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Abstract: Synthetic aperture radar (SAR) image ship detection is currently a research hotspot in the
field of national defense science and technology. However, SAR images contain a large amount of
coherent speckle noise, which poses significant challenges in the task of ship detection. To address
this issue, we propose filter convolution, a novel design that replaces the traditional convolution layer
and suppresses coherent speckle noise while extracting features. Specifically, the convolution kernel
of the filter convolution comes from the input and is generated by two modules: the kernel-generation
module and local weight generation module. The kernel-generation module is a dynamic structure
that generates dynamic convolution kernels using input image or feature information. The local
weight generation module is based on the statistical characteristics of the input images or features
and is used to generate local weights. The introduction of local weights allows the extracted features
to contain more local characteristic information, which is conducive to ship detection in SAR images.
In addition, we proved that the fusion of the proposed kernel-generation module and the local weight
module can suppress coherent speckle noise in the SAR image. The experimental results show the
excellent performance of our method on a large-scale SAR ship detection dataset-v1.0 (LS-SSDD-v1.0).
It also achieved state-of-the-art performance on a high-resolution SAR image dataset (HRSID), which
confirmed its applicability.

Keywords: synthetic aperture radar (SAR); remote sensing image ship detection; filter convolution;
coherent speckle noise; local weight

1. Introduction

Synthetic aperture radar (SAR) is an active microwave detection system that can emit
microwaves around the clock and generate high-resolution images using microwaves re-
flected by objects [1]. SAR can perform large-area detection at night and under adverse
conditions and can penetrate vegetation, soil, and lakes, overcoming the limitations of
optical and infrared systems. Therefore, SAR images have high research and application
value for agricultural surveying and mapping, oceanographic research, ship inspection, and
military reconnaissance [2]. However, during SAR image generation, echoes of multiple
scattering points are superimposed coherently, which inevitably forms coherent speck-
les [3,4] (see Figure 1). The existence of coherent speckles reduces the contrast of SAR
images, weakens edge details, and significantly reduces the efficiency of SAR image inter-
pretation, retrieval, and other applications, including SAR image segmentation [5], object
detection [6], recognition, and classification [7]. In particular, the above-mentioned situa-
tion is further exacerbated in the inshore scene, since metallic objects have similar scattering
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properties to shores. Therefore, coherent speckling is the primary problem to be solved for
understanding and analyzing SAR images.
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Figure 1. Comparison of a clean image and an image contaminated by coherent speckles: (a) clean
image; (b) coherent speckle image (Coherent speckle noise is artificial and has a Gamma distribution.)

Based on the generation mechanism of SAR images, coherent speckle suppression
methods have been developed with the advent of SAR images. Researchers first proposed
an estimation domain-based method based on natural optical image processing methods,
and many studies have confirmed its effectiveness [8,9]. However, statistical models of
noise in SAR images are usually built on the premise that the area is homogeneous, and
ideal performance can be achieved in homogeneous areas, while in texture-rich areas, the
image structure information (edges, textures, and point objects) will be blurred or lost. In
addition to the estimated domain-based methods described above, other effective speckle
suppression methods exist [10–12]. However, similar to statistical domain-based methods,
they often fail to preserve sharp features such as edges and often contain blocking artifacts
in denoised images.

In recent years, with the outstanding performance of deep learning in the field of
computer vision, researchers have begun to explore methods for speckle suppression based
on convolutional neural networks (CNN). Efficient methods have also been proposed, such
as DnCNN [13] and ID-CNN [14]. However, existing CNN-based methods usually use
the feature mapping model to remove coherent speckle by constructing mapping between
the coherent speckle and clean SAR image. This feature mapping model is significantly
affected by human factors, which significantly limits the generalization ability of the model.
In addition, these methods are derived from general image denoising techniques and are
not specialized in speckle noise, and the additional training model makes it impossible to
achieve end-to-end training.

To solve these problems, this paper proposes a filtered convolution for SAR image
ship detection. Inspired by dynamic convolution [15], filtered convolution can replace
classic convolutional layers with plug-and-play and suppress speckle noise while extracting
features. The filtering convolutional layer is composed of two important modules: the
kernel-generation module and the local weight generation module. The kernel-generation
module was implemented using a dynamic convolution structure. We referred to the
SENet [16] structure and generated dynamic convolution kernels based on the global statis-
tical properties of the input. The local weight generation module is used to generate local
weights based on the local statistical features of the input such that the extracted features
contain more local information. In addition, we theoretically and experimentally confirmed
that the coupling of the kernel-generation module and local weight generation module can

Figure 1. Comparison of a clean image and an image contaminated by coherent speckles: (a) clean
image; (b) coherent speckle image (Coherent speckle noise is artificial and has a Gamma distribution.)

Based on the generation mechanism of SAR images, coherent speckle suppression
methods have been developed with the advent of SAR images. Researchers first proposed
an estimation domain-based method based on natural optical image processing methods,
and many studies have confirmed its effectiveness [8,9]. However, statistical models of
noise in SAR images are usually built on the premise that the area is homogeneous, and
ideal performance can be achieved in homogeneous areas, while in texture-rich areas, the
image structure information (edges, textures, and point objects) will be blurred or lost. In
addition to the estimated domain-based methods described above, other effective speckle
suppression methods exist [10–12]. However, similar to statistical domain-based methods,
they often fail to preserve sharp features such as edges and often contain blocking artifacts
in denoised images.

In recent years, with the outstanding performance of deep learning in the field of
computer vision, researchers have begun to explore methods for speckle suppression based
on convolutional neural networks (CNN). Efficient methods have also been proposed, such
as DnCNN [13] and ID-CNN [14]. However, existing CNN-based methods usually use
the feature mapping model to remove coherent speckle by constructing mapping between
the coherent speckle and clean SAR image. This feature mapping model is significantly
affected by human factors, which significantly limits the generalization ability of the model.
In addition, these methods are derived from general image denoising techniques and are
not specialized in speckle noise, and the additional training model makes it impossible to
achieve end-to-end training.

To solve these problems, this paper proposes a filtered convolution for SAR image
ship detection. Inspired by dynamic convolution [15], filtered convolution can replace
classic convolutional layers with plug-and-play and suppress speckle noise while extracting
features. The filtering convolutional layer is composed of two important modules: the
kernel-generation module and the local weight generation module. The kernel-generation
module was implemented using a dynamic convolution structure. We referred to the
SENet [16] structure and generated dynamic convolution kernels based on the global statis-
tical properties of the input. The local weight generation module is used to generate local
weights based on the local statistical features of the input such that the extracted features
contain more local information. In addition, we theoretically and experimentally confirmed
that the coupling of the kernel-generation module and local weight generation module can
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effectively suppress speckle noise during the feature extraction process. Finally, the pro-
posed filtered convolution was applied to SAR image ship detection, and its effectiveness
was verified on challenging datasets LS-SSDD-v1.0 and HRSID.

In short, the contributions of this study are as follows:

• We propose a filtered convolutional layer based on a dynamic convolutional structure.
It is composed of a kernel-generation module and a local weight generation module
and can replace the traditional convolutional layer with plug-and-play.

• We theoretically confirm that the proposed filter convolutional layer can effectively
suppress speckle noise in the feature extraction process and design experiments to
verify its effectiveness.

• The proposed filtered convolution is applied to the ship detection task and improves
the performance of the baseline method Cascade RCNN for ship detection in SAR
images. The experimental results show that our method achieves outstanding perfor-
mance on LS-SSDD-v1.0 and HRSID.

The remainder of this paper is organized as follows. Section 2 summarizes the related
work on ship detection, coherent speckle suppression, and dynamic convolution. Section 3
describes material and methods, and a detailed analysis of its characteristics. Section 4 re-
ports the details of the experiment and results, including the datasets, ablation experiments,
and the overall evaluation. Finally, Section 5 presents the conclusions of this study.

2. Related Work
2.1. Coherence Speckle Suppression Method

With the emergence of a new generation of spaceborne SAR systems, researchers
have attracted considerable attention for SAR image processing applications, and research
on speckle suppression has been the most extensive. The speckle suppression method is
usually designed by combining different estimation domains, estimation criteria, linear
minimum mean square error, maximum posterior probability estimation, and probability
density estimation models. Examples include the Lee filter [8], Refined-Lee filter [9],
Kuan filter [17], Frost filter [18], and Gamma-Map filter [19]. The above method was
confirmed from theory and experiments, indicating that the filter derived from the statistical
model of coherent speckle can effectively suppress coherent speckle. However, statistical
modeling of noise in SAR images is based on the assumption of homogeneous regions.
Therefore, the above filters can achieve ideal performance in homogeneous regions, whereas
in texture-rich regions, it will lead to the blurring or filtering out of image structure
information (edge, texture, and point target). In addition to the estimated domain-based
methods described above, some effective speckle suppression methods exist, including
wavelet-based methods [10,20,21], block-matching 3D (BM3D) algorithms [11], and total
variation (TV) methods [12]. However, similar to statistical domain-based methods, they
often fail to preserve sharp features such as edges and often contain blocking artifacts in
denoised images.

With the excellent performance of convolutional neural networks in the field of im-
age processing, some researchers have begun to explore CNN-based coherent speckle-
suppression methods. Zhang et al [13] experimentally confirmed that residual learning and
batch normalization can speed up the training process and improve denoising performance,
and they designed a denoising convolutional neural network (DnCNN) to predict the
difference between noisy and potentially clean images. The experimental results confirmed
that the proposed DnCNN can effectively remove various types of image noise. In [22], a
dilated residual network was proposed to denoise SAR images, and a noise suppression
model was constructed by learning nonlinear end-to-end mapping between noisy and
clean SAR images. It shows excellent performance in quantitative and visual evaluations,
particularly in suppressing strong speckle noise. In [14], an image-despeckling convolu-
tional neural network (ID-CNN) was proposed to automatically remove speckling from
noisy input images. ID-CNN reconstructs the residual layer of the network to estimate
speckling and uses a combination of Euclidean loss and total variation (TV) loss for training,
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which significantly improves the performance of speckle suppression. The authors of [23]
proposed a down-to-earth deep learning approach to manage despeckled SAR images
without using the ground truth (despeckled images). Ref. [24] proposed a multi-scale
residual dense dual attention network (MRDDANet) for SAR image denoising. This can
effectively suppress speckles and completely preserve the texture details of the image.

2.2. Dynamic Convolution

Dynamic filters are dynamically modified or predicted based on input features, which
can increase the size and capacity of the model and maintain an efficient inference. In
2016, [25] first proposed a dynamic convolution framework in which filters are dynami-
cally generated according to the input conditions, making this framework more flexible
without excessively increasing the number of model parameters. In recent years, dynamic
convolutional structures have continuously improved.Moreover, [26] proposed a GaterNet
structure for generating dynamic filters, which further improved the performance of dy-
namic convolutional architectures and had better generalization ability, and [15] proposed
an attention-based dynamic convolution structure. Dynamic convolution is dynamically
aggregated into multiple parallel convolution kernels according to attention, and attention
is related to the input. Increasing model complexity without increasing network depth
or width makes the extracted features more representational. Inspired by the progress of
attention, [27] separated depth dynamic filters into spatial and channel dynamic filters
and proposed decoupling dynamic filters (DDF). DDFs significantly reduce the number of
parameters and limit the computational cost to the same level as depthwise convolutions.

2.3. SAR Image Ship Detection

In recent decades, ship detection in SAR images has received extensive attention
and research from relevant researchers and institutions, and new detection methods have
emerged. Most traditional methods are based on the statistical properties of SAR images,
including global threshold-based, constant false alarm ratio (CFAR)-based [28], generalized
likelihood ratio test (GLRT)-based, transform domain-based, visual saliency-based, and
auxiliary feature-based methods . These methods obtain moderate results in specific con-
texts but require certain priors, are computationally complex, and have poor generalization
ability, which cannot meet engineering requirements.

With the wide application of deep learning in the field of computer vision, SAR image
ship detection methods based on convolutional neural networks have become mainstream.
Ref. [29] designed a Dense Attention Pyramid Network (DAPN) that introduced a convolu-
tional block attention module for adaptive multi-scale SAR image detection. Fu et al. [30]
fused attention-guided balanced pyramids and refined heads to detect SAR images using
an anchor-free approach and explored a reasonable balance between speed and accuracy.
Zhang et al. [31] proposed a ship detector based on multitask learning (MTL-Det) to dis-
tinguish ships in SAR images. Modeling the ship detection problem as three collaborative
tasks improves the learning of ship-specific features without the additional cost of manual
labeling. Xu et al. [32] proposed an optimization method for dynamically learning hyper-
parameter configurations, which further improved the performance of the SAR image ship
detection algorithm by dynamically learning the hyperparameter configuration using deep
reinforcement learning (DRL). In [33], the feature extraction and classification methods of
different soft computing techniques for land use and land cover were summarized. Soft-
computing techniques have been introduced to identify various regions with individual
textures and shapes.

3. Material and Methods

In this section, we describe in detail the filtered convolutional neural network (F-
CNNs). The purpose was to suppress the coherent speckle noise of the SAR image during
the feature extraction process and improve the performance of the ship detection model.
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Compared to existing speckle suppression methods, the proposed filtered convolution
method has the following advantages:

• Filtered convolutional layers are able to suppress speckle noise in the feature extraction
process without an additional separate step.

• The extracted features contain more local information, which is beneficial for SAR
image ship detection.

• The convolution kernel parameters were learnable and can be updated during the
back propagation of the network.

3.1. Filtered Convolution Kernel Generation

Inspired by the traditional coherent speckle noise suppression algorithm, we propose
a filtered convolution based on the statistical characteristics of an input image or feature
map. In filtered convolution, the convolution kernel is generated by the kernel-generation
module and local weight generation module. The convolution kernel-generation branch is
used to generate the dynamic convolution kernel, and the local weight generation branch
makes the network pay more attention to the local area, both of which originate from the
input image or feature map.

3.1.1. Kernel Generation

The kernel-generation module is primarily used to generate dynamic convolution
kernels according to the global characteristics of the input, and the network structure is
shown in Figure 2. We refer to the basic structure of SENet [16]. For the input image or
feature map I ∈ Rc×w×h (where h, w, and c are the height, width, and number of channels of
input I, respectively), we first pass a global average pooling layer to obtain global features.
Then, the FC layer is used to transform the number of channels, the ReLU layer is used for
non-linearization, and the Norm layer is used for normalization. Finally, the elements of
each channel dimension were resized as kernels with k× k.

GAP

FC

ReLU

FC

Norm

c×1×1

c ×́1×1

c ×́1×1

k
2
c ×́1×1

k
2
c ×́1×1

 

c ×́k×k

Input

c×w×h

Figure 2. The kernel generates the module network structure, where GAP, FC, ReLU, and Norm
denote the global average pooling layer, the fully connected layer, the activation function layer, and
the normalization layer, respectively.
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3.1.2. Local Weight Generation

The local weight generation module is mainly used to improve the network’s ability
to represent local information, which is crucial for both coherent speckle suppression and
ship detection tasks. For the input image or feature map I ∈ Rc×w×h, we first obtain the
local statistical properties of each element through a specific multilayer sliding window.
The size of the sliding window is k× k with a stride of 1. Multilayer processing is used to
expand the regional receptive field. Then, the 1× 1 convolutional layer was used to resize
the feature channel to k2 and normalize it. Finally, the elements at the same position in
each channel were resized to k× k convolution kernels. The detailed structure of the local
weight-generation network is shown in Figure 3.

Unfold

1×1 Conv

Norm

Resize

Input

c×w×h

 

N layer

[k11,k12, ,knn]

c×w×h c×w×hc×w×h

c×w×h

k
2
×w×h

k
2
×w×h

k
2
×w×h

ReLU

k
2
×w×h

Figure 3. Local weight generation module network structure, where Unfold represents the sliding
window implementation, and Resize represents the resize element of each channel.

3.2. Filter Convolutional Layer

First, we briefly formulate a standard convolution, given an input I ∈ Rc×w×h, the
standard convolution operation at the ith pixel can be written as a linear combination:

Y(.,i) = ∑
j∈Ω(i)

W[pi − pj]I(.,j) + b (1)

where W[pi − pj] ∈ Rc′×c is the filter at the position offset between the ith and jth pixels
and can also be denoted as an adjacent element. I(.,j) denotes the input feature vector of the
jth pixel, and b ∈ Rc denotes the bias vector. Y denotes the output feature map, and Y(.,i)

denotes the output feature vector of the ith pixel. Ω(i) denotes the convolution window
around the ith pixel. In the standard convolution, each convolution kernel is shared among
all pixels in the input feature map.

In the proposed filter convolution, the convolution kernel is generated from the input
image (feature map), and the detailed network structure is shown in Figure 4. The key
technology is to construct the statistical features of the convolution kernel based on the
input, in which the kernel-generation module is used to obtain the global statistical features
and the local weight module is used to obtain the local statistical features:

Y(.,i) = ∑
j∈Ω(i)

Kg
i [pi − pj]Kl

c[pi − pj]I(c,j) (2)
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where Y(.,i) denotes the output feature value at the ith pixel and cth channel, and I(c,j) ∈ R
denotes the input feature values in the jth pixel and cth channel. Kg

i ∈ Rn×k×k is the dynamic
convolution kernel, where Kg

i ∈ Rk×k denotes the filter at the ith pixel. Kl denotes the local
weights, with Kl

c denoting the weights at the cth channel.

Input
Kernel generation 

module 
 

Local weight 

module 

Output

Element 
multiplication 

Convolution 
application 

 

Figure 4. Filter Convolutional Layer structure.

3.3. Suppression of Coherent Speckle Noise

Several studies have confirmed that speckle noise can be regarded as a multiplicative
noise model [34,35]. An input image containing coherent speckles can be expressed as:

I = X×U (3)

where I, X, and U denote the input image, the ideal image without noise, and coherent
speckle noise, respectively. Specifically, X and U are independent of one another. To
facilitate calculation, it was transformed into a linear model using the Taylor formula:

I = UX + X(U −U) (4)

where U and X denote the expectations of U and X, respectively.
Based on the above assumptions, the proposed filtering convolutional layer can be

formulated as:

S = (I ∗ K)(i,j)
= ∑

m,n
I(i+m,j+n)K(m,n) (5)

= ∑
m,n

(X×U)(i+m,j+n)K(m,n)

where S denotes the element output of the filtered convolutional layer, and X and U are
the expected values of the clean image elements and noise components, respectively.

In the filter convolutional layer, K is the multiplication of the output of the kernel-
generation module and the local weight generation module and is also regarded as the
multiplication of the global and local statistical features (Kg and Kl) of the input. Therefore,
the convolution process can be expressed as:

S = ∑
m,n

(X×U)(i+m,j+n)K(m,n)

= ∑
m,n

[UX + X(U −U)](i+m,j+n)[K
gKl ] (6)

= ∑
m,n

[UXKgKl + XUKgKl − XUKgKl ](i+m,j+n)
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The speckle noise U in the SAR image obeys the Gamma distribution [36], and the
expected value U is 1. The probability density function of U can be formulated as:

P(U) =
1

Γ(L)
LLFL−1e−LF (7)

where Γ(.) denotes the gamma function, and F ≥ 0 and L ≥ 1.
Therefore, the first term UXKgKl in Equation (6) can be rewritten as

UXKgKl = XKgKl (8)

In a clean SAR image X, the global mean characteristic X is an extremely small value
because most of the background elements are 0. The second term XUKgKl in Equation (6)
is discarded.

In addition, based on the network structure of the global feature module, the elements
of Kg can be regarded as the expectation XU of the input I. Therefore, the third term in
Equation (6) can be converted into:

XUKgKl = XU[XU(m,n)]K
l

= [XU2
(m,n)]K

l (9)

= (K2)gKl

To sum up the above, the proposed filtered convolution can be expressed as:

S ≈ ∑
m,n

[XKgKl − (K2)gKl ](i+m,j+n) (10)

As shown in Equation (10), the proposed filter convolution has a low correlation with
speckle noise U in the feature extraction process. Therefore, we believe that the filtered
convolution can effectively suppress the influence of speckle noise on visual tasks, which
confirms our idea.

3.4. Backward Propagation

The back-propagation of filtered convolutions is essentially the same as that of the
standard convolutional layers. We introduce Xi as the ith input feature map and Kij as the
input convolution kernel and let Yj be the jth output feature map. In the backpropagation
process, the filter convolutional layer calculates the gradient of the loss function l relative
to Xi, similar to the previous one, and the gradient of the loss function L relative to Xi is:

∂L
∂Xi

= ∑
j
(

∂L
∂Yj

) ∗ (Kij) (11)

where ∗ denotes zero-padding convolution.
The gradient of the loss function L with respect to Kij is:

∂L
∂Kij

= (
∂L
∂Yj

) ∗ (Xi)
T (12)

where (Xi)
T is the transpose of Xi.

Compared with traditional convolutional layers, Kij is not a network parameter, but a
function of the input X. Therefore, the value of the gradient ∂L

∂Kij
is passed to the convolu-

tional layer, and Kij is calculated as a part of the backpropagation algorithm.
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3.5. Filtered Convolution for Ship Detection

In this section, we will introduce an ship detection algorithm based on filtered convo-
lution. The baseline method adopts the Cascade RCNN method, and the network structure
is shown in Figure 5. For the input image, the multi-scale feature map is firstly acquired
through the backbone network and FPN; then, the proposal is generated through the
cascaded region proposal network; and finally, the bounding box and category of the object
are output through the head structure. Specifically, The proposed filtered convolution is
applied in the backbone network, replacing the traditional convolutional layers in the first
five convolutional layers (based on the analysis in Section 4.6).

Backbone network

Conv1 Conv2_x  Conv5_x

Feature 

pyramid 

network
Head1

Conv1

Forward propagation

Cascade region proposal network

Prediction

Cls. & Reg.

C1 B1

Pool

Head2

C2 B2

Pool

Head3

C3 B3

Pool

Region-wise feature extraction

Proposals in all architectures

Bounding box

Classification

 Pool 

 B0 

 B 

 C 

B0

Conv2_x

input

Filtered 

convolution

block1

output

W×H×3 W/2×H/2×64

block2 block3

Filtered convolution

Generalized convolution

ResNet

Figure 5. Filtered convolution for ship detection algorithm. Cascade RCNN is used as the baseline
method and filtered convolution is applied to the backbone network.

4. Experiments and Results

In this section, we first introduce two challenging datasets: LS-SSDD-v1.0 [37] and
HRSID [38]. The evaluation benchmarks and implementation details of the algorithm are
also described. Finally, our method was evaluated on two challenging datasets, and the
effectiveness of the proposed filtered convolution was confirmed through ablation studies.

4.1. Dataset Description
4.1.1. LS-SSDD-v1.0

The large-scale SAR ship detection dataset-v1.0 (LS-SSDD-v1.0) [37] was derived from
Sentinel-1 images in the interferometric wide-format mode of 15 scenes, including ports,
straits, and river areas. The size of the original image was approximately 26,000 × 16,000
on average, and the large-scale image was split into sub-images of size 800 × 800. Finally,
9000 sub-images were generated, in which the sub-images of the first to tenth scenes were
used as the training set and the sub-images of the 11th to 15th scenes were used as the test
set. The label format of the dataset was PASCAL VOC [39], and the instance category was
a ship.

4.1.2. HRSID

The high-resolution SAR image dataset (HRSID) was acquired from Sentinel-1 and
TerraSAR-X and used for segmentation and detection tasks [38]. The dataset contained
5604 SAR images and 16,951 instances of HH, HV, and VV polarizations. The native
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resolutions were 0.5 m, 1 m, and 3 m, and the image size was 800 × 800 pixels. Using
Google Earth, the ships in the SAR images were annotated, and pure background samples
were discarded. Of these images, 65% were randomly selected as the training set, and the
remaining 35% were used as the test set. The label format of HRSID is Microsoft Common
Objects in Context (MS COCO) [40], and the instance category was a ship.

4.2. Evaluation Protocol

The evaluation benchmarks of LS-SSDD-v1.0 and HRSID adopted the PASCAL VOC
and MS COCO benchmarks, respectively. In the experiment, average precision (AP) was
used as the main evaluation index and was defined by a precision–recall (PR) curve:

Recall =
TP

TP + FN
(13)

Precision =
TP

TP + FP
(14)

AP =
∫ 1

0
P(r)dr (15)

where TP, FP, and FN denote the detection results, that is, true positives, false positives,
and false negatives, respectively. P denotes the prediction accuracy, and r is the recall.
Recall denotes the proportion of the useful part of the detection result to the useful part
of the entire dataset, and precision denotes the proportion of the useful part to the entire
detection result that is useful.

4.3. Implementation Details

Our experiment was carried out on a server running Ubuntu 14.04, Titan X Pascal, and
12G memory.

The proposed method is implemented based on the MMDetection benchmark (MMDe-
tection is an open-source deep learning object detection framework. https://github.com/
open-mmlab/mmdetection (accessed on 10 December 2021)) [41]. We used Cascade R-
CNN [42] as the baseline method and ResNet50 and ResNet101 as the backbone networks
for the experiments. For fairness, all comparative experiments used the same backbone
network, and the batch size was set to four because of the limitation of GPU memory. In all
the experiments, we used the momentum SGD optimizer to optimize the network, and the
momentum and weight decay were 0.9 and 1× 10−4, respectively. The initial learning rate
was 5× 10−3. Each training epoch, the learning rate decayed to 0.1 times the original, and
the size of the epoch depended on the number of training samples.

4.4. Main Result in LS-SSDD-v1.0

We first experimented with our method on the LS-SSDD-v1.0 dataset and compared it
with state-of-the-art methods. The comparison methods included single-stage, two-stage,
anchor-free, and DETR-based methods. The experimental results in Table 1 show that
our method achieves the best performance and improves it by more than 2% compared
to the baseline methods. Specifically, an improvement of 1.9% and 2.2% was obtained
with ResNet50 and ResNet101 as the backbone, respectively. Two-stage methods have
better performance than several other types of methods, especially DETR-based methods,
one possible reason DETR-based methods are not suitable for SAR images is due to the
large similarity between elements. In particular, the larger-backbone networks showed
better improvements. This confirms that our method can effectively improve ship detection
performance in SAR images.

We also compared the performance of offshore and inshore scenes. As shown in Table 1,
inshore scenarios typically exhibit poor performances. This is understandable because
there are many disturbances in the inshore scenarios. However, our method achieves a
better boost than the offshore scenario owing to our local weight module. Specifically, the

https://github.com/open-mmlab/mmdetection
https://github.com/open-mmlab/mmdetection
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average prediction (AP) is improved by 1.2% and 2.4% with ResNet50 and ResNet101 as
the backbone.

Figure 6 visualizes the detection results on the LS-SSDD-v1.0 dataset. We show a
large-scale test image with an image size of 24,000× 16,000, which is generated by stitching
600 sub-images of 800 × 800.

Table 1. Comparison results on LS-SSDD-v1.0.

Method Backbone
AP

Offshore Inshore All

SSD-300 VGG-16 47.7 9.0 35.4
SSD-512 VGG-16 56.7 13.2 40.6
YOLOv3 Darknet-53 78.5 35.6 63.0
RetinaNet ResNet-101 83.7 21.0 61.9
FCOS [43] ResNet-101 86.5 31.0 67.5
CenterNet [44] Hourglass 87.5 29.5 68.9
Faster RCNN ResNet-101 87.2 35.2 68.5
Cascade RCNN * ResNet-50 87.5 37.4 69.5
Cascade RCNN * ResNet-101 88.0 36.8 70.8
DETR [45] ResNet-101 61.0 20.6 44.6
Def-DETR [46] ResNet-101 74.4 26.7 50.2

Ours ResNet-50 88.6 [+1.1] 38.6 [+1.2] 71.4 [+1.9]
Ours ResNet-101 89.3 [+1.3] 39.2 [+2.4] 73.0 [+2.2]

* denotes our baseline method. Numbers in [.] indicates the improvement of our method compared to the
baseline method.

Figure 6. The visualization results are on the LS-SSDD-v1.0 dataset, where the text above the
bounding box represents the ship category and confidence. The image on the right is a partial
enlargement of the large-scale image. Best viewed in zoom in.
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4.5. Main Result in HRSID

We also experimented with our method on the HRSID dataset and compared it with
state-of-the-art methods. In the experiments, Cascade R-CNN was used as the baseline
method, and the experimental results are listed in the Table 2. The proposed method
obtains 1.4% and 1.8% improvement over baseline methods using ResNet50 and ResNet101
as backbones, respectively.

Table 2. Comparison results on HRSID.

Method Backbone AP APof f APin AP50 AP75 APS APM APL

SSD-300 VGG-16 46.6 64.1 31.9 70.0 54.2 44.9 45.6 17.2
SSD-512 VGG-16 50.1 65.6 35.2 76.4 59.1 50.7 49.8 20.0
YOLOv3 Darknet-53 55.7 72.5 40.2 80.2 63.4 52.6 55.2 22.4
Retina-Net ResNet-101 61.3 79.6 41.3 83.7 67.7 60.1 62.7 26.5
FCOS [43] ResNet-101 50.2 67.3 39.1 74.2 57.6 43.9 50.5 9.4
CenterNet [44] Hourglass 53.6 70.1 39.2 78.6 64.0 52.8 57.2 19.0
Faster R-CNN ResNet-101 62.5 80.7 51.4 86.9 71.6 63.3 64.4 22.0
Mask R-CNN ResNet-101 65.4 81.0 53.1 88.1 75.7 66.3 68.0 23.2
Cascade R-CNN * ResNet-50 66.6 83.6 55.2 87.7 76.4 67.5 67.7 28.8
Cascade R-CNN * ResNet-101 66.8 83.6 55.9 87.9 76.6 67.5 68.8 27.7
DETR [45] ResNet-101 46.8 67.2 29.5 74.5 52.9 46.5 47.6 14.9
Def-DETR [46] ResNet-101 51.6 70.5 40.0 78.2 54.2 50.5 53.0 23.6

Ours ResNet-50 68.0 [+1.4] 85.7 [+2.1] 59.4 [+4.2] 88.4 77.7 67.8 68.8 29.3
Ours ResNet-101 68.6 [+1.8] 86.2 [+2.6] 60.8 [+4.7] 89.2 77.6 67.4 69.2 31.1

* denotes our baseline method. Numbers in [.] indicate the improvement of our method compared to the baseline
method. APo f f and APin denote the average prediction accuracy for offshore and inshore scenarios, respectively.
AP50 and AP75 indicate the average predictions at confidence thresholds of 0.5 and 0.75. APS, APM, and APL
denote AP for small (area < 322), medium (322<area<962), and large (area > 962) objects, respectively.

Furthermore, we compare the proposed method with classical one-stage, two-stage,
anchor-free, and DETR-based detectors, and similar results to the previous experiment
are obtained. As can be seen from Table 2, the two-stage detector has obvious advantages
compared to other types of detectors. This is understandable because the HRSID dataset
contains more nearshore samples, making it difficult to distinguish backgrounds and
instances and decreasing the performance single-stage and anchor-free detectors. This
illustrates that the proposed method can improve the performance of the SAR image ship
detectors on different datasets.

The performance of our method in offshore and inshore scenarios is shown in Table 2.
The results show that the average precision (AP) improved by 2.6% and 4.7% in offshore
and inshore scenarios, respectively. It is worth noting that the inshore scene obtained a
greater improvement, which further confirms that the introduction of the local weight
module makes the network pay more attention to the local characteristics of the image and
improves the performance of the model in the inshore scene of SAR images.

Figure 7 visualizes the detection results on the HRSID dataset. It can be seen that
our method achieves outstanding performance in both offshore and inshore scenarios,
illustrating the superiority of the method.
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(a) Ground truth.

(b) Predicted results of the proposed method.

Figure 7. The visualization results are on the HRSID dataset, where the text above the bounding box
represents the object category and confidence.

4.6. Ablation Study

In this section, we describe the performance of multiple ablations on the proposed
filtered convolution. The default baseline method is Cascade R-CNN, and ResNet50 and
ResNet101 are used as backbone networks. All ablation experiments were performed using
the HRSID dataset.

4.6.1. Number of Filter Convolutional Layers

In the filtered convolution, the convolution kernel fuses the global and local statistical
properties of the input. As the number of network layers increases, the receptive field of
the local statistical properties increases. Therefore, filtered convolution cannot be used in
all convolutional layers.

Intuitively, filtered convolutions should be applied in the first few layers of the features
to effectively suppress the speckle noise from the input image. We experimented with sev-
eral combinations, and the results are listed in Table 3. C1 represents the first convolutional
layer of the backbone, and C2–C7 represent the first two bottlenecks. The experimental
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results show that the introduction of filter convolution in the first few convolution layers
effectively improves the performance of the model; however, the performance of the model
starts to decline at the beginning of C6. This confirms that introducing filtered convolution
in the initial stage can suppress speckle noise. However, with the extension of the network,
the receptive field of the local weight module is expanded, which limits the improvement
in the ship detection task.

Table 3. The performance of applying filtered convolutions to different network layers.

Backbone C1 C2 C3 C4 C5 C6 C7 AP

ResNet-50 - - - - - - - 66.6
ResNet-50 X - - - - - - 67.4
ResNet-50 X X - - - - - 67.4
ResNet-50 X X X - - - - 67.3
ResNet-50 X X X X - - - 67.5
ResNet-50 X X X X X - - 67.7
ResNet-50 X X X X X X - 67.2
ResNet-50 X X X X X X X 67.0

Bold indicates the best performing result.

In addition, [16] confirmed that our kernel-generation module can benefit the feature
extraction network. Therefore, this work applies the kernel-generation module alone to the
remaining convolutional layers, replacing the traditional convolution. The experimental
results are shown in Table 4. Compared to the baseline method, Cascade R-CNN, the
introduction of filtered convolution achieved a 1% improvement. In addition, an additional
0.3% improvement was obtained when the kernel-generation module was applied to the
remaining convolutional layers. The experimental results confirm the effectiveness of our
method.

Table 4. Effects of kernel-generation modules.

Baseline Group Loc-Weight
Ker-Generation

AP
Layer5 All

Cascade RCNN G1 - - - 66.6
Cascade RCNN G2 X X - 67.7
Cascade RCNN G3 X - X 68.0

Layer5 represents the first five convolutional layers of the backbone network. The local weight generation module
is only used in the first five convolutional layers of the backbone network.

In summary, the best performance can be achieved when the filter convolution is
introduced in the first five convolutional layers of the backbone, and the kernel genera-
tion module is introduced in the subsequent convolutional layers, as detailed in Table 4.
Therefore, the G3 combination was also used in the above-mentioned overall evaluation
experiments.

4.6.2. Speckle Noise Suppression

To verify the performance of the proposed filtered convolution in suppressing coherent
speckles, we extract the first five convolutional layers of the feature extraction network and
evaluate their coherent speckle noise properties. For fair experimentation, we also evaluate
the resized input images and use the weights from the final trained model. The equivalent
number of looks (ENL) and radiometric resolution (γ) were used to evaluate the speckle
noise characteristics of the feature. ENL reflects the smoothness of the image, and γ reflects
the ability of the SAR system to distinguish the backscattering coefficient of the target. ENL
and γ can be formulated as:
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ENL =
µ2

l
σ2

l
(16)

γ = 10log(
µl
σl

+ 1) (17)

= 10log(
1√

ENL
+ 1)

where µl and σl are the mean and standard deviation of the local region in the input SAR
image, respectively.

According to the definition of ENL, a larger value of ENL indicates that the coherent
speckle has less influence on the image. The experimental results in Table 5 show that,
with the extension of the network layer, the ENL gradually increases, and γ also decreases.
This illustrates that the convolutional layers can effectively suppress coherent speckles and
confirms the effectiveness of the proposed filtered convolution.

Table 5. Evaluation of different output feature layers.

Layer C0 C1 C2 C3 C4 C5

Output size 224 224 112 56 56 56
µ 94.69 0.38 0.39 0.39 0.41 0.43
σ 4833 0.07 0.07 0.08 0.07 0.07
ENL 1.55 1.95 2.14 2.11 2.30 2.51
γ(dB) 2.39 2.35 2.25 2.27 2.20 2.13

C0 is the image after the input image is resized, and the image size is 224×224. The larger µ and σ in C0 are due
to the normalization of the input image.

We also compared the proposed method with traditional speckle suppression methods,
including Lee filtering, Refined Lee filtering, Kuan filtering, Frost filtering, and Gamma-
map filtering. For fair experiments, we resized the input image to the feature map size and
evaluated it using ENL. The experimental results in Table 6 show that the proposed filtering
convolutional layer is overall better than the traditional filter. Although in initial low-level
feature layers, the performance of filtered convolution is worse than traditional methods
due to the small receptive field of the initial filtered convolution layer, which limits its
ability to suppress speckle noise. However, in high-level feature layers, the opposite result
is obtained. Therefore, filtered convolutions have better overall performance. Further-
more, it is worth noting that our method is end-to-end without complicated preprocessing
procedures.

Table 6. The performance of the traditional speckle noise filter, ENL is used as the evaluation index.

Image Size Lee R-Lee Kuan Frost Gamma

800 1.77 1.80 1.74 1.90 2.11
224 1.98 2.06 1.88 1.94 2.04
112 1.96 2.10 1.89 2.00 2.20
56 2.06 2.19 1.93 2.09 2.27

4.6.3. Effect of Local Weight Generation Module

To explore the impact of the local weight generation module on the network model, we
applied it at different stages of the network. In the experiments, Cascade R-CNN was used
as the baseline method, and ResNet50 was used as the backbone network. The difference
is that local weight modules are applied to different convolutional layers of the backbone
network. For consistency of the experiments, we designed a similar combination to the
previous experiments, Layer5 and All, with additional settings for the kernel-generation
module. The experimental results are presented in Table 7. Compared to the baseline
methods, the performance of the model was significantly improved when the local weight
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generation module was introduced. A 0.7% improvement was obtained when introducing
the local weight generation module in Layer 5 and a 2.3% improvement in inshore scenes.
In particular, when the kernel-generation module is introduced simultaneously, the AP and
APinshore of the model improve by 1.4% and 4.2%, respectively. Figure 8 shows the feature
maps of the different methods in the inshore scenarios. Compared with the other methods,
our method can better identify some difficult ships in inshore scenes, showing outstanding
performance.

The above experimental results confirm our idea that the local weight generation
module allows the extracted features to contain more local information, which is beneficial
for ship detection in inshore scenes.

(a) (b) (c) (d) (e) (f)

Figure 8. Feature map visualization results of our method and compared methods. (a) Input image.
(b) Our method. (c) Baseline. (d) RetinaNet. (e) DETR. (f) CenterNet. The red box in (b) shows the
outstanding performance of our method compared to other methods.
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Table 7. Effects of local weight generation module.

Method Ker-Generation
Loc-Weight

AP APinshoreLayer5 All

Cascade RCNN - - - 66.6 55.2
Cascade RCNN - X - 67.3 57.5
Cascade RCNN - - X 66.9 56.6
Cascade RCNN * X - - 67.1 56.0
Cascade RCNN * X X 68.0 59.4
Cascade RCNN * X - X 67.4 58.6

Layer5 represents the first five convolutional layers of the backbone network. * indicates that the kernel generation
module was introduced into the baseline method.

4.6.4. Ship Detection With Traditional Filters

To further compare traditional methods, we preprocessed the HRSID dataset using
traditional filters and re-evaluated on the baseline methods, the experimental results are
shown in Table 8. Specifically, our method achieves the best performance compared to
the results after conventional filter preprocessing, especially for the inshore scenes. The
baseline method obtains close performance to our method on the dataset after R-Lee and
Gamma filter preprocessing, and has better performance in the offshore scenes. This further
confirms the better performance of our approach in the inshore scenario. In addition, it is
worth noting that our approach is end-to-end without extra preprocessing.

Table 8. Comparison with baseline methods (dataset was preprocessed using traditional filters).

Method Backbone Preprocessing AP APof f APin

Cascade RCNN ResNet-50 Lee 62.8 82.2 50.6
Cascade RCNN ResNet-50 R-Lee 67.7 86.5 54.2
Cascade RCNN ResNet-50 Kuan 58.1 80.3 47.9
Cascade RCNN ResNet-50 Gamma 66.5 85.9 56.0
Ours ResNet-50 - 68.0 85.7 59.4

Bold indicates the best performing result.

5. Conclusions

This study proposes a filtered convolution structure for ship detection in SAR images.
This structure is applied in the backbone network and can replace traditional convolution,
which is mainly composed of a kernel-generation module and a local weight generation
module. Specifically, the kernel-generation module uses a dynamic convolution structure
to generate dynamic convolution kernels based on the global statistical properties of the
input. The local weight generation module is based on the local statistical characteristics of
the input and is used to improve the network’s ability to represent local information. In
addition, we theoretically confirmed that the coupling of these two modules can effectively
suppress speckle noise in SAR images. Our method was introduced into cascade R-CNN
and achieved outstanding performance. Compared with the baseline method on the
LS-SSDD-v1.0 dataset, improvements of 1.9% and 2.2% were obtained on the backbone
network of ResNet50 and ResNet101, respectively. Improvements of 1.2 % and 2.4 % were
also obtained in the inshore scenarios. Similarly, improvements of 1.4 % and 1.8 % were
obtained on the backbone network of ResNet50 and ResNet101, respectively, compared to
the baseline method on the HRSID dataset. Moreover, 4.2% and 4.7% improvements were
also achieved in inshore scenarios.

In this study, we improve the performance of the SAR image ship detection algorithm
by constructing a filtered convolution structure. However, filtered convolution can only
perform well when applied to the initial layers of the backbone, and specific results are
obtained experimentally, which limits its generalization performance.
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Therefore, in future research, we tend to try a more generalized structure, similar to
the residual structure, which can be adapted to images of any scene. In addition, enhancing
the contextual relationship between nearshore instances and the coast is also a direction
worth considering.
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