

where slk and st indicate the distance moved and distance correction, respectively. hk and
∆hk are the heading and heading changes, respectively. σx, σy, σs, and σh are the east, north,
distance, and heading noises, respectively. Accordingly, we defined the state vector as
x =

[
δx δy δsl δh

]T , where δ is the error of each parameter. EKF theory is based on
linearizing an estimate of the current mean and covariance. Thus, the transition model was
linearized using a partial derivative. On this basis, the state equation can be described as
xt = At−1|txt−1 + Bωt, where At−1|t indicates the state transition matrix from epoch t− 1
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to t, B is the system noise matrix, and ωt is the system noise vector with the covariance
matrix Q : ωt−1 ∼ N (0, Qt−1). By linearizing the transition model, the transition matrix
was formulated as:

At−1|t =


1 0 slksin(hk) (1 + s) slkcos(hk)
0 1 slkcos(hk) (−1− s) slksin(hk)
0 0 1 0
0 0 0 1

 (6)

The observation model can be represented as: zt = Ctxt + υt, where Ct is the matrix
used to estimate the predicted measurement zt from the predicted state xt, and υt is the
observation noise, which is assumed to have a zero mean with the covariance matrix R :
υt ∼ N(0, Rt). The localization results from the inertial sensors and wireless measurements
were incorporated into the observation vector as zt =

[
∆x ∆y ∆s ∆h

]T , where ∆ is
the bias in each parameter. The transition C matrix is defined as diag(c1, c2, c3, c4) and
the covariance R matrix is denoted as diag(r1, r2, r3, r4). The parameters of the EKF
were updated based on the ambient environment and the available measurements. The
following subsections illustrate the estimation of the main components of the PDR method
and localization estimation for both indoor and outdoor modes.

3.5.2. Inertial Positioning Based on PDR

Because the precision of smartphone accelerometers is low and results in cubical
increases in positioning errors over time [44], our system prefers to use PDR over the inertial
navigation system (INS) [29,45]. The PDR scheme consists of three main components: step
detection, length estimation, and heading estimation. Regarding step detection, analyzing
the acceleration patterns enables the detection of the events of walked steps. Before
applying the detection algorithm, the raw acceleration data was filtered to clearly observe
the walked steps with less noise or false detection results. The filtered linear acceleration
value in the z-direction relative to the NCS was selected as the most sensitive axis that
gave the firmest indication of the step signature, regardless of the activity or the device
pose [46]. The step detection algorithm was then applied to count the triggered steps. We
relied on the time-based peak and valley detection approach for the step detection task,
which depends on gait cycle characteristics [47], to capture each step’s peak and valley
acceleration. One of these characteristics of the human step is that it consists of two parts,
i.e., rising and falling. Depending on pedestrian speed, a complete gait cycle should last
for a specific duration [48]. Acceleration peaks and valleys were accordingly detected.

Regarding step length estimation, the nonlinear model introduced in [49] was utilized
to dynamically estimate the length of each triggered step. This model assumes that the
length is nonlinearly correlated with the total vertical acceleration change of each step

as follows: sli = β
(

apeak
i +

∣∣∣avalley
i

∣∣∣)0.25
, where apeak

k and avalley
k are the peak and valley

acceleration for step i, respectively. β is the pedestrian’s profile parameter. Herein, β was
initialized to 0.55, and a calibrated parameter was obtained when the user walked in a
straight line between two points with high confidence in their location estimation.

For step heading estimation, the relative heading of the gyroscope provides a weak
long-term solution, and the absolute compass heading has a high short-term variation (i.e.,
it reaches 50◦ indoors) owing to magnetic interference [50]. Because the two sources have
complementary error characteristics, a weighted fusion algorithm [46] was used to take
advantage of them. The contribution of each source is constrained by two factors: (1) the
correlation between the heading of the two sources and (2) the availability of quasi-static
periods of magnetic field observations qualified to update the accumulated gyroscopic
heading. Quasi-static periods are usually considered as a high confidence interval for
determining reliable absolute heading with less disturbance. In the fusion algorithm,
among the compass, gyroscope integral, and previous step headings, the best candidates
were selected to contribute part of their weights (see [46] for more details).
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Algorithm 1: Aggregated I/O decision-based LPCS and GNSS indicators
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its thresholds outdoors and indoors (𝜎 , 𝜏 , 𝜏 ), and pedestrian speed 𝑣.  

 Output: outdoor confidence 𝐶𝑙 , indoor confidence 𝐶𝑙 , and semi-indoor confidence 𝐶𝑙  

1 Confidence initialization 𝐶𝑙 = 𝐶𝑙 = 𝐶𝑙 = 0 

2 If (𝑑  > 3 && 𝐼 > 𝜏  && 𝑛𝑠 > 𝑛𝑠 ) do:    //light sensor is exposed 

3 
 𝐶𝑙 = 𝐶𝑙 + 4 ∙ 𝑛𝑠 𝑛𝑠⁄ + 2 ∙ 𝐼/𝜏         //highest probability of being outdoors  

If (𝑛𝑠 ≥ 𝑛𝑠 ) do:  

4 
  𝜏 = 𝐼           //self-compensation for outdoor light threshold (adjusting light intensity 

thresholds with different environoments and weather conditions ) 
5  End if 

6 Else:                                      //checking signal to noise ratio 

7  If (𝑠𝑛𝑟 > 𝑠𝑛𝑟 ) do:                       //high signal-to-noise ratio 

8   𝐈𝐟 (𝑛𝑠 >  𝑛𝑠 )𝐝𝐨: 𝐶𝑙 = 𝐶𝑙 + 4 ∙ 𝑛𝑠 𝑛𝑠⁄ + 0.5 ∙ 𝑠𝑛𝑟 𝑠𝑛𝑟⁄   

9   𝐄𝐥𝐬𝐞 𝐢𝐟 (𝑛𝑠 >  𝑛𝑠 )𝐝𝐨: 𝐶𝑙 = 𝐶𝑙 + 4 ∙ 𝑛𝑠 𝑛𝑠⁄ + 0.5 ∙ 𝑠𝑛𝑟 𝑠𝑛𝑟⁄  

10   Else: 𝐶𝑙 = 𝐶𝑙 + 4 ∙ 𝑛𝑠 /𝑛𝑠 + 0.5 ∙ 𝑠𝑛𝑟 𝑠𝑛𝑟⁄  (𝑛𝑠 > 0)  

11  Else 

12   If (𝑠𝑛𝑟 > 𝑠𝑛𝑟 ) do:                 //medium signal-to-noise ratio 

13    If (𝑛𝑠 > 𝑛𝑠 ) do: 

14     If (Ω > 𝜏 ) do:          //checking max change of signal-to-noise ratio 

15 
     𝐶𝑙 = 𝐶𝑙 + 4 ∙ 𝑛𝑠/𝑛𝑠 + 0.5 ∙ 𝑠𝑛𝑟 𝑠𝑛𝑟⁄ + 0.1 ∙ Ω 𝜏⁄  

                                   //high probability of being indoors 
16     Else: 𝐶𝑙 = 𝐶𝑙 + 4 ∙ 𝑛𝑠 𝑛𝑠⁄ + 0.5 ∙ 𝑠𝑛𝑟 𝑠𝑛𝑟⁄  

17    Else: 𝐶𝑙 = 𝐶𝑙 + 4 ∙ 𝑛𝑠 /𝑛𝑠 + 0.5 ∙ 𝑠𝑛𝑟 𝑠𝑛𝑟⁄  

18   Else:                                   //low signal-to-noise ratio 

19    If (𝑑  >  2 && 𝑛𝑠 <  𝑛𝑠  && 𝑠𝑛𝑟 <  𝑠𝑛𝑟 ) do://highest probability of being indoors 

20 
    𝐶𝑙 = 𝐶𝑙 + 4 ∙ 𝑛𝑠 /𝑛𝑠 + 0.5 ∙ 𝑠𝑛𝑟 /𝑠𝑛𝑟 + 2 ∙ 𝜏𝐼𝑖𝑛 𝐼⁄  𝜏 = 𝐼                //self-compensation for indoor light threshold 

21    Else:                                       

22     𝐈𝐟 (𝑑  >  2 && 𝐼 <  𝜏𝐼𝑖𝑛 ) 𝐝𝐨   //light intensity is very low during daytime 

23      𝐶𝑙 = 𝐶𝑙 + 4 ∙ 𝑛𝑠 /𝑛𝑠 + 2 ∙ 𝜏𝐼𝑖𝑛 𝐼⁄                      

24     Else if (Ω > 𝜏 ) 𝐝𝐨:         //checking max change of signal-to-noise ratio 

25      𝐶𝑙 = 𝐶𝑙 + 4 ∙ 𝑛𝑠 /𝑛𝑠 + 0.1 ∙ Ω 𝜏⁄  

26     End if 

24    End if  

28   End if 

29  End if 

30 End if 

31 End if 

32 If (ΔRss  > 𝜏∆ ) do:                    //aggregating with cellular variation, case of positive slope 

33 
𝐶𝑙 = 𝐶𝑙 + ΔRss ∙ (𝑠 𝑛⁄ )             //𝑛 is the total number of observed towers, s is the count of 

towers observed with a positive slope  

34 Else if (ΔRss  < −𝜏∆ ) do:             //case of negative slope 

35 𝐶𝑙 = 𝐶𝑙 + |ΔRss | ∙ (𝑠 𝑛⁄ )     

36 End if 
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3.5. Position Estimation 
3.5.1. Position Estimation Based on EKF 

The I/O detection service was utilized to determine the appropriate localization tech-
nique by distinguishing the ambient environment and switching between localization 
techniques when the user shuttled from indoors to outdoors or vice versa. Based on the 
ambient environment, GNSS or WiFi were then requested and utilized to update the in-
ertial positioning solution. PDR was preferred to establish the fusion model and update 
the user location, because step detection fit the low precision of low-cost accelerometers 
in smartphones [42]. Owing to the nonlinearity of the PDR model, the EKF, a nonlinear 
version of the Kalman filter with a simple and effective computational estimation process, 
was used [43] to fuse the PDR and GNSS or WiFi fingerprinting solutions. Based on the 
PDR method, the user position (𝑥 , 𝑦 ) was updated as soon as a new step 𝑘 was trig-
gered. The following formula expresses the position and heading updates based on the 
PDR method: 

⎩⎨
⎧𝑥 = 𝑥 + (1 + 𝑠 ) 𝑠𝑙 𝑠𝑖𝑛( ℎ ) + 𝜎𝑦 = 𝑦 + (1 + 𝑠 ) 𝑠𝑙 𝑐𝑜𝑠( ℎ ) + 𝜎𝑠 = 𝑠 + 𝜎ℎ = ℎ + 𝛥ℎ + 𝜎  (5) 

where 𝑠𝑙  and 𝑠  indicate the distance moved and distance correction, respectively. ℎ  
and Δℎ  are the heading and heading changes, respectively. 𝜎 , 𝜎 , 𝜎 , and 𝜎  are the 
east, north, distance, and heading noises, respectively. Accordingly, we defined the state 
vector as 𝒙 = 𝛿 𝛿 𝛿 𝛿 , where 𝛿 is the error of each parameter. EKF theory is 

3.5.3. Position Estimation in Indoor Environments

Per the decision of the proposed I/O detection service, when the ambient environment
was distinguished as an indoor area, the application queried about the availability of a
trained database for the occupied area and activated the collection mode of crowdsourced
data. The end-user data were collected based on the procedures expressed in the next sub-
section. After collecting the required data, a Python code was developed to autonomously
analyze and generate the radio map in the offline engine. Refer to [51] for more details
about the procedures and results of the database generation method. With the availability
of the database of the equipped location, the end-user application, that had permission to
access the database, could query and retrieve the RPs data instantly from Cloud Firestore.

(a) Merits of Crowdsourced Data Collection with the Proposed I/O detection Model

As mentioned earlier, collecting crowdsourced data and deriving reliable locations
of the collected pervasive signatures can enable the autonomous generation of offline
databases needed for fingerprinting-based localization, which helps develop self-deployable
systems. The collection of crowdsourced data should be made user-friendly to boost the
widespread adoption of IPS-based crowdsourcing. This could promote universal indoor
positioning solutions. Figure 6 summarizes the procedures followed to manage data collec-
tion and convert the collection of crowdsourced data into a user-friendly process with the
help of the proposed I/O detection service. The following factors manage the collection of
crowdsourced data.
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Figure 6. Crowdsourced data collection strategy.

1- I/O environmental awareness: Outdoors, the availability of GNSS eliminates the need
to collect crowdsourced signatures. In contrast, in indoor areas or when transitioning
from indoors to outdoors, owing to the absence of accurate GNSS localization, crowd-
sourced signatures must be collected to train fingerprint databases; consequently,
once the proposed I/O detection service detects indoor or semi-indoor areas, the
system activates the collection mode. Distinguishing the type of ambient environment
accurately with low power consumption helped curb the collection of crowdsourced
data in the required areas. This also helped reduce battery drain by preventing excess
outdoor data collection. Notably, data collection was not immediately prevented after
transiting from indoors to outdoors. Conversely, the system continued to collect data
for a certain period. This period is permitted to detect GNSS observations with high
accuracy (e.g., >5.0 m) and a low horizontal dilution of precision (HDOP) (e.g., <20) to
act as an anchor node. With capturing anchor nodes, the localization of the collected
traces was accordingly adjusted. Figure 7 depicts the impact of I/O discrimination on
the overall collected traces after their adjustment, where it can be seen that: (1) the
collected traces were densified in the indoor and semi-indoor areas; and (2) although
serval traces were walked outdoors (in the garden), I/O discrimination confined data
collection in the required areas.

In addition to leveraging I/O awareness, two other factors were considered in the
crowdsourced data collection process.

2- Initial database generation or updating: In indoor environments, furniture layouts,
WiFi APs settings, and network updates are likely to undergo frequent changes. Thus,
although data for a specific area is collected and the database is already created,
data collection should not be discontinued. Conversely, according to the related
literature [52–55], data collection and database updating are frequently required to
keep the pace with the frequent changes in indoor environments. Knowing that the
equipped area lacks a database (i.e., requires initial generation) or that the database is
already created (i.e., requires database updating) is beneficial for the data collection
process for the following reason: if a specific area lacks localized signatures, the
system collects crowdsourced data with a sampling rate higher than that used for
updating to accelerate the initial generation and condense the collected signatures
by each RP. Conversely, as long as the database of a certain area has already been
trained, collecting excessive data is not required. Instead, only a small amount of
data is required to assess any changes in the environment and update the database.
Consequently, the subsequent collection was conducted at a lower sampling rate.
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3- User motion mode: Identifying static and dynamic modes can help manage data
collection and reduce excess collection in a static state, either for the initial creation or
updating. The distinction between stationary and walking modes is usually performed
using acceleration data and step detection results. From the perspective of power
consumption, an accelerometer is an LPCS. Thus, the sensor used to observe these
modes is not a power drainer. The decision based on the walking mode significantly
helps to reduce the power consumption arising from excess collection. In static
intervals, where a user occupies a fixed geographic position, the continuous collection
of signatures for a fixed location does not extend the spatial database coverage; instead,
it only measures the signature variation. Therefore, there was no need to collect much
data and thus, a low collection rate was considered (i.e., a signature was recorded
every 3 min). In contrast, continuous collection in the dynamic mode covers different
locations and extends the spatial database coverage. Consequently, crowdsourced
data were collected in the walking mode with a sampling rate higher than that of the
static mode. In the dynamic mode, the raw inertial sensor data were recorded with
a sampling frequency for the accelerometers and magnetometer equal to 50 Hz. A
higher sampling frequency equal to 100 Hz was used for the gyroscope to allow for
the accurate estimation of angular changes. The WiFi scan interval was 2 to 4 s.

(b) Online Fingerprinting

With the availability of a trained radio map for the equipped area, online position-
based fingerprinting was estimated as soon as a WiFi scan was triggered. Notably, in the
offline engine of the proposed scheme, we divided the generated radio map to sub-clusters
based on the locations of the maximum RSS values of the radio map APs, as proposed
in [56]. As a result, the generated radio map comprised sub-clusters of RPs. In the online
fingerprinting stage, the online signatures were compared with the RPs of one sub-cluster
instead of the RPs of the whole database. To find out the nearest sub-cluster, a regional
match was performed by comparing the online RSS values with RSS values assigned to the
center of each sub-cluster. To estimate the fingerprinting position, the KWNN algorithm
was applied on the RPs of the sub-cluster with the highest match.

The minimum summation of the Euclidean distance between the online measurements
and the offline RPs data was estimated to select the best K-neighboring RPs, based on the
following expression:

δrss =

√√√√ n

∑
j=1

(pRP
j − ponline

j )
2 (7)

where pRP
j and ponline

j are the offline and online signatures for AP j, respectively. δrss is the
RSS difference between the offline and online RSS. n is the number of APs scanned by RP.
The online position can then be estimated as:

xt
i, f ps =

(
x f ps, y f ps

)
=

(
K

∑
i=1

(
xRP

i ·wi

)
,

K

∑
i=1

(
yRP

i ·wi

))
(8)

where
(

xRP
i , yRP

i
)

is the position of a selected RP ∀i∈{1,...,K}, and K is the number of best
neighboring RPs selected to estimate the fingerprinting position. Weight wi is computed
as follows:

wi =

1
(δi)

2

∑K
i=1 (

1
δi
)

2 (9)

where δ is the difference between offline and online signatures. An indication of the
expected error in the fingerprinting estimate can be obtained from the distance among the
best K-RPs. Obtaining adjacent set of K-neighboring RPs (i.e., with a short distance from the
best estimate) should reflect a high overlap between the RPs that cover the range of online
RSS variation. High overlapping is expected to lead to accurate positioning estimation [57].
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Therefore, from the best K-neighboring RPs returned from the fingerprinting algorithm,
the expected error can be deduced by calculating the average weighted distance between
the best K fingerprints, as follows:

σ2
f ps =

∑K
i=1

(
wi· 2

√(
x f ps − xRP

i

)2
+
(

y f ps − xRP
i

)2
)

∑K
i=1(wi)

(10)

Subsequently, the EKF was updated as follows. Parameters c1 and c2 were set to 1. ∆x
and ∆y were estimated as ∆x = x f ps − xPDR and ∆y = y f ps − yPDR and zt was updated.
The covariance matrix was also updated to: r1 = r2 = σ2

f ps.

Remote Sens. 2022, 14, x FOR PEER REVIEW  19  of  31 
 

 

 

Figure 7. The impact of I/O discrimination on collecting crowdsourced data. It can be observed that 

although several tracks were walked in the garden area, utilizing the I/O detection approach con‐

fined the collected data to  indoor and semi‐indoor areas (i.e., the GNSS denied areas that  lacked 

localized signatures). 

(b) Online Fingerprinting 

With the availability of a trained radio map for the equipped area, online position‐

based fingerprinting was estimated as soon as a WiFi scan was triggered. Notably, in the 

offline engine of the proposed scheme, we divided the generated radio map to sub‐clus‐

ters based on the locations of the maximum RSS values of the radio map APs, as proposed 

in [56]. As a result, the generated radio map comprised sub‐clusters of RPs. In the online 

fingerprinting stage, the online signatures were compared with the RPs of one sub‐cluster 

instead of the RPs of the whole database. To find out the nearest sub‐cluster, a regional 

match was performed by comparing the online RSS values with RSS values assigned to 

the center of each sub‐cluster. To estimate the fingerprinting position, the KWNN algo‐

rithm was applied on the RPs of the sub‐cluster with the highest match. 

The minimum summation of  the Euclidean distance between  the online measure‐

ments and the offline RPs data was estimated to select the best K‐neighboring RPs, based 

on the following expression: 

𝛿 𝑝 𝑝   (7) 

where  𝑝 and  𝑝   are the offline and online signatures for AP  𝑗, respectively.  𝛿   is 

the RSS difference between the offline and online RSS.  𝑛  is the number of APs scanned 

by RP. The online position can then be estimated as: 

𝐱 , 𝑥 , 𝑦 𝑥 . 𝑤 , 𝑦 . 𝑤   (8) 

where  𝑥 , 𝑦   is the position of a selected RP  ∀ ∈ ,…, , and 𝐾  is the number of best 

neighboring RPs selected to estimate the fingerprinting position. Weight 𝑤   is computed 

as follows: 

Figure 7. The impact of I/O discrimination on collecting crowdsourced data. It can be observed
that although several tracks were walked in the garden area, utilizing the I/O detection approach
confined the collected data to indoor and semi-indoor areas (i.e., the GNSS denied areas that lacked
localized signatures).

3.5.4. Position Estimation in Outdoor Environments

Since 2016, it has been possible to obtain raw GNSS observations from smartphones.
Smartphones can enhance their positioning performance in outdoor areas by leveraging
this technology, thereby ditching the black box positioning concept [58]. A variety of
positioning methods has been explored in recent years to enhance smartphone positioning,
including dual- and single-frequency precise point positioning (PPP) and real-time kine-
matic (RTK) [59]. In this study, we did not focus on how GNSS precision can be improved.
When the I/O service distinguished the ambient environment outdoors, GNSS localiza-
tion information was requested and utilized to update the inertial positioning solution.
Once the GNSS positioning solution was updated, the zt parameters were updated as:
∆x = xGNSS − xPDR and ∆y = yGNSS − yPDR. Parameters c1 and c2 were set to 1. The
covariance matrix was also updated as r1 = r2 = σ2

GNSS. σGNSS was estimated based on
the precision and the horizontal dilution of precision reported by the smartphone.
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When a user walks in a straight line between two locations with high accuracy, such
as A and B, the step length is calibrated as:

slcalib =
l̂AB
N

=

√
(dxAB)

2 + (dyAB)
2

N
(11)

where l̂AB is the actual distance between A and B; dxAB and dyAB are the easting and
northing distances between A and B, respectively; and N is the number of steps triggered
between A and B. In the fusion model, the length parameters were updated to: ∆s =
slcalib − slimp, c3 = 1, and r3 = 0.005, where slimp is the empirical step length. Similarly, the
step heading was calibrated after walking in a straight line between these two points by
computing the error in the estimated heading as follows:

hδ = arctan
(

yr
A − ym

B
xr

A − xm
B

)
− arctan

(
yr

A − yr
B

xr
A − xr

B

)
(12)

where the superscripts m and r refer to the measured and reference locations of A and
B, respectively. In the EKF model, the heading parameters were updated as ∆h = hδ,
c4 = 1, and r4 = 0.001. Finally, the integrated user position is estimated as follows:

xt = xt−1 + δx + (1 + s + δs) slksin(hk + δh)
yt = yt−1 + δy + (1 + s + δs) slkcos(hk + δh)

(13)

4. Experiments, Results, and Evaluations
4.1. Test Area

This section describes the experimental area and setup. The tests were conducted
using the prototypical Android application described in Section 3.1. Different smartphones,
including the Huawei Mate 20 Pro, Samsung Note 8, Huawei P20, and Samsung G7, were
utilized to test the proposed system in various scenarios. A large campus floor was used as
the test site. This floor, depicted in Figure 8, is located on Floor 6 of Block Z, Hong Kong
Polytechnic University, with an area of approximately 7200 m2. The test field comprised
two building blocks connected by two bridges and an outdoor garden, which provided a
good environment for testing seamless positioning and I/O detection performance. The
tests were conducted day and night, on cloudy and sunny days. The smartphones were
carried in a horizontal handheld pose while evaluating the online positioning performance.
Figure 8 shows different scenes of indoor environments represented by the northern block
(scene 1) and southern block (scene 2), semi-indoor environments represented by bridges
(scene 3) and indoor-outdoor transitions (scene 4), and outdoor environments represented
by garden areas (scenes 5 and 6). Tracks (S), (N), and (Z) are samples of the walked tracks
to evaluate the proposed scheme.

4.2. Evaluation of I/O Detection

We designed I/O detection tests to ensure that the performance of the proposed
detection approach satisfied the four conditions required for seamless navigation: high
detection accuracy, fast switching, energy efficiency, and pervasive applicability. In terms
of universal applicability, the utilized detection indicators were extracted from off-the-
shelf sensors and pervasive observations, which guaranteed the wide applicability of
the proposed detection approach. The detection performance was also evaluated using
various smartphone models to ensure the independence of the proposed system on the
platform. In the following sections, we evaluate the detection accuracy, latency, and
energy consumption.
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4.2.1. Detection Accuracy

We evaluated the detection accuracy of our I/O detection approach through several
tests conducted in indoor, semi-indoor, and outdoor areas, using three devices (Huawei
Mate 20 Pro, Samsung Note 8, and Huawei P20). Additionally, the detection accuracies of
the IODetector approach [26] were estimated under the same conditions. The IODetector
approach utilizes indicators inferred from sensors with low power consumption, such
as light, MF, and cellular. Moreover, the results of another detection approach named
“LPCS+GNSS (continuous)” were determined by continuously combining the GNSS with
indicators inferred from sensors with low power consumption as proposed in existing
studies such as [13–15]. The detection results of the proposed approach were compared
with those of the two aforementioned approaches. Figure 9 shows the average detection
results of each device in each environment, and the variations in the results of the tests
are indicated by error bars. Together with the smartphone utilized to conduct the I/O
detection test, another smartphone was used to capture the time and ground truth of the
environment type. The environment type estimated by the detection approach was then
compared with the ground truth to determine the detection accuracy.

Indoors, the average detection accuracy of the proposed approach reached approxi-
mately 90% compared with 81% and 83% for the IODetector and (LPCS+GNSS (continu-
ous)), respectively. Outdoors, the average detection accuracy of the proposed approach
was 92% compared with 86% and 90% for the IODetector and (LPCS+GNSS (continuous)),
respectively. The detection accuracy for the semi-indoor areas was much lower than that
for the indoor and outdoor areas, with an average accuracy of 81%, compared with 71%
and 67% for the IODetector and (LPCS+GNSS (continuous)), respectively. Furthermore,
in almost all scenarios, the variations in the detection results of the proposed approach
were less than those for the IODetector and (IODetector and GNSS). The experimental
results indicate that the proposed detection approach accurately distinguished the I/O
environments in most cases and outperformed other approaches.
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Figure 9. I/O detection accuracy using different detection approaches and smartphone models in
indoor, semi-indoor, and outdoor areas.

4.2.2. Detection Latency

In the walking mode, continuous I/O detection with a low latency is required to
avoid utilizing outdated detection results, thereby quickly selecting proper positioning
techniques. Track (Z), as shown in Figure 8, is a convenient test field to evaluate the latency
of the detection response when transitioning from indoors to outdoors because it comprises
several transitions from outdoors to indoors. In this experiment, a user started walking
from an outdoor area at point A to several indoor and semi-indoor areas, and then returned
to the same starting point, as depicted in Figure 8. The duration of each environment
was recorded using a stopwatch that served as the ground truth. Figure 10 presents the
detection results for the three approaches: the proposed detection approach, the IODetector,
and LPCS+GNSS (continuous).

For certain durations in semi-indoor areas, the detection results of the IODetector
varied and provided errors in detection or of an unknown status, despite no change in
the ambient environment. The detection errors were reduced using the LPCS+GNSS
(continuous) approach, where GNSS indicators were combined with the indicators of low-
power-consuming sensors. The errors associated with our detection approach were less
than those observed by the other two approaches.

In terms of detection latency, in the transition intervals from indoors to outdoors or
vice versa, the proposed detection approach, like the IODetector, experienced fast switching
with a low latency of ~3 s compared with 5–8 s for LPCS+GNSS (continuous). The proposed
detection approach, on average, requires 2 to 3 s to realize that a transition occurred from
outdoors to indoors or vice versa (i.e., convergence time). The continuous combination of
GNSS indicators with light indicators may explain the delay in the detection response of
(LPCS+GNSS (continuous)). To conclude, using GNSS indicators during transition intervals
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is advantageous instead of relying on them continuously. In this manner, the light indicator
detects the environment change quickly, and GNSS are then used to inspect and confirm the
reported transition. Consequently, the possible delay in the response owing to continuously
incorporating GNSS was alleviated, and detection reliability was achieved.
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4.2.3. Power Consumption

The battery percentage change over time was used to experimentally evaluate the
power consumption of our detection performance. All non-involved factors, such as
screen brightness, CPU performance, and networking activity, were kept constant to test
battery drain. Moreover, all auto-update features and data synching were disabled. Power
consumption was calculated by charging the smartphone to 100% of its battery life and
then recording the time spent to decrease it by 1%. Each test involved draining the battery
from 100% to 90%. The experiments were conducted in three different scenarios: indoors,
outdoors, and with several transitions from indoors to outdoors.

The results of the experiments are presented in Table 2. The “GNSS” test shows that the
battery was drained when only GNSS indicators were used for detection. It can be observed
that detection services based on GNSS or LPCS+GNSS (continuous) drain the battery
power faster than the IODetector and the proposed detection service. Incorporating GNSS
indicators into our approach in the transition intervals increased the power consumption
by a lower margin compared with the power consumed by the IODetector. With this low
margin of power consumption, the proposed approach maintained its detection reliability
and addressed the low detection accuracy of lightweight I/O detection services, such as
the IODetector.

Table 2. Battery power consumption for different I/O detection services.

System Average Minutes to Reduce 1% of Battery Life

Environment
Indoors
without

Transitions

Outdoors
without

Transitions

Indoors and
Outdoors with

Transitions
GNSS 4.72 4.95 4.65

IODetector 5.55 5.60 5.52
LPCS+GNSS (continuous) 4.55 4.22 4.10

The proposed detection
service 5.50 5.58 5.45

4.3. Comparison with Existing I/O Detection Studies

In this section, we compare our I/O detection results with those of our counterparts.
Table 3 summarizes the performance comparison between these methods and our detection
approach. The IODetector [26] leveraged low-power-consuming sensors to develop a
lightweight approach that achieved an overall accuracy of approximately 86% in indoor
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and outdoor areas. This accuracy was reduced to 71% in the transition intervals (semi-
indoor areas). A similar approach was developed in [27], which relied on a semi-supervised
method that improved the accuracy in trained environments to 88%. In [16], WiFi–RSS
measurements were combined with light and cellular indicators to improve the localization
accuracy in rural and urban areas. However, utilizing WiFi for continuous I/O detection
consumes more energy than lightweight approaches and the overall accuracy is not signifi-
cantly enhanced. Moreover, the SenseIO [16] can only classify indoor and outdoor areas
similar to [13] and [15]. In [13,15], GNSS indicators were continuously utilized together
with other sensor indicators. This combination was designed to distinguish between indoor
and outdoor environments, and did not consider detecting challenged areas (semi-indoor
areas). Compared with our counterparts, our detection approach incorporated GNSS in-
dicators in the transition intervals, which increased the power consumption by a lower
margin than lightweight detection services such as the IODetector [26]. With this low
margin of power consumption, the proposed approach improved the detection reliability in
semi-indoor areas with a detection accuracy of 82% compared with 71% for the IODetector.
In addition, the detection of indoor and outdoor areas reached approximately 92%. In this
manner, we addressed the low detection accuracy and reliability of existing lightweight
I/O detection services while reducing power consumption.

Table 3. Comparison between the performance of the proposed I/O detection and its counterparts.

I/O Detection Approach Sensors Used for Detection Detection Accuracy Power Consumption

IODetector [26] Light, cellular, and magnetism
The overall accuracy was ~86%,
reduced to 71% in the transition

intervals (semi-indoor areas).
Low

[27] Light, cellular, and magnetism

The overall accuracy was ~88% in
familiar

environments and 82% in unfamiliar
environments.

Low

SenseIO [16] Light, cellular, and WiFi

The overall accuracy of indoor and
outdoor detection was ~91%, and the

semi-indoor areas were not
considered for detection.

High

[13] Light, cellular, magnetism,
and GNSS (continuous)

The overall accuracy of indoor and
outdoor detection was ~89%, and the

semi-indoor areas were not
considered for detection.

High

[15]
Light, cellular, magnetism,

GNSS, sound, and
temperature

The overall accuracy of indoor and
outdoor detection was ~94%, and the

semi-indoor areas were not
considered for detection.

High

The proposed approach
Light, cellular, magnetism,

and GNSS (in the transition
intervals)

The proposed approach achieved an
overall accuracy of ~92%, with 82% in

semi-indoor areas.

Low with a marginal
increase in semi-indoor

areas

4.4. Seamless Positioning Performance

Figure 11 shows the positioning performance of tracks A, B, and C. Track A was
walked in the northern block and the attached garden, while track B covered most of the
southern block. More than 1000 steps were walked on track C. This long track started from
the north block toward the garden, then to the south block where two loops were walked,
and finally to the garden. Ground truth points were created for evaluating the positioning
performance of the proposed system using the following setups. A Trimble R10 GNSS
Receiver was used to determine the absolute location of benchmarks in the garden. In
order to obtain other benchmark points on the floor, garden benchmarks were equipped
with Leica total stations. We used the floor benchmarks to georeference a digital floor plan
(in AutoCAD). We leveraged the proposed method in [60] to create check points in online
positioning tests by marking distinct features on the user interface screen. Based on these
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features, the online location was referenced. The enrichment of the floor plan with many
distinct landmarks such as gates, corners, elevators, stairs, and office doors encourages
utilizing the chosen method. Additionally, cost effectiveness is among the key benefits of
using the chosen method. The georeferenced map allowed us to label and estimate the
absolute positions of floor landmarks (i.e., distributed at approximately 6.0 m-distances).
Then, an interactive Google Maps-based marker labeling option was developed to facilitate
recording the check points in online positioning experiments.
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In all tracks, the proposed I/O detection service successfully detected the ambient
environment at its initial location. When the detected environment was indoors, the initial
GNSS location and WiFi BSSID were firstly obtained. The initial GNSS location was used to
invoke the map of the equipped area. The WiFi BSSID were used to check the availability
of an offline fingerprinting database of the occupied area. Notably, the database of the floor
area was generated autonomously from collected crowdsourced data. Refer to [51] for more
details about the procedures and results of the database generation method. More than
1350 RPs were generated from crowdsourced data. The WiFi fingerprinting solution was
estimated with the availability of the floor database, and the initial location was updated. In
addition, the I/O detection services altered the localization techniques when transitioning
from indoors to outdoors or vice versa, and utilized the appropriate technique for the
corresponding environment.

Figure 12 shows the cumulative distribution function (CDF) of the positioning error for
the PDR, WiFi fingerprinting, GNSS, and EKF solutions for tracks A, B, and C. Table 4 lists
the mean positioning accuracy and 90% of the localization error for the PDR, fingerprinting,
GNSS, and EKF solutions for tracks A, B, and C. The fingerprinting solution achieved
approximately 2.3 m over the three tracks with a 90% error of less than 4.0 m, while
the mean and 90% errors of the PDR solution reached approximately 3.6 m and 5.1 m,
respectively. The integrated solution based on EKF achieved a mean error of 2.1 m with
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90% errors less than 2.9 m. Notably, the high number of WiFi APs within the test area
(33 APs) and their distribution along narrow corridors may have helped in achieving high
fingerprinting accuracy. Test areas with less density of WiFi APs or open spaces may result
in lower positioning accuracy.
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Table 4. Positioning accuracies of the PDR, fingerprinting, GNSS, and EKF solutions.

Solution Mean (m) 90% (m)
Track A B C A B C
PDR 2.8 4.7 3.5 4.3 5.8 5.2

Fingerprinting 2.1 2.4 2.2 3.3 3.9 3.4
GNSS 4.8 - 4.4 9.2 - 8.5
EKF 1.6 2.2 2.4 2.4 2.7 3.5

4.5. Computational Complexity

For smartphone real-time localization, the position should be rapidly estimated to
achieve seamless positioning and better user experience, otherwise the proposed scheme
becomes tedious and useless. In practice, the estimated position should be updated in a
time interval of less than the duration of a human step cycle. Hence, the proposed scheme
should provide efficient positioning performance with a low computational complexity.
In the online positioning stage of the proposed scheme, a KWNN algorithm was used to
estimate the WiFi fingerprinting position. The computational complexity for KWNN is
O(n), where n is the number of offline fingerprints. In the online fingerprinting stage, after
determining the nearest sub-cluster, the KWNN algorithm was applied on the sub-cluster
RPs. The execution time of the KWNN algorithm is between 0.50 and 0.650 ms (for about
330 RPs per sub-cluster).

An EKF was used to fuse the PDR solution with the GNSS and WiFi fingerprinting
solutions. Compared to the common fusion approaches, such as particle filter (PF) and
unscented Kalman filter (UKF), EKF has a lower computational cost than the PF and is
much simpler than the UKF. The PF has a complexity equal to O

(
PL2), where P is the

number of particles and L is the dimensions of the state parameter. To achieve better
estimation performance, the number of particles should be larger than L. Compared to
the PF, the complexity of the EKF is much lower, whereby the computational process for
the PF requires P/L times the EKF. The EKF and UKF are the common versions of the KF
proposed for solving the nonlinear models by linearization. The computational complexity
of both filters equals O

(
L3). However, the estimation process of the EKF is much simpler

than the UKF. The execution time of the EKF is between 0.27 and 0.32 ms. A Huawei Mate
20 Pro smartphone (model LYA-L29, powered by a Kirin 980 octa-core processor and 6 GB
of RAM) with an Android OS ran the proposed application to obtain the results. The EKF
efficiently succeeded to provide a real-time positioning solution.

5. Conclusions

In this study, we proposed an enhanced indoor-outdoor environmental awareness
service that is convenient for conducting a user-friendly handover mechanism for seamless
navigation based on multi-sensory integration. Compared with existing I/O detection
services, the proposed service guarantees reliable I/O detection while maintaining low
power consumption for smartphones with limited power budgets. The proposed I/O
detection service achieved an approximately 90% detection accuracy with low detection
errors in transition areas between indoor and outdoor environments. Moreover, the pro-
posed detection approach reduces the latency and power drain owing to the dependency
on GNSS indicators only at the transition intervals. The benefits of the proposed I/O
detection approach extend over online and offline localization stages. Leveraging the
proposed detection service, the integrated solution based on EKF realized seamless indoor-
outdoor localization with less switching latency and achieved a mean error of 2.1 m with
90% errors of less than 2.9 m. In the offline engine, the collection of crowdsourced data
was confined to indoor and semi-indoor areas by virtue of accurately distinguishing the
ambient environment type. As a result, battery consumption was reduced by preventing
excessive data collection. There are several avenues for extending our study. The first is
to investigate other indicators for I/O detection. The second is to suggest other factors
such as smartphone capabilities for user-friendly crowdsourced data collection. The third
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is to measure user satisfaction with device performance, which can be conducted through
questionnaires. The fourth is to extensively investigate the impact of both short-term and
long-term database updating on the localization accuracy and the factors associated with
the data collection process while updating the generated databases.
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