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Abstract: For high-resolution range profile (HRRP) radar target recognition in a low signal-to-noise
ratio (SNR) scenario, traditional methods frequently perform denoising and recognition separately.
In addition, they assume equivalent contributions of the target and the noise regions during feature
extraction and fail to capture the global dependency. To tackle these issues, an integrated denoising
and recognition network, namely, IDR-Net, is proposed. The IDR-Net achieves denoising through
the denoising module after adversarial training, and learns the global relationship of the generated
HRRP sequence using the attention-augmented temporal encoder. Furthermore, a hybrid loss is
proposed to integrate the denoising module and the recognition module, which enables end-to-end
training, reduces the information loss during denoising, and boosts the recognition performance. The
experimental results on the measured HRRPs of three types of aircraft demonstrate that IDR-Net
obtains higher recognition accuracy and more robustness to noise than traditional methods.

Keywords: HRRP recognition; adversarial training; attention mechanism; hybrid loss; deep learning

1. Introduction

The high-resolution range profile (HRRP) of a target represents the 1D projection of its
scattering centers along the radar line of sight (LOS), as shown in Figure 1. Compared with
the 2D inverse synthetic aperture radar (ISAR) image, the HRRP is easier to acquire, store,
and process. Moreover, it contains abundant structural signatures of the target such as the
shape, size, and location of the main parts. Currently, automatic radar target recognition
based on HRRP has received increasing attention in the radar automatic target recognition
(RATR) community [1–5].

HRRP recognition can be achieved by traditional methods and deep learning. Tradi-
tional HRRP recognition methods [6–12] mainly depend on manually designed features and
classifiers, which require extensive domain knowledge. Additionally, their heavy computa-
tional burden and poor generalization performance hinder practical application. Recently,
HRRP recognition based on deep learning has avoided the tedious process of feature design
and selection, and achieved much better performance than traditional approaches [13–22].

In real-world situations, however, the existence of strong noise will lead to a low
signal-to-noise ratio (SNR) and hinder effective feature extraction. To deal with this issue,
the available methods implement denoising firstly and then carry out feature extraction and
recognition [19]. In terms of deep neural networks, however, such two-stage processing
prohibits end-to-end training, resulting in complicated processing as well as long oper-
ational time. Furthermore, decoupling denoising from recognition ignores the potential
requirements for noise suppression and signal extraction when fulfilling effective recog-
nition. Therefore, it is natural to study the network structure integrating denoising and
recognition to boost the performance and efficiency.
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able. The second category establishes statistical models by imposing specific distributions, 
e.g., Gaussian [5], on the HRRP, which may result in limited data description capability, 
optimization space, and generalization performance. The third category projects the 
HRRP to higher feature space through kernels. In order to obtain satisfying recognition 
and generalization performance, however, the kernels should be carefully designed, such 
as kernel optimization based on the localized kernel fisher criterion [12]. 
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tomatically, through typical structures such as the autoencoder (AE) [15,16], the convolu-
tional neural network (CNN) [17–20], and the recurrent neural network (RNN) [21,22], 
etc. The proposed method belongs to deep learning. Constituted by the encoder and the 
decoder, the AE attempts to output a copy of the input data by reconstructing it in an 
unsupervised fashion. In particular, the encoded, i.e., compressed data in the middle, 
serves as the recognition feature, which is then fed into the classifier for recognition 
[15,16]. The traditional CNN [17] extracts hierarchical spatial features from the input by 
cascaded convolutional and pooling layers, whereas it fails to capture the temporal infor-
mation [18–20]. In view of this, RNN [21] has sequential architecture to process the current 
input and historical information simultaneously, so that to capture the temporal infor-
mation of the target. However, it assumes that both the target and noise regions contribute 
equally to HRRP recognition, which may result in limited performance [22]. 

Mimicking the human vision, the attention mechanism [23–26] captures long-term 
information and dependencies between input sequence elements by measuring the im-
portance of the input to the output. Traditional attention models designed for HRRP 
recognition [27–31], such as the target-attentional convolutional neural network (TACNN) 
[28], the target-aware recurrent attentional network (TARAN) [29], and the stacked CNN–
Bi-RNN (CNN–Bi-RNN) [30]. TACNN, which is based on CNN, fails to make full use of 
the temporal correlation of HRRP, whereas TARAN, which is based on RNN and its var-
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Traditional HRRP recognition methods are mainly divided into three categories:
(1) feature domain transformation [6–8]; (2) statistical modeling [3–5,9,10]; and (3) ker-
nel methods [11,12]. The first category obtains features in the transformation domain, e.g.,
the bispectra domain [6], by data projection, and then designs proper classifiers for HRRP
recognition. The over-dependency on the prior knowledge, however, induces degraded
performance and robustness in complex scenarios where priors are improper or unavail-
able. The second category establishes statistical models by imposing specific distributions,
e.g., Gaussian [5], on the HRRP, which may result in limited data description capability,
optimization space, and generalization performance. The third category projects the HRRP
to higher feature space through kernels. In order to obtain satisfying recognition and
generalization performance, however, the kernels should be carefully designed, such as
kernel optimization based on the localized kernel fisher criterion [12].

In recent years, deep learning [14] has received intensive attention in HRRP recog-
nition. Unlike traditional methods that rely heavily on hand-designed features, methods
based on deep learning are data-driven, i.e., they could extract features of the HRRP auto-
matically, through typical structures such as the autoencoder (AE) [15,16], the convolutional
neural network (CNN) [17–20], and the recurrent neural network (RNN) [21,22], etc. The
proposed method belongs to deep learning. Constituted by the encoder and the decoder,
the AE attempts to output a copy of the input data by reconstructing it in an unsupervised
fashion. In particular, the encoded, i.e., compressed data in the middle, serves as the recog-
nition feature, which is then fed into the classifier for recognition [15,16]. The traditional
CNN [17] extracts hierarchical spatial features from the input by cascaded convolutional
and pooling layers, whereas it fails to capture the temporal information [18–20]. In view of
this, RNN [21] has sequential architecture to process the current input and historical infor-
mation simultaneously, so that to capture the temporal information of the target. However,
it assumes that both the target and noise regions contribute equally to HRRP recognition,
which may result in limited performance [22].

Mimicking the human vision, the attention mechanism [23–26] captures long-term
information and dependencies between input sequence elements by measuring the impor-
tance of the input to the output. Traditional attention models designed for HRRP recog-
nition [27–31], such as the target-attentional convolutional neural network (TACNN) [28],
the target-aware recurrent attentional network (TARAN) [29], and the stacked CNN–Bi-
RNN (CNN–Bi-RNN) [30]. TACNN, which is based on CNN, fails to make full use of the
temporal correlation of HRRP, whereas TARAN, which is based on RNN and its variants,
has difficulties in network training, parallelization, and long-term memory representation.
Furthermore, CNN–Bi-RNN fuses the advantages of CNN and RNN and uses an attention
mechanism to adjust the importance of features. In recent years, self-attention [32], which
relates different positions of a single sequence to compute a global representation, has
achieved efficient and parallel sequence modeling and feature extraction. Specifically, it
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acquires the attention score by calculating the correlation between the query vector and the
key vector, and then weights it to the value vector as the output. Since the self-attention
mechanism explicitly models the interactions between all elements in the sequence, it is
a feature extractor of global information with long-term memory. Moreover, the global
random access of the self-attention mechanism facilitates the fast and parallel modeling of
long sequences. For HRRP recognition, the self-attention is added before the convolutional
long short-term memory (ConvLSTM) [33] in order to focus on more significant range
cells. Because the main recognition structure, i.e., the LSTM, is still a variant of RNN, it
fails to directly use the different importance between features for recognition. In addition,
although the networks proposed by the existing methods have certain noise robustness,
they fail to achieve better recognition results under the condition of low SNR.

Traditionally, HRRP denoising is implemented prior to feature extraction, and typ-
ical denoising methods include least mean square (LMS) [34,35], recursive least square
(RLS) [36], and eigen subspace techniques [37], etc. Such techniques, however, rely heavily
on domain expertise and fail to estimate the model-order (i.e., the number of signal com-
ponents) accurately with low SNR. Recently, the generative adversarial network (GAN)
has been introduced as a novel way to train a generative model, which could learn the
complex distributions through the adversarial training between the generator and the
discriminator [38]. Currently, GAN has been successfully applied to data generation [39,40],
image conversion and classification [41,42], speech enhancement [43] and so on, which
provides an effective way to blind HRRP denoising.

In a nutshell, the separated HRRP denoising and recognition processes, the inability
to distinguish the contribution of the target regions and noisy regions during the feature
extraction process, the incompetence in long-term/global dependency acquisition hinder
effective recognition of the noisy HRRP. Specifically, the output of the classifier cannot be
fed back to the denoising process, thus significant signal components may be suppressed
during denoising. Meanwhile, the different intensity information of each component
of the HRRP cannot be effectively utilized in the identification process. Therefore, it is
natural to integrate the tasks of denoising and recognition through elaborately deigned
deep architectures, under the guidance of proper loss.

Aiming at the above issues, this paper proposes the integrated denoising and recogni-
tion network, namely, IDR-Net, to achieve effective HRRP denoising and recognition. The
network consists of two modules, i.e., the denoising module and the recognition module.
Specifically, the generator in the denoising module maps the noisy HRRP to the denoised
one after adversarial training, which is then fed into the attention-augmented recognition
module to output the target label. In particular, a new hybrid loss function is used to
guide the denoising of HRRP. The main contributions of this paper include the following:
(a) To tackle the issue that separated HRRP denoising and recognition hinder end-to-end
training and may suppress signal components that are significant for recognition, an in-
tegrated denoising and recognition model, i.e., the IDR-Net is designed, denoising the
low SNR HRRP through the denoising module and outputs the category label through the
recognition module. To the best of our knowledge, our method integrates denoising and
recognition for the first time, realizing end-to-end training, and achieving better recognition
performance. (b) To tackle the issue of long-term and global dependency acquisition of
HRRP, the recognition module adopts the attention-augmented temporal encoder with
parallelized and global sequential feature extraction. In particular, the attention score is
generated with emphasis on the important input data to weight the feature vector and
facilitate recognition. (c) Propose a new hybrid loss, and for the first time in the recognition
of HRRP using such a combination of denoising loss and classification loss as loss function.
By these means, the recognition module is integrated with the generator, thereby reducing
the information loss during denoising, and enhancing the inter-class dissimilarity.

The remainder of this paper is organized as follows: Section 2 discusses the related
work, including the modelling of HRRP and the basic principles of GAN. Section 3 pro-
vides the detailed structure of the proposed IDR-Net. Section 4 presents the data set and
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experimental results with detailed analysis. Finally, Section 5 concludes this paper and
discusses the future work.

2. Modeling and Related Work
2.1. HRRP Modeling

The high-resolution range profile (HRRP) is a 1-D signature of an object, which could
represent the time domain response of a target to a high-range resolution radar pulse [13].
The complex valued HRRP of the target of the nth pulse can be expressed as

xC(n) = ejθ(n)[x̃1(n), x̃2(n), . . . x̃M(n)]T (1)

where θ(n) is the initial phase induced by translation. For the mth, m ∈ [1, M], range cell,
x̃m(n) = ∑P

p=1 σmpejφmp(n) is the amplitude, where P is the number of scattering centers;
σmi is the radar cross section of the pth scattering center; and φmp(n) is the phase induced
by the rotation of the pth scattering center. In addition, T denotes vector transpose. Then,
we obtain the real-valued HRRP by taking the modulus of xC(n), i.e.,

x(n) = [|x̃1(n)|, |x̃2(n)|, . . . , |x̃M(n)|]T (2)

Generally, the HRRP is characterized by: (1) translation sensitivity; (2) amplitude
sensitivity; and (3) aspect sensitivity. Specifically, the translational motion of the target
will lead to unknown shifts among HRRPs along the range/temporal dimension; and the
variation of the distance between the target and radar will cause amplitude fluctuation.
Moreover, each scattering center has its own amplitude and phase characteristics, and these
are combined as vectors to provide a net amplitude and phase return in the associated
range cell, i.e., x̃m(n). These interference effects between scattering centers can give rise
to rapid changes of the HRRP with aspect angle. To alleviate the sensitivities discussed
above, we perform HRRP alignment and normalization, and then generate the training set
utilizing HRRPs with various aspect angles.

2.2. GAN

GAN is a deep learning framework for estimating the generative models via adver-
sarial training [38], which could sidestep the difficulty in approximating many intractable
probabilistic computations. In general, a GAN consists of two adversarial models: a genera-
tor G to capture the data distribution, and a discriminator D to estimate the probability that
a sample comes from the training data rather than G. That is to say, G to generate samples
close to the real samples, making the discriminator D cannot distinguish them; at the same
time, D attempts to distinguish real samples from generated ones.

Both G and D could be non-linear mapping function, e.g., the deep neural network,
and are trained following the two-player min-max game with the value function:

min
G

max
D

VGAN(D, G) = Ex∼pdata(x)[log D(x)] +Ez∼pz(z)[log(1− D(G(z)))] (3)

where E[·] is the expectation; x is the sample comes from real distribution pdata(x); and
z is the noise comes from latent distribution pz(z). By minimizing log(1− D(G(z))),
parameters of G are adjusted to map z into a new sample which is expected to have
distribution pg. Ideally, pg should be as close to pdata as possible. By maximizing log D(x),
parameters of D are adjusted to distinguish the generated samples from the true ones. In
practice, G and D are trained alternatively until convergence.

Traditional GAN is an unconditioned generative model, that is, there is no control
on modes of the data being generated. In view of this, the conditional GAN (CGAN) [44]
conditions the model on addition information and directs the data generation process.
Specifically, it performs the conditioning by feeding the extra information y to G and D in
the training process. Then, the objective function becomes
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LCGAN(D, G) = Ex∼pdata(x)[log D(x|y)] + Ez∼pz(z)[log(1− D(G(z|y)))] (4)

Currently, CGAN has been successfully applied to style transformation, such as image
denoising [45] and image-to-image translation [46].

3. Network Structure

This section introduces the structure of IDR-Net, which consists of the denoising
module and the recognition module. Firstly, the denoising module implements HRRP
denoising through the generator. Then, the denoised HRRP is fed into the recognition
module, which calculates the attention weights, extracts the features, and outputs the
classification label. The framework of IDR-Net is shown in Figure 2, and the detailed
structures will be introduced in Sections 3.1–3.3.
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Figure 2. The framework of the IDR-Net. Figure 2. The framework of the IDR-Net.

3.1. The Denoising Module

The denoising module treats HRRP denoising as a style transformation problem
of converting the noisy HRRP into clean HRRP. For this purpose, the generator G and
the discriminator D are designed according to the dimensionality of HRRP and trained
with conditional information. Specifically, the generator G maps the noisy HRRP xnoisy
to denoised HRRP xdenoised, and the discriminator D distinguishes xdenoised from the real
noise-free HRRP xclean. Below, we will discuss detailed structures of G and D.
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3.1.1. The Generator

According to the principles of GAN, the output of the generator G, i.e., xdenoised, should
be resemble to the real noise-free HRRP xclean as closely as possible, so that the discriminator
D cannot distinguish xdenoised from xclean. In the IDR-Net, the non-linear mapping from
xnoisy to xdenoised is achieved by an encoder and a decoder with symmetrical structures, as
shown in Figure 3. For instance, “conv1D 16@15 1_2” denotes 1-D convolution with kernel
size of 15 and stride size of 2, whereas “deconv1D 64@15 1_2” denotes deconvolution with
kernel size of 15 and stride size of 2. In terms of HRRP denoising, the kernel size is set
to 15× 1 with 2 stride sizes for each convolutional layer. The dimension of the input is
256× 1, and the dimension of the output feature map of each layer are 256× 1, 128× 16,
64× 32, 32× 32, 16× 64, and 8× 64, respectively. Then, the output c of the last layer in the
encoder is fed into the decoder, where the dimensions of the output of each layer is 16× 64,
32× 32, 64× 32, 128× 16, and 256× 1, respectively. The last layer outputs the denoised
HRRP xdenoised.
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As illustrated in the upper left part of the training process in Figure 2, the gener-
ator connects the output of each encoding layer and the output of the symmetrical de-
coding layer along the channel dimension through skip connection. By this means, it
directly transfers the low-level features to the decoder without compression and facilitates
gradient propagation.

3.1.2. The Discriminator

In the discriminator D, the noise-free HRRP xclean and xdenoised are concatenated with
the same noisy signal xnoisy, respectively, to obtain

[
xclean, xnoisy

]
and

[
xdenoised, xnoisy

]
. Con-

ditioned by xnoisy, these vectors are then adopted as the real and generated samples,
respectively, and fed into the network, as shown by the lower part of the training process
of Figure 2. By introducing the conditional information xnoisy, we increase the similarity
between the real samples and the generated ones, thereby facilitating the initial training
stage of the network. That is, the outputs of G become closer to the real samples, and the
capability of distinguishing the real samples from the generated ones is enhanced for D.

As shown in Figure 4, the discriminator is composed of a series of 1D convolutional
layers and fully connected layers, which has certain robustness to feature position. The size
and number of the first five convolutional kernels are the same as those of the encoder in G.
Moreover, LeakyReLU [45] with non-zero derivative is added to each convolutional layer,
and the dimensions of the output feature maps are 128× 16, 64× 32, 32× 32, 16× 64, and
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8× 64, respectively. Then, a convolutional layer with kernel size of 1× 1 and stride size of
1 is utilized to flatten the 2D feature map into a 1D vector. Finally, the fully connected layer
outputs a scalar to indicate whether the current sample is real or generated.
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3.2. The Recognition Module

The recognition module determines the category label of the denoised sample xdenoised
given by G. To exploit the sequential information among range cells of a single HRRP, we
slide a sampling window continuously with a fixed size to generate the HRRP sequence.
As discussed in Section 1, the traditional attention mechanism is confined to the inherent
order of the sequence, thereby only processing two adjacent time steps. Therefore, it is
essentially a local perception model and is incompetent to capture the global relationship
of the entire sequence in parallel. To deal with this issue, the recognition module captures
the long-term dependence efficiently through the attention-augmented temporal encoder,
as shown in Figure 5.

Considering an HRRP, the sequence Xseq = [x1, · · · , xN ]
T is generated by sliding the

sampling window with length dw and step size dw/2, where xs ∈ Rdw , s = 1, . . . , N, and
N is the number of segments. Then, a weight matrix Wmap ∈ Rdw×d maps Xseq linearly to
obtain the embedding vectors E0 =

[
e0

0; e0
1; . . . ; e0

N
]

satisfying the following conditions

E0 = XseqWmap (5)

where d is the hidden size.
Considering the position invariance of the attention mechanism, a learnable position

encoding P ∈ RN×d is added to E0, so as to better capture the sequential features, i.e.,

Z0 = E0 + P (6)

After that, the L-layer attention-augmented temporal encoder calculates the attention
score from Z0 on the temporal dimension. Assuming that the input of the (l − 1)th layer
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(l = 1, . . . , L) of the encoder is Zl−1 ∈ RN×d, the key Kl , query Q l and value Vl of the lth
layer are calculated as follows:

kl
n = LN

(
zl−1

n

)
Wl

k

ql
n = LN

(
zl−1

n

)
Wl

q

vl
n = LN

(
zl−1

n

)
Wl

v

(7)

where kl
n, ql

n, and vl
n are row vectors of Kl , Q l , and Vl , respectively; zl−1

n is the nth row
of Zl−1; Wl

k, Wl
q, and W l

v ∈ Rd×d are dimension transformation matrices; and LN(·) is the
layer normalization for calculating the mean and variance on all layers of each input, i.e.,

LN(z) = ρ· z− µ√
σ2 + ξ

+ b (8)

where ρ and b are variable parameters; µ is the mean value and σ2 is variance; and ξ is a
small nonzero value.

The attention score of the lth layer Al ∈ RN×d can be calculated by:

Al = softmax

Ql
(

Kl
)T

√
d

Vl (9)
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To accelerate convergence, the residual Zl−1 is added to Al and layer normalization
is performed:

Hl = LN
(

Al + Zl−1
)

(10)

Then, it is fed into a feedforward neural network (FFN), i.e.,

FFN
(

Hl
)
= ReLU

(
HlW1

)
W2 (11)

where ReLU(·) is the rectified linear unit [47,48]; W1 ∈ Rd×d f , W2 ∈ Rd f×d are weight
matrixes in FFN and d f is the corresponding dimension.

Furthermore, we add Hl to (12) and perform layer normalization to obtain Zl ∈ RN×d:
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Zl = LN
(

FFN
(

Hl
)
+ Hl

)
(12)

After the L-layer encoder, ZL is vectorized into a feature vector s ∈ R1×(N×d). Finally,
the category label y ∈ R1×K is given by

y = softmax
((

sW′1
)
W′2
)

(13)

where K is the number of target categories; W′1 ∈ R(N×d)×d′f and W′2 ∈ Rd′f×K are the
weights of fully connected layers with dimension d′f .

3.3. Construction of the Hybrid Loss

Traditional methods implement HRRP denoising and recognition separately, under
the guidance of different losses. Such manipulation may lose important signal components
beneficial to recognition. In view of this, we introduce the recognition loss to the value
function of GAN and design the hybrid loss for integrated training of the IDR-Net. By this
means, the recognition module is associated with the generator in the training process,
thereby boosting the HRRP denoising, feature extraction, and recognition performance.

Since the generator and discriminator are trained alternatively, this paper expresses
the losses of G and D in the denoising module separately as

min
G
LG−loss(D, G) = Lbase + λGP · LGP + ρ1 · Ll1 + ρ2 · Ll2 + β · Lclass (14)

min
D
LD−loss(D, G) = −

(
Lbase + λGP · LGP + ρ1 · Ll1 + ρ2 · Ll2

)
(15)

which are composed of the CGAN loss Lbase; the gradient penalty term LGP; the regulariza-
tion terms Ll1 and Ll2 ; and the recognition loss Lclass. Moreover, λGP, ρ1, ρ2, and β denote
the corresponding coefficients. Below, each term will be discussed in detail.

To facilitate sample generation, i.e., HRRP denoising, we introduce the supervised
learning strategy by adding xnoisy to the loss function of GAN. Then, the CGAN loss is
expressed as:

Lbase = Exclean

[
D
(
xclean

∣∣xnoisy
)]
−Ez

[
D
(
G
(
z
∣∣xnoisy

))]
(16)

where G(·) denotes the generated samples, and D(·) denotes the discriminative score.
To avoid gradient explosion or vanishing and obtain a well-trained model, the gradient

penalty term LGP is designed as

LGP = E~
x

[(∥∥∥∇~
xD
(~

x
)∥∥∥

2
− 1
)2
]

(17)

In addition, Ll1 and Ll2 measure the similarity between the denoised sample and the
clean one, i.e.,

Ll1 = Exnoisy ,xclean

[∥∥G
(
xnoisy

)
− xclean

∥∥
1

]
(18)

Ll2 = Exnoisy ,xclean

[∥∥G
(
xnoisy

)
− xclean

∥∥
2

]
(19)

In particular, the recognition loss Lclass is added to the loss of G, which is expressed as

Lclass = −EXseq

[
K

∑
k=1

tk ln yk

]
(20)

where tk is the kth entry of the true label t, and yk is the kth entry of the predicted label y.
By omitting the irrelevant terms in (14) and (15), this paper finally obtains the losses

of the generator and the discriminator of the IDR-Net, i.e.,
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min
G
LG−loss(D, G) = −Ez

[
D
(
G
(
z
∣∣xnoisy

))]
+ λ

[
αLl1 + (1− α)Ll2

]
+ βLclass (21)

min
D
LD−loss(D, G) = Ez

[
D
(
G
(
z
∣∣xnoisy

))]
−Exclean

[
D
(
xclean

∣∣xnoisy
)]

+ λGPLGP (22)

where λ is a regularization coefficient; and α ∈ (0, 1) adjusts the proportion of Ll1 and
Ll2 satisfies,

α =
ρ1

λ
(23)

4. Experiments
4.1. Data Sets and Pre-Processing

In this section, we adopt the measured HRRPs of three types of aircraft, i.e., An-26,
Cessna Citation S/II, and Yak-42, to design the experiments of network validation and
performance analysis. The optical images and typical HRRPs are illustrated in Figure 6, and
the size is listed in Table 1. Projections of the flight paths on the ground plane is illustrated
in Figure 7, with radar located at the origin (0, 0). The radar pulse repetition frequency is
400 Hz, the bandwidth is 400 MHz, and the range resolution is 0.375 m. The echoes are
divided into several segments, and the corresponding flight paths are indicated by integers
ranging from 1 to 7, the number of samples for each data segment is listed in Table 2.

Table 1. Parameters of the aircraft.

Aircraft Length (m) Width (m) Height (m)

An-26 23.80 29.20 9.83

Cessna Citation S/II 14.40 15.90 4.57

Yak-42 36.38 34.88 9.83
Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 19 
 

 

(a)

(b)

(c)
 

Figure 6. Optical images and typical HRRPs of (a) An-26; (b) Cessna Citation S/II; (c) Yak-42. 

             

(a) (b) (c)

 
Figure 7. Projections of the trajectories on the ground. (a) An-26; (b) Cessna Citation S/II; (c)Yak-42. 

Table 2. The number of samples for each data segment of the three aircrafts. 

Aircraft/No. 1 2 3 4 5 6 7 
An-26 26,000 26,000 26,000 26,000 26,000 26,000 21,110 
Cessna 26,000 26,000 26,000 26,000 26,000 26,000 26,000 
Yak-42 26,000 26,000 26,000 26,000 17,950 — — 

As a matter of routine [16,18,27–30], the training set is constructed by sampling the 
5th and the 6th HRRP segments of An-26, the 6th and the 7th HRRP segments of Cessna 
Citation S/II, and the 2nd and the 5th HRRP segments of Yak-42, whereas the test set is 
constructed by sampling the rest HRRP segments. Moreover, the sampling interval is 20, 
and the number of training and test samples is 7398 and 16,656, respectively. Such settings 

Figure 6. Optical images and typical HRRPs of (a) An-26; (b) Cessna Citation S/II; (c) Yak-42.



Remote Sens. 2022, 14, 5254 11 of 18

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 19 
 

 

(a)

(b)

(c)
 

Figure 6. Optical images and typical HRRPs of (a) An-26; (b) Cessna Citation S/II; (c) Yak-42. 

             

(a) (b) (c)

 
Figure 7. Projections of the trajectories on the ground. (a) An-26; (b) Cessna Citation S/II; (c)Yak-42. 

Table 2. The number of samples for each data segment of the three aircrafts. 

Aircraft/No. 1 2 3 4 5 6 7 
An-26 26,000 26,000 26,000 26,000 26,000 26,000 21,110 
Cessna 26,000 26,000 26,000 26,000 26,000 26,000 26,000 
Yak-42 26,000 26,000 26,000 26,000 17,950 — — 

As a matter of routine [16,18,27–30], the training set is constructed by sampling the 
5th and the 6th HRRP segments of An-26, the 6th and the 7th HRRP segments of Cessna 
Citation S/II, and the 2nd and the 5th HRRP segments of Yak-42, whereas the test set is 
constructed by sampling the rest HRRP segments. Moreover, the sampling interval is 20, 
and the number of training and test samples is 7398 and 16,656, respectively. Such settings 
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Table 2. The number of samples for each data segment of the three aircrafts.

Aircraft/No. 1 2 3 4 5 6 7

An-26 26,000 26,000 26,000 26,000 26,000 26,000 21,110
Cessna 26,000 26,000 26,000 26,000 26,000 26,000 26,000
Yak-42 26,000 26,000 26,000 26,000 17,950 — —

As a matter of routine [16,18,27–30], the training set is constructed by sampling the
5th and the 6th HRRP segments of An-26, the 6th and the 7th HRRP segments of Cessna
Citation S/II, and the 2nd and the 5th HRRP segments of Yak-42, whereas the test set is
constructed by sampling the rest HRRP segments. Moreover, the sampling interval is 20,
and the number of training and test samples is 7398 and 16,656, respectively. Such settings
could cover a wider range of aspect angles and mitigate the aspect sensitivity of HRRP. The
division of the data set and number of samples is shown in Table 3.

Table 3. Division of the data set and number of samples.

An-26 Cessna Yak-42 Total Sample No.

Segment No. for the training set 5, 6 6, 7 2, 5 7398
Segment No. for the test set 1, 2, 3, 4, 7 1, 2, 3, 4, 5 1, 3, 4 16,656

For the translation sensitivity, we align the samples by calculating the centroid of each
HRRP [49], which is assumed to be constant in a short observation time. To eliminate the
amplitude sensitivity, the l2-norm normalization is implemented to each HRRP through

xl2 =
x
‖x‖2

(24)

4.2. Training and Testing Process

We train the generator, the recognition module, and the discriminator of the IDR-
Net alternately using the losses described in (21) and (22). Specifically, we calculate the
gradients through back-propagation [50] and update the network parameters through the
root mean square prop (RMSprop) gradient descent [51]. Such method can adaptively
adjust the learning rate and has a faster descending speed than conventional methods. The
main steps include:

E
[

g2
]

k
= (1− ϕ)g2

k + ϕE
[

g2
]

k−1
(25)

θk+1 = θk −
η√

E[g2]k + δ
� gk (26)

where k is the index of iterations; θk is the set of network parameters at the kth iteration;
gk = ∂L

∂θk
is the partial derivative of the loss L with respect to θk; ϕ is the momentum
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coefficient; η is the learning rate; δ is a small positive number to avoid the zero devisor; and
� is the dot product.

During training, the network is trained using noise-added measured data. The detailed
training process of the IDR-Net is shown in Algorithm 1, where θG

k , θD
k , and θR

k represent
the parameter sets of the generator G, the discriminator D, and the recognition module,
respectively, at the kth iteration; and xk represents the output of the generator G.

Algorithm 1. Iterative alternating training process of the IDR-Net

1. Initialize: k = 0, θG
0 , θD

0 , θR
0 , iter, x0

2. For k = 1 : iter
Fix, update θD

k by (22) (26);
Fix, update θG

k by (22) (26), G generate xk;
Feed xk into the recognition module, update θR

k by (20) (26);
Judge convergence;

End
3. Save model parameters

Additionally, the number of neurons in the fully connected layer in D is 8; the length
of the sliding window in the recognition module is 6; the number of layers in the attention-
augmented temporal encoder is 5; and d is set to 128. The detailed description of the
hyperparameters is shown in Table 4. These parameters are determined empirically, making
the IDR-Net perform better.

Table 4. Hyperparameters of training the IDR-Net.

Parameter η α β λ Batch Size Epochs

Value 0.0002 0.5 0.015 160 256 600

In the testing process, as shown in the lower part of Figure 2, we fix weights of G and
the recognition module, feed the noisy test sample to G, and then obtain the category label
from the recognition module.

The IDR-Net is implemented based on the TensorFlow software, and the training and
testing phases are implemented by a NVIDIA GTX 1080Ti GPU.

4.3. Recognition Results

In terms of the original HRRPs of the three aircrafts, we treat them as noise-free
samples and generate the noisy training and test samples by adding Gaussian noise. Then,
it implements preprocessing following the steps introduced in Section 4.1. Given SNR
of 5 dB, 10 dB, and 15 dB, the confusion matrix, overall accuracy (OA), and per-class
accuracy (PA) of the IDR-Net on the noisy test sets are shown in Table 5. Each column of the
confusion matrix denotes the true category label, whereas each row denotes the predicted
label. The recognition accuracy is 77.97%, 85.30%, and 88.44%, respectively, for SNR of
5 dB, 10 dB, and 15 dB, respectively. Moreover, the recognition accuracy of Yak-42 is higher
than that of An-26 and Cessna Citation S/II aircraft, which may be due to the similar size
and trajectories of An-26 and Cessna Citation S/II.

To evaluate the denoising performance, we calculate the root mean square error
(RMSE) between the denoised and the noise-free HRRPs by:

RMSE =
1√
L
‖xdenoised − xclean‖2 (27)

The smaller RMSE indicates better denoising performance. For the test sets with
different SNR, the statistical histograms of the RMSE before and after denoising are shown
in Figure 8. By comparing the images in the same column, we observe that the denoised
histogram shifts to the left, demonstrating the effectiveness of the generator.
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Table 5. Recognition results of the IDR-Net on test sets.

SNR T/P An-26 Cessna Yak-42 All PA (%)

5 dB

An-26 3729 1488 1039 6256 59.61%
Cessna 845 5605 50 6500 86.23%
Yak-42 238 9 3653 3900 93.67%

OA(%) — 77.97%

10 dB

An-26 5187 500 569 6256 82.91%
Cessna 1240 5252 8 6500 80.80%
Yak-42 126 5 3769 3900 96.64%

OA(%) — 85.30%

15 dB

An-26 5464 452 340 6256 87.34%
Cessna 1063 5432 5 6500 83.57%
Yak-42 58 7 3835 3900 98.33%

OA(%) — 88.44%
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Figure 8. Statistical histograms of the RMSE before and after denoising. (a–c): RMSE of the noisy test
samples for SNR of 5 dB, 10 dB, and 15 dB; (d–f): RMSE of the denoised samples for SNR of 5 dB,
10 dB, and 15 dB.

To explain the feature extraction ability of the IDR-Net explicitly, Figure 9 visualizes
the deep features of the noisy test samples for SNR of 5 dB, 10 dB, and 15 dB, respectively,
by applying the t-distributed stochastic neighbor embedding (t-SNE) [52] to the output of
the fully connected layer in the recognition module. Specifically, the first row demonstrates
the separability of the original noisy samples, whereas the second row demonstrates the
separability of the denoised ones. The red, green, and blue markers represent features
of the An-26, Cessna Citation S/II, and Yak-42 aircraft, respectively. It is observed that
the separability of the three aircrafts is boosted after denoising and attention-augmented
temporal feature extraction.
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4.4. Ablation Study

To demonstrate the validity of the denoising module (including the generator and the
discriminator), the integrated denoising and recognition architectures, and the hybrid loss,
we design two models: (1) the recognition network, i.e., the IDR-Net without the denoising
module; and (2) the two-stage network, which carries out HRRP denoising and recognition
separately. Similar to the IDR-Net, we feed the noisy samples into the recognition network
for training and testing, and the loss function is expressed as Equation (20).

The two-stage network performs HRRP denoising through the denoising module of
the IDR-Net firstly. Then, it feeds the denoised HRRPs into the recognition network to
obtain the class label. It is worth noting that the denoising module is trained firstly by the
noisy samples and the corresponding noise-free samples, and the loss function satisfies

min
G
LG−loss(D, G) = −Ez

[
D
(
G
(
z
∣∣xnoisy

))]
+ λ

[
αLl1 + (1− α)Ll2

]
(28)

min
D
LD−loss(D, G) = Ez

[
D
(
G
(
z
∣∣xnoisy

))]
−Exclean

[
D
(
xclean

∣∣xnoisy
)]

+ λGPLGP (29)

Then, the weights of the generator are fixed, and the denoised samples together with
their labels are adopted to train the recognition network with the loss function given in
Equation (20).

Detailed configurations for the two models and the IDR-Net are listed in Table 6, and
the corresponding recognition accuracies are listed in Table 7. It can be found that the
IDR-Net achieves the highest recognition accuracy for SNR of 5 dB, 10 dB, and 15 dB.

Compared with the recognition network, the recognition accuracy of the IDR-Net is
improved by about 2%, demonstrating the effectiveness of the denoising module. Because
the denoising module and the recognition module are trained separately in the two-stage
model, the denoised samples may lose the information beneficial to recognition. On the
contrary, the IDR-Net achieves integrated denoising and recognition through the hybrid
loss, so that the denoising module is guided to generate samples facilitate recognition.
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Therefore, the recognition accuracy of the IDR-Net is about 3% higher than that of the
two-stage network.

Table 6. Configurations of the three models.

Function/Method IDR-Net Recognition-Net Two-Stage

Denoising
√

—
√

Recognition
√ √ √

End to end
√ √

—
Hybrid loss function

√
— —

Table 7. Comparisons of the recognition accuracy for SNR of 5 dB, 10 dB, 15 dB.

Method/SNR 5 dB 10 dB 15 dB

Recognition network 76.20% 83.18% 86.56%
Two-stage network 74.26% 81.45% 85.85%

IDR-Net 77.97% 85.30% 88.44%

4.5. Contrast Experiments

Although methods for HRRP recognition emerge in an endless stream in recent years,
they either design two networks for denoising and recognition separately, such as the SMTR-
Net [19], or directly design networks which are not robust to noise, such as DPmTRNN [1]
and RFRAN [31]. Below, we will compare the performance of the IDR-Net with traditional
HRRP recognition methods and recently proposed methods with certain noise robustness,
i.e., the linear support vector machine (LSVM) [27], the CNN [18], the TACNN [28], the
TARAN [29], the CNN–Bi-RNN [30], and the class factorized complex variational auto-
encoder (CFCVAE) [16]. Among them, the LSVM is a traditional kernel method, which has
satisfactory recognition and generalization performance. The remaining methods are deep
models. Specifically, the CNN could effectively extract the local structural information
of the HRRP; the TACNN is an attention-augmented CNN, where the learned attention
coefficients can better represent the importance of each local feature in the recognition task;
the TARAN is an attention-augmented RNN which could capture the temporal depen-
dence and consider the contributions of different range cells during feature extraction, the
CNN–Bi-RNN fuses the advantages of CNN and RNN and uses an attention mechanism to
adjust the importance of features; and the CFCVAE is a variant of AE, which improves the
feature characterization ability through multiple class-decoders.

Comparisons of the recognition accuracies between the available models and the
IDR-Net are listed in Table 8, where the proposed model achieves the highest recognition
accuracy on the noisy test sets with different SNR. Because traditional recognition methods
mainly utilize shallow models, they have limited data description capabilities. On the
contrary, deep neural networks are data-driven and could extract hierarchical features
conducive to HRRP recognition. As demonstrated by Table 8, the recognition accuracies
of the deep models are significantly higher than traditional method. However, the CNN
fails to calculate the sequential relationships, whereas the methods based on traditional
attention cannot describe the global information of the HRRP sequence. To tackle these
issues, the IDR-Net suppresses the impact of noise on HRRP feature extraction through the
denoising module, and then designs the attention-augmented temporal encoder extract the
global information in parallel, thereby effectively boosting the recognition accuracy and
the robustness to noise.
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Table 8. Comparisons of the recognition accuracy under different SNRs.

Model/SNR 5 dB 10 dB 15 dB

LSVM 47.00% 57.90% 61.00%
CNN 63.80% 66.20% 70.00%

TACNN 62.31% 71.47% 74.69%
TARAN 59.90% 60.50% 63.70%

CNN–Bi-RNN 68.06% 69.20% 74.72%
CFCVAE 70.35% 75.50% 81.22%
IDR-Net 77.97% 85.30% 88.44%

5. Conclusions

To achieve integrated of denoising and recognition of HRRPs in low SNR scenarios,
this paper proposes the IDR-Net, which converts the noisy HRRP to denoised HRRP
though adversarial training, and realizes global relationship extraction through the self-
attention mechanism. The hybrid loss is designed to preserve significant features beneficial
to recognition during denoising and facilitate end-to-end training. The experimental results
on the measured HRRP data have demonstrated that the IDR-Net has higher recognition
accuracy and stronger robustness to noise than traditional methods.

In the future, we will focus on studying effective feature extraction and recognition
of HRRP under complex conditions such as data deficiency and deformation, and on
exploring sequential features for HRRP sequence recognition.
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