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Abstract: Hyperspectral sensors provide an opportunity to capture the intensity of high spatial/spectral
information and enable applications for high-level earth observation missions, such as accurate
land cover mapping and target/object detection. Currently, convolutional neural networks (CNNs)
are good at coping with hyperspectral image processing tasks because of the strong spatial and
spectral feature extraction ability brought by hierarchical structures, but the convolution operation in
CNNs is limited to local feature extraction in both dimensions. In the meanwhile, the introduction
of the Transformer structure has provided an opportunity to capture long-distance dependencies
between tokens from a global perspective; however, Transformer-based methods have a restricted
ability to extract local information because they have no inductive bias, as CNNs do. To make full
use of these two methods’ advantages in hyperspectral image processing, a dual-flow architecture
named Hyper-LGNet to couple local and global features is firstly proposed by integrating CNN and
Transformer branches to deal with HSI spatial-spectral information. In particular, a spatial-spectral
feature fusion module (SSFFM) is designed to maximally integrate spectral and spatial information.
Three mainstream hyperspectral datasets (Indian Pines, Pavia University and Houston 2013) are
utilized to evaluate the proposed method’s performance. Comparative results show that the proposed
Hyper-LGNet achieves state-of-the-art performance in comparison with the other nine approaches
concerning overall accuracy (OA), average accuracy (AA) and kappa index. Consequently, it is
anticipated that, by coupling CNN and Transformer structures, this study can provide novel insights
into hyperspectral image analysis.

Keywords: hyperspectral image; deep learning; dual-flow architecture; CNN; Transformer

1. Introduction

With the development of sensing technology, hyperspectral sensors provide an op-
portunity to realize the acquisition of hundreds of bands for each pixel, capturing the
intensity of the reflectance of high spatial/spectral information and enabling the detection
of various objects [1–3]. In comparison with red-green-blue (RGB)-based sensing images
and multispectral images (MSI), hyperspectral images (HSI) contain hundreds of pieces of
spectrum band information because of the increasing band and decreasing bandwidth of
each spectral band [4]. Such abundant band information has a more powerful discriminat-
ing ability, especially for similar spectral categories, and thus has been widely applied in
high-level earth observation (EO) missions, such as accurate land cover mapping, precision
agriculture, target/object detection, urban planning, mineral exploration, and so on [5–7].

The land cover mapping problem in high-level Earth observation missions can be
transformed as an image classification problem, aiming to identify various objects so that vi-
tal information can be obtained by key stakeholders for decision making [8–10]. In the early
stage, the solution to cope with the HSI classification problem by traditional approaches
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with feature extraction methods was proposed and applied, including via machine learning
methods, such as random forest (RF) [11], k-nearest neighbors (k-NNs) [12], support-vector
machines (SVMs) [13], K-means [14], and so on. However, these conventional classifica-
tion methods require human experience for feature extraction, thus resulting in a poor
performance. In recent years, the appearance of deep learning methods has enhanced the
ability to analyze hyperspectral images with an accurate and robust approach, including
via convolutional neural networks (CNNs), recurrent neural networks (RNNs), and so
on [5,15,16]. Conventional machine learning techniques require careful engineering and
considerable domain expertise to design a feature extractor transforming the raw HSI
data [17]. In contrast, deep learning methods can strongly extract the representations of raw
data that are needed for HSI classification [18,19]. Until now, many novel algorithms have
achieved great performance in HSI classification. Swalpa et al. proposed a new end-to-end
morphological framework to model nonlinear information during the training process,
achieving superior performance in contrast with traditional CNNs on the Indian Pines and
Pavia University datasets [20]. Focusing on multi-modal remote sensing data classification,
Wu et al. designed a reconstruction strategy called CCR-Net to learn more compact fusion
representations of RS data sources, demonstrating its effectiveness on the Houston 2013
dataset [21]. Sellami et al. proposed a novel methodology based on multi-view deep
neural networks [22]. In this method, images are initial processed and a specially designed
autoencoder and semi-supervised networks are adopted to reach SOTA results on the
Indian Pines, Salinas, and Pavia University datasets. Among these deep learning-based
methods, CNNs have attracted many scholars to use them on hyperspectral image analysis
for spatial and spectral feature extraction due to the strong feature extraction ability of the
convolution operation and the strong representation ability brought by their hierarchical
structure [23,24].

According to the form of input data, CNN-based methods for HSI classification can
be divided into spectral CNNs, spatial CNNs, and spectral-spatial CNNs. Spectral CNNs
take the pixel vector as input and utilize CNNs to accomplish the classification task only
in the spectral dimension. For example, Hu et al. proposed a 1D CNN with five stacked
convolutional layers to extract the spectral features of HSI [25]. Furthermore, Li et al.
proposed a novel CNN-based method to encode pixel-pair features and made prediction
results via a voting strategy, obtaining excellent classification performance [26]. To fully
exploit the rich spatial information, spatial CNN-based methods were proposed to extract
the spatial features of HSI. For example, Haut et al. proposed to use cropped image
patches with centered neighboring pixels to train 2D CNNs for HSI classification instead
of only a pixel in the previous way [27]. Xu et al. proposed RPNet to combine both
shallow and deep convolutional features, creating a better adaption to the multi-scale
object classification of HSI [28]. Since spectral and spatial information are both crucial for
the accurate classification of HSI, spectral-spatial CNN-based methods have been further
proposed for jointly exploiting spectral and spatial features in HSI [29]. For instance,
Zhong et al. proposed to use 3D convolutional layers to extract spectral-spatial information
with batch normalization regularizing the model [30]. He et al. proposed a deep 3D CNN to
jointly learn both 2D multi-scale spatial features and 1D spectral features from HSI data in
an end-to-end approach, achieving state-of-the-art results on the standard HSI datasets [31].

However, although CNN-based feature extractors have achieved great results in
hyperspectral image analysis by employing spatial and spectral information according
to the aforementioned reviews, some particular characteristics of CNNs may restrict the
network’s performance on the HSI classification problem. The convolution operation in the
CNN method is only limited to local feature extraction, whether in the spectral dimension or
the spatial dimension; therefore, the receptive field can only be further increased by stacking
the number of layers. As a consequence, such a process is often unable to effectively obtain
the global receptive field and leads to a huge computation load due to the increase in model
parameters. As a result, the CNN-based method is always applied in HSI classification
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with other strategies to achieve better performance, such as with multiscale dynamic graph
and hashing semantic features [32,33].

To overcome the drawbacks brought by CNNs, the Transformer structure is designed
for processing and analysing sequential data, particularly in image analysis problems. Be-
cause of its unique internal multi-head self-attention mechanism, Transformer is capable of
capturing long-distance dependencies between tokens from a global perspective. Inspired
by related reviews, Transformer has achieved quite good results on multiple downstream
tasks in the natural language processing (NLP) and computer vision (CV) domains with
the help of large-scale pre-training [34–36]. Furthermore, Transformer has also achieved
superior results in the field of hyperspectral image classification. For example, to solve the
limited receptive field, inflexibility and difficult generalization problems, HSI-BERT was
proposed to capture the global dependence among spatial pixels with bidirectional encoder
representations from Transformers [37]. Spatial-spectral Transformer utilized a CNN to
extract the spatial features and a modified Transformer to capture global relationships in the
spectral dimension, fully exploring the spatial-spectral features [38]. Moreover, the spatial
Transformer network was proposed to obtain the optimal input of HSI classifiers for the first
time [39]. Rethinking hyperspectral image classification with Transformers, SpectralFormer
can learn spectral local information from neighboring bands of HS images, achieving a
significant improvement in comparison with state-of-the-art backbone networks [7].

It should be emphasized that although a single Transformer network can pave the way
for the HSI classification problem compared to CNN methods by the means of both spatial
and spectral information, it still has some problems. First, the Transformer method has a
restricted ability to extract local information since it does not possess the strong inductive
bias that CNNs do. Second, Transformer needs large-scale pre-training to achieve the same
performance as a CNN. Third, the computation load is strongly positive and correlated to
the sequence length, so that the Transformer-based method will be unduly computationally
intensive when the sequence length is excessively long, and the Transformer’s representa-
tional ability will also be limited if the sequence length is too short. Therefore, an adequate
approach to combine the benefits of each paradigm (CNN-based and Transformer-based
methods) applying spatial and spectral information in the field of the HSI classification
task is a challenging problem.

Currently, many scholars attribute their work in the HSI classification problem, includ-
ing traditional machine learning methods, CNN-based approaches and Transformer-based
methods. Although some works integrate CNN and Transformer via a hybrid strategy in a
single branch, the spatial and spectral information of HSI are not fully fused and utilized.
Local features and global features are not complementary at the receptive field level, and
the features of only one branch cannot help the model to discriminate various classes
through a feature fusion method, resulting in a less convincing and accurate classification
performance [39]. To address these previous drawbacks introduced by a single CNN and
Transformer network, the dual flow framework named Hyper-LGNet aiming to couple
local and global features for hyperspectral image classification is proposed, using CNN
and Transformer branches to deal with HSI spatial-spectral information. The proposed
Spatial-spectral Feature Fusion Module (SSFFM) is applied to integrate spectral and spatial
information maximally. The proposed method is validated by using three popular datasets:
the Indian Pines, Pavia University and Houston 2013 datasets. The results are compared
with traditional machine learning methods and other deep learning architectures, showing
that our result achieves the best performance among others even compared with previ-
ous SOTA SpectralFormer [7]. To be more clear, the main contributions are summarized
as follows:

(1) A dual flow architecture named Hyper-LGNet is proposed, which utilizes CNN and
Transformer models from two branches to obtain HSI spatial and spectral information
for HSI classification problems on the first attempt.



Remote Sens. 2022, 14, 5251 4 of 21

(2) The sensing image feature fusion block, namely the Spatial-spectral Feature Fusion
Module, is proposed to maximally fuse spectral information and spatial information
from two branches in a dual-flow architecture.

(3) Extensive experiments are conducted on three mainstream datasets, including the In-
dian Pines, Pavia University and Houston 2013 datasets. In comparison with various
methods, a state-of-the-art classification performance is achieved under Spectral-
Former data settings.

The remaining sections of this paper are organized as follows: Section 2 presents the
proposed Hyper-LGNet network design; Section 3 demonstrates the comparative results of
different algorithms by various HSI public datasets in a qualitative and quantitative way;
and finally, conclusions and directions for future work are drawn in Section 4.

2. Methodology

In this section, we first give a brief review of conventional CNN and Transformer
models. Second, a detailed illustration of the proposed dual-branch architecture named
Hyper-LGNet is presented. Then, the feature fusion module is introduced to simultaneously
achieve effective fusion of dual-branch spectral features embedded in each single branch.
The experimental configuration and evaluation matrix are finally displayed.

2.1. Overview of Conventional CNN and Transformer Network

For the hyperspectral image classification task, it is of paramount importance to
make full use of the spatial and spectral information in the sensing images. Regarding
the exploration of spatial information, both local features and global representations are
vital for the pixel-wise classification task. Benefiting from the powerful local information
extraction ability of convolution operations, CNNs are capable of coping with multiple
tasks in the field of computer vision. As can be seen in Figure 1, a conventional framework
of a basic convolutional block contains a convolutional layer, batch normalization (BN), an
activation function and specific layers for downstream tasks, which provide it with a strong
local information extraction ability. Specifically, local features are able to identify low-level
information, such as boundary information and texture information among various classes,
while global representations can capture higher-level semantic information. Although the
receptive field can be increased by hierarchically stacking convolutional layers in a CNN,
it is hard to clearly model long-range dependencies, meaning that it cannot effectively
capture global representations.

…

…

Output

Convolution Batch Normalization Activation Function

Figure 1. Illustration of CNN structure using convolution layers.

As one of the self-attention mechanism-based networks, Transformer [40] can effec-
tively model global dependencies, making up for the CNNs’ limitations, especially for HSI
classification task. The principle of Transformer can be seen in Figure 2. It is based on a
self-attention mechanism by stacking Transformer blocks to learn the word embeddings
used in the Transformer decoder and other downstream tasks. Therefore, to cope with the
image task, Vision Transformer (ViT) [41] has been proposed, seen as Vision Transformer in
Figure 2, to adapt the Transformer encoder and treat a patch as a token to sequentialize the
image. With the help of large-scale pre-training, Transformer can model clear long-distance
dependencies and achieve superior performance. However, due to the fact that Transformer
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is without the strong inductive bias possessed by a CNN, Transformer cannot effectively
model local information without large-scale pre-training. As a consequence, it is essential
to integrate CNN and Transformer to deal with HSI classification problems.
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Figure 2. Illustration of ViT structure by sequence processing.

In order to fully utilize the local features and global representations in spatial and
spectral dimensions, we combine CNN and Transformer together in a model named Hyper-
LGNet in a dual flow approach. The proposed deep learning architecture is capable of
extracting important local features and global context information equally in the spatial
dimension by using parallel CNN and Transformer. Then, the spatial feature is extracted
from the double branch by the proposed feature fusion module. By means of the channel
attention mechanism, the spectral information can be also learned and fused. Finally,
the feature map is reshaped into a vector form and fed through the fully connected layer to
obtain the final output (classification vector). The details of designing the Hyper-LGNet
model will be introduced in the following section.

2.2. Hyper-LGNet Network Architecture

In this section, the proposed dual-flow architecture obtaining HSI spatial and spectral
information is introduced. It employs a CNN branch and a Transformer branch to capture
spatial representations and utilizes the Spatial-spectral Feature Fusion Module (SSFFM) to
deeply fuse spectral information of both branches (see Figure 3).
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Figure 3. The architecture of the proposed Hyper-LGNet.

2.2.1. CNN Branch Design

In order to fully extract local features in the spatial dimension and solve the afore-
mentioned problem that Transformer cannot effectively model local information without
pre-training, we design a simple, powerful and effective CNN branch to build a lightweight
architecture. As displayed in Figure 3, this CNN branch is divided into three main stages
for downsampling operations, including 1/2, 1/4 and 1/8, where each corresponding stage
refers to a particular spatial resolution scale.

Each stage of the CNN branch is composed of an improved residual block. Each
residual block has three main parts, including a convolutional layer with a stride of 2 that
realizes the downsampling operation in the spatial dimension, a BN layer accelerating
model convergence through batch normalization, and a ReLU layer that enhances the
nonlinear fitting ability of the CNN branch. Meanwhile, residual connections are also used
to optimize the training process of the model. The location of each residual connection
utilizes a convolutional alignment spatial resolution of stride 2 to realize that feature maps
can achieve feature aggregation by direct addition at the end of the residual block. It
is worth noting that in order to avoid the loss of HSI spectral information, the channel
dimension of each residual block in CNN branch is set to be the same as the number of
band information for the aim of the follow-up extraction of spectral dimension features.
By constructing the aforementioned hierarchical CNN branches, the crucial local features
for the accurate classification of hyperspectral images can be efficiently extracted.

2.2.2. Transformer Branch Design

Transformer branches, as a type of parallel branch in dual-flow architecture, are well
designed to capture global dependencies. Inspired by ViT [41], our Transformer branch
consists of a convolutional stem block and four layers of repeatedly stacked Transformer
blocks (as is shown in Figure 3). By considering that the computational complexity of
the Transformer is quadratic to the sequence length, the complexity of the Transformer
branch will be too high if each pixel in the input image block is directly reshaped into
a vector. As a result, we first use a stem block composed of a convolution to achieve
double downsampling of the image resolution, so that the computational complexity of the



Remote Sens. 2022, 14, 5251 7 of 21

Transformer branch can be reduced. The role of the stem block can also be interpreted as
feature embedding; hence, our Transformer branch actually takes a 2 × 2 patch as a token.

Each Transformer block includes a multi-head self-attention (MHSA) layer and a feed-
forward network (FFN). Based on its internal self-attention mechanism, the multi-head
self-attention layer can model clear long-range dependencies from a global perspective,
while the feed-forward layer further enhances the network’s representation ability through
its internal fully connected layers and nonlinear activation functions. It is worth men-
tioning that layer normalization (LN) is used to normalize the data before each layer
input, and residual connections are used both in the multi-head self-attention layer and the
feed-forward layer to enhance the training ability of the Transformer (preventing gradient
disappearing). Given a feature sequence as an input, the expression of the output of the
n-th (n ∈ [1, 2, . . . , N]) Transformer block can be calculated as:

x′n = MHSA(LN(xn−1)) + xn−1. (1)

xn = FFN(LN(x′n)) + x′n. (2)

where LN(∗) is the layer normalization, and xn is the output of the n-th Transformer block.
In particular, the class token is abandoned for the aim of saving the amount of model

parameters in the Transformer branch design to pursue a lightweight model. Finally,
we utilize positional encoding via depth-wise separable convolution to further enhance
the local features learned by the CNN branch and compensate for the loss of positional
information of the tokens in the Transformer branch, further improving the network
classification performance.

2.2.3. Spatial-Spectral Feature Fusion Module Design

Both the CNN and Transformer branches aim to extract HSI spatial information,
and thus, an adequate method to effectively fuse the local and global features of these
two branches is crucial for the entire model to achieve accurate classification performance.
As a consequence, the spatial-spectral feature fusion module (SSFFM), inspired by SENet,
is designed to achieve an effective fusion of local features and global features (to ensure the
consistency of dual-branch output features), making full use of the spectral information
of the channel dimension [42]. The whole design of SSFFM is presented in Figure 4.
To obtain spatially consistent double-branch features, we first reshape the sequence output
by the Transformer branch into the form of feature maps. Then, the CNN branch output
feature map is upsampled by bilinear interpolation to the same spatial resolution as the
Transformer branch. To effectively fuse the features of both branches (e.g., the CNN and
Transformer branches) and apply the spectral information to enhance the representation
ability of the model, we further concatenate the dual-branch features together along the
channel dimensions and utilize a convolution block to compress the channel dimension
to reduce the computational complexity of the model. We apply the channel attention
module composed of two linear layers to extract the compressed spectral features to fully
utilize the spectral information, enhancing the hidden layer feature representations in the
channel dimension.

Specifically, we first collapse the feature map of each channel (spectral) into one dimen-
sion in the spatial dimension by a global average pooling operation so that these vectors
can be sent to two fully connected layers (linear layers) for modelling long-range depen-
dencies between channels. The output of the fully-connected layer is a weighting factor
corresponding to each spectral channel. These weighting factors are used to strengthen
or weaken the representations of different channels to obtain the final output by direct
matrix multiplication (e.g., spatial and spectral information). Of emphasis, in our whole
architecture, we take full advantage of the respective advantages of CNN, Transformer
and MLP to achieve a lightweight and powerful overall architecture. In order to enhance
the training ability of the model, residual connections are also used for structural design.
At the same time, to reduce the amount of parameters, two fully connected layers in the
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feature fusion module can compress the vector length and then restore it to its original size.
After spatial-spectral feature fusion, the output will be directly reshaped as a vector and
sent to the final two fully connected (FC) layers to obtain the final output for classification.

Concat

Conv Block

AvgPool

ReLU

Sigmoid

Linear

Linear

  CNN 
Branch

Transformer  
    Branch

Output

Upsample Reshape

Figure 4. Structure of the proposed Spatial-spectral Feature Fusion Module.

2.3. Experimental Settings

Implementation Details: Our proposed method was implemented on the PyTorch
platform and trained with an NVIDIA GeForce GTX 1080Ti GPU (11GB memory). We
adopted the Adam optimizer to train our method with a patch size of 8 on three different
HSI datasets. Based on experimental results, the best hyperparameter configuration for
each HSI dataset was totally various, and the details of their experimental settings are
listed in Table 1. Specifically, for the learning rate schedule on the Indian Pines dataset,
the learning rate was initialized differently but decayed by multiplying a factor of 0.9 after
each one-tenth of the total epochs, while the learning rate on the Pavia University and
Houston 2013 datasets followed a cosine learning rate decay schedule with a warm-up
strategy for 10 epochs. On the Indian Pines dataset, the training epochs and learning rate
were set to 500 and 5× 10−4, respectively, with a mini-batch size of 64. On the Pavia
University dataset, the training epochs and learning rate were set to 1000 and 1× 10−4,
respectively, also with a mini-batch size of 64. On the Houston 2013 dataset, we trained the
proposed method for 1000 epochs with a mini-batch size of 96 and learning rate of 1× 10−4.
Of note, for experiments on the Pavia University and Houston 2013 datasets, the L2 norm
was also applied for model regularization with a weight decay rate of 5× 10−4.

Table 1. The details of experimental settings for the three HSI datasets.

Config Indian Pines Pavia University Houston 2013

training epochs 500 1000 1000
learning rate 5× 10−4 1× 10−4 1× 10−4

batch size 64 64 96
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Performance Metrics: The performance of each method was quantitatively evaluated
by three commonly used indices, including overall accuracy (OA), average accuracy (AA),
and kappa coefficient (k). Moreover, the direct visualization results of various approaches
are also displayed to make a qualitative comparison.

OA =
TP + TN

TP + FP + FN + TN
, (3)

AA =
TP

2(TP + FN)
+

TN
2(TN + FP)

, (4)

Kappa =
p0 − pe

1− pe
(5)

where P, N, T and F are the abbreviations of positive, negative, true, and false pixels in the
prediction map, respectively. In particular, TP indicates the correctly predicted positive
values; FP is a value where the actual class is negative, and the predicted class is positive;
FN denotes that the actual class is positive, but the predicted class is negative; and TN
expresses the truly predicted negative values. p0 is the sum of the correctly predicted
values for each class divided by the total number of values, namely OA in this situation,
and pe is the sum of the true values times the predicted values of each class, which is then
divided by the square of the total values of all classes. OA is the main reference metric in
our experiments.

3. Experiments and Results

In this section, three main public datasets of hyperspectral images are first intro-
duced. The data division results (training and testing pixels) are also displayed. Finally,
the comparative results are presented with an ablation study from both quantitative and
qualitative approaches.

3.1. Dataset Introduction and Division

The selected datasets for the HSI classification task are introduced, including the
Indian Pines, Pavia University and Houston 2013 datasets. The basic information of these
three can be seen in Table 2, where related sensors, band information, spatial resolutions,
image sizes, classes as well as data acquisition years are presented. In addition, each
hyperspectral dataset is divided into training data and testing data. Of note, there are two
dataset division approaches for HSI; this study’s data division method is different from the
original hyperspectral data website but the same as the literature [7] for a fair comparison.

Table 2. Basic information of three main hyperspectral datasets.

Dataset Sensor Number of
Bands

Spatial
Resolution Size Number of

Classes
Year of Data
Acquisition

Houston 2013 ITRES 144 2.5 m 349 × 1905 15 1998
Pavia University ROSIS 103 1.3 m 610 × 340 9 2001

Indian Pines AVIRIS 200 20 m 145 × 145 16 1992

3.1.1. Indian Pines Data

The Indian Pines dataset was collected by an airborne visible/infrared imaging spec-
trometer (AVIRIS) sensor covering northwestern Indiana, USA. Each image is formed as
145 × 145 pixels with a ground sampling distance of 20 m. There are, in total, 220 spectral
bands of information provided by this sensor (10 m spectral resolution) covering the wave-
length from 400 nm to 2500 nm. In this dataset, there are 20 noisy and water absorption
bands that have been removed to facilitate the image classification process. There are, in
total, 16 related objects from big samples to small samples included in this dataset, where
the objects and corresponding data for training and testing are shown in Table 3. It can
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be seen in this dataset that the training pixels are much fewer than the testing samples,
indicating that the model is reliable once the result is promising.

Table 3. Land-cover classes with corresponding standard training and testing pixels on Indian
Pines dataset.

Class No. Class Name Training Testing

1 Corn Notill 50 1384
2 Corn Mintill 50 784
3 Corn 50 184
4 Grass Pasture 50 447
5 Grass Trees 50 697
6 Hay Windrowed 50 439
7 Soybean Notill 50 918
8 Soybean Mintill 50 2418
9 Soybean Clean 50 564
10 Wheat 50 162
11 Woods 50 1244
12 Buildings Grass Trees Drives 50 330
13 Stone Steel Towers 50 45
14 Alfalfa 15 39
15 Grass Pasture Mowed 15 11
16 Oats 15 5

Total 695 9671

3.1.2. Pavia University Data

The Pavia University dataset was collected by the sensor named the Reflective Optics
Spectrographic Imaging System (ROSIS). This sensor captured images covering an urban
area of Pavia University. In this dataset, the image size is 610 × 340 with a 1.3 m spatial
resolution. In terms of spectral information, the band wavelength ranges from 0.43 µm
to 0.86 µm. As in the Indian Pines dataset, there are 12 bands that have removed because
of the signal-to-noise ratio (SNR) and the water absorption, thus leaving 103 bands in the
dataset. There are, in total, 9 classes in this image, including asphalt, meadows, gravel,
trees, metal sheets, bare soil, bitumen, bricks, and shadows, which need to be discriminated
by the proposed method. The details of training and testing data and pixels are displayed
in Table 4.

Table 4. Land-cover classes with corresponding standard training and testing pixels on Pavia
University dataset.

Class No. Class Name Training Testing

1 Asphalt 548 6304
2 Meadows 540 18,146
3 Gravel 392 1815
4 Trees 524 2912
5 Metal Sheets 265 1113
6 Bare Soil 532 4572
7 Bitumen 375 981
8 Bricks 514 3364
9 Shadows 231 795

Total 3921 40,002

3.1.3. Houston 2013 Data

The last dataset we applied to evaluate the effectiveness of the proposed Hyper-
LGNet is the Houston 2013 dataset. It was obtained by an ITRES CASI-1500 sensor sur-
veying the campus of the University of Houston. Each image in this dataset is formed
as 349 × 1905 pixels. The spectral wavelength (total 144 bands) ranges from 346 nm to
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1046 nm. The spatial resolution of this dataset is 2.5 m, and there are, in total, 15 classes
that need to be classified by the proposed method. Detailed information regarding these
data can be found in Table 5.

Table 5. Land-cover classes with corresponding standard training and testing pixels on Houston
2013 dataset.

Class No. Class Name Training Testing

1 Healthy Grass 198 1053
2 Stressed Grass 190 1064
3 Synthetic Grass 192 505
4 Tree 188 1056
5 Soil 186 1056
6 Water 182 143
7 Residential 196 1072
8 Commercial 191 1053
9 Road 193 1059
10 Highway 191 1036
11 Railway 181 1054
12 Parking Lot1 192 1041
13 Parking Lot2 184 285
14 Tennis Court 181 247
15 Running Track 187 473

Total 2832 12,197

3.2. Classification Results by the Proposed Method on Three Mainstream Datasets
3.2.1. Indian Pines Dataset Classification Results

Our comparative study is first conducted on the Indian Pine dataset using various
algorithms, including traditional machine learning methods (e.g., SVM, RF, KNN), deep
learning methods (CNN, RNN, VGG, ViT, FuNet-C [43], SpectralFormer (SF)) and our
proposed Hyper-LGNet. The results are evaluated in terms of overall accuracy (OA),
average accuracy (AA) and kappa. First, comparing machine learning-based methods and
deep learning-based methods, it can be seen from Table 6 that the OA, AA and kappa of
conventional machine learning and deep learning method are comparable as deep learning
has powerful learning and image feature extraction abilities. In particular, regarding
all deep learning-based methods, the last four deep learning methods (SpectralFormer,
FuNet-C, ViT and Hyper-LGNet) perform much better than CNN, FCN and RNN. This
is mainly because these four can learn more local and global details in their encoder-
decoder architecture.

In addition, it can be found that the OA, AA and kappa of the proposed Hyper-LGNet
greatly outperform the previous SOTA SpectralFormer method (under the same data
division settings), where OA increases from 81.76% to 89.01%, AA increases from 87.81%
to 94.14% and kappa increases from 0.7919 to 0.8743. In detail, 15 of 16 classes of each
evaluation matrix by our method is higher than SpectralFormer. Class No.14 (Alfalfa) is
hard to distinguish in the SpectralFormer method because of its similarity with other classes
and the few training data; however, the proposed method using a dual-flow architecture
can make the classification OA increase to 100%, indicating that the proposed method
obtains more local and global image feature details in this architecture and surpasses the
previous SOTA model by 20.51%. Therefore, the proposed method of integrating spectral
and spatial information in a dual-flow way is effective, especially in coping with small
samples and fewer training samples. The results, to a great extent, demonstrate the value
and practicality of deep learning-based approaches in HS image classification. Compared
with traditional convolution operations, Transformer-based models can extract finer spatial
feature representations from the sequence perspectives, yielding a comparable performance
to other deep learning methods.
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Table 6. OA, AA and kappa results of various algorithms on Indian Pines dataset.

Classes SVM RF KNN CNN RNN VGG ViT FuNet-C SF Ours

1 67.27 57.23 51.66 74.64 57.23 59.32 70.73 68.50 70.52 81.50
2 64.92 58.04 52.68 75.77 75.25 68.62 87.76 79.59 81.89 89.29
3 85.87 78.80 79.35 84.78 83.15 91.85 82.61 99.46 91.30 96.74
4 93.29 89.49 88.81 93.74 88.14 85.01 94.85 95.08 95.53 98.88
5 85.94 77.91 80.63 95.41 83.64 71.73 80.34 95.70 85.51 96.13
6 95.44 93.39 95.22 98.18 94.08 93.16 96.58 99.54 99.32 98.63
7 75.05 68.08 63.51 79.30 64.71 73.53 77.02 75.93 81.81 88.67
8 58.06 48.26 47.11 48.64 69.07 57.24 65.63 68.90 75.48 83.42
9 78.72 48.40 39.36 78.55 62.06 56.74 69.68 71.63 73.76 81.56

10 98.77 93.83 96.30 99.38 95.06 99.38 99.38 99.38 98.77 99.38
11 87.54 89.15 77.65 93.65 83.84 88.67 90.19 89.55 93.17 95.34
12 65.76 45.76 23.94 77.27 48.48 84.55 83.03 91.52 78.48 96.67
13 95.56 97.78 93.33 97.78 91.11 100.00 100.00 100.00 100.00 100.00
14 82.05 43.59 69.23 79.49 69.23 84.62 79.49 94.87 79.49 100.00
15 90.91 81.82 81.81 100.00 81.81 90.91 100.00 100.00 100.00 100.00
16 100.00 100.00 80.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

OA (%) 73.68 65.11 60.78 75.66 72.15 70.64 78.20 79.89 81.76 89.01
AA (%) 82.82 73.22 70.04 86.04 77.93 81.58 86.08 89.35 87.81 94.14
Kappa 0.7027 0.6075 0.5576 0.7263 0.6826 0.6673 0.7532 0.7716 0.7919 0.8743

Such a conclusion can also be seen in the box plot by different algorithms in Figure 5,
where using total 16 classification accuracy results on Indian Pines. The distribution of
each method can be seen in this figure. The overall accuracy of the proposed method is the
highest among the various algorithms. Additionally, considering the classification results
of all classes, the proposed method achieves the smallest variance seen from the size of
the box. Although the previous SOTA, SpectralFormer, ranks second regarding overall
accuracy among these methods, it has a large variance of 16 classes of classification accuracy,
meaning that this model is less accurate and robust than our proposed one. Therefore,
the proposed Hyper-LGNet has a strong discriminating ability in the HSI classification
problem. More direct results can be seen from Figure 6 by visualisation, where difficult
classes can be well-classified.
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Figure 5. Box plot classification analysis of each algorithm on Indian Pines.

3.2.2. Pavia University Dataset Classification Results

In this section, different algorithms including SVM, RF, KNN, CNN, RNN, VGG, ViT,
FuNet-C, SpectralFormer and our Hyper-LGNet are also compared on Pavia University
dataset. It can be seen from Table 7 that machine learning methods perform predictably
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worse than most of the deep learning methods due to their limited data fitting and represen-
tation ability. This is mainly due to the dataset characteristic problem: the Pavia University
dataset is a dataset with large samples and few classes. As can be seen in Table 7, the results
of OA obtained by the machine learning methods (SVM, RF, KNN) are all lower than 80%,
while the OA of most deep learning-based models can reach more than 80%. In this dataset,
the results of the proposed Hyper-LGNet surpasses the previous SOTA SpectralFormer
again, providing increases of 1.61% on OA, 0.12% on AA and 0.0208 on Kappa.

Test DCNNRNN OursVIT

CornNotill CornMintill SoybeanNotill GrassPature GrassPature HayWindow Corn SoybeanMintill

SoybeanClean Wheat Woods BuilGraTrDri StoSteTower Alfalfa GrassPastMow Oats

Train KNNSVMRF VGG

Figure 6. Visualization of the results of different algorithms on Indian Pines dataset.

Table 7. OA, AA and kappa results of various algorithms on Pavia University dataset.

Classes SVM RF KNN CNN RNN VGG ViT FuNet-C SF Ours

1 75.02 80.28 74.89 91.97 76.09 72.83 77.66 96.67 82.73 86.83
2 68.60 54.13 60.80 75.80 57.45 98.14 82.44 97.60 94.03 96.55
3 72.34 46.61 54.10 66.78 64.74 78.29 60.33 84.49 73.66 70.96
4 90.93 98.70 96.36 94.88 98.94 95.98 95.02 89.95 93.75 99.11
5 99.19 98.74 99.19 99.01 99.10 99.91 98.92 99.64 99.28 98.47
6 91.23 73.73 68.74 92.91 88.71 71.28 68.22 90.56 90.75 86.90
7 87.46 78.90 85.12 92.46 85.93 83.38 71.56 78.27 87.56 79.71
8 88.56 88.79 84.60 82.79 86.80 99.49 95.95 71.73 95.81 97.74
9 100.00 97.36 97.86 90.57 96.98 94.72 95.22 98.04 94.21 96.60

OA (%) 77.61 69.02 70.62 83.22 72.42 89.69 81.56 92.20 91.07 92.68
AA (%) 85.93 79.69 80.19 87.46 83.86 88.12 82.82 89.66 90.20 90.32
Kappa 0.7157 0.6158 0.6297 0.7833 0.6585 0.8595 0.7568 0.8951 0.8805 0.9013

Regarding the explicit comparison between deep learning methods, CNN-based mod-
els (CNN, RNN, VGG) could not reach outstanding results for the reason that they fail
to make the best of spectral sequence information. Specifically, CNNs are good at ex-
tracting local contextual information but hardly capable of capturing sequence attributes
well. Additionally, RNNs can learn spectral features band-by-band in an orderly fash-
ion, making it hard to learn long-term dependencies among huge numbers of bands
(104 bands in the Pavia University dataset). However, only considering sequence data but
having no powerful local contextual extraction also leads to poor classification performance.
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The Transformer-based model, namely ViT, obtains 81.56% OA, but the Transformer struc-
ture designed for sequence information is poor at spatial information learning, hindering
its performance to be further improved. As a result, with the full utilization of HSI spatial
and spectral information, our Hyper-LGNet reaches the best results regarding OA, AA
and Kappa. This demonstrates that the proposed dual-flow architecture has a significant
superiority over the other methods. The box plot of various algorithms applied to the Pavia
University dataset can be seen in Figure 7, and the direct qualitative visualization can be
found in Figure 8.
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Figure 7. Box plot classification analysis of each algorithm on Pavia University.
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Figure 8. Visualization of the results of different algorithms on Pavia University dataset.
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3.2.3. Houston 2013 Dataset Classification Results

Finally, the advantages of the proposed method are verified by comparing the clas-
sification performance of various algorithms on the Houston 2013 dataset. In general,
the values obtained by different machine learning methods (SVM, RF, KNN) are compara-
ble but much lower than deep learning models. This is because machine learning methods
generally adopt hand-crafted feature extraction approaches to realize image analysis. There-
fore, these methods are not applicable without image pre-processing of HSI datasets, so the
results of OA are all lower than 80%. Moreover, since HSI has abundant data spatially and
spectrally, the complete utilization of these data is important for models to perform well on
HSI classification.

As can be seen in Table 8, ViT obtains limited OA scores. Despite using an attention
mechanism to obtain the relationship between each two spectral bands, it fails to capture
semantic features. On the contrary, other deep learning methods (CNN, RNN, VGG, Spec-
talformer, FuNet-M, Hyper-LGNet) employ CNN structures, whose local connections and
shared weights make them effective at capturing local correlations. Intuitively, with a
similar capacity of spatial information acquisition, the qualities of the aforementioned
models depend on the acquisition of spectral connections. CNNs are poor at expanding
their receptive fields, resulting in the loss of spectral information. However, the proposed
Hyper-LGNet takes full advantage of CNN and Transformer structures, realizing the
complete utilization of spatial and spectral data and reaching the best OA of 88.80%. In par-
ticular, for challenging classes (e.g., Class 10: Highway) in the dataset, all the algorithms
perform poorly except for our method, which achieves an overall accuracy of more than
80%. The box plot analysis of the proposed Hyper-LGNet on the Houston 2013 dataset
can be seen in Figure 9. Additionally, as in the Indian Pine and Pavia University dataset
classification maps, the visualization of classification results on the Houston 2013 dataset
can be seen in Figure 10, directly showing the superiority of the proposed Hyper-LGNet in
the HS image classification problem.

Table 8. OA, AA and kappa results of various algorithms on Houston 2013 dataset.

Classes SVM RF KNN CNN RNN VGG ViT FuNet-M SF Ours

1 83.00 82.43 83.29 85.75 85.66 83.29 85.28 83.86 81.86 83.48
2 98.40 97.46 96.33 98.59 96.71 98.97 95.95 98.59 100.00 100.00
3 99.21 97.42 99.41 100.00 99.01 83.56 88.51 83.37 95.25 91.29
4 98.20 95.55 98.30 93.47 98.67 99.15 90.44 98.96 96.12 99.62
5 97.73 96.02 96.40 98.58 96.97 95.64 99.52 99.72 99.53 100.00
6 79.02 95.10 94.41 95.10 99.30 90.91 88.81 96.50 94.41 93.01
7 65.95 78.92 82.93 79.94 83.49 85.07 88.99 89.55 83.12 86.10
8 53.47 42.74 50.71 66.38 51.95 82.15 77.39 89.36 76.73 77.59
9 65.63 70.25 69.31 62.98 72.33 78.19 77.81 83.29 79.32 81.40
10 37.36 54.73 66.99 67.47 75.58 53.67 55.21 79.25 78.86 80.02
11 74.57 75.14 83.11 71.54 76.85 96.58 69.17 79.89 88.71 92.41
12 51.59 49.86 48.32 88.47 55.62 79.35 76.37 79.15 87.32 83.29
13 39.65 57.89 34.39 76.14 70.16 83.86 68.77 87.72 72.63 90.18
14 97.57 95.60 97.98 98.79 99.19 86.64 88.26 93.93 100.00 89.07
15 96.83 95.56 98.10 97.89 95.98 91.75 78.86 98.94 99.79 92.39

OA (%) 74.53 76.55 78.95 83.15 81.32 85.52 81.78 88.62 88.01 88.80
AA (%) 75.88 79.25 80.00 85.41 83.83 85.92 81.96 89.47 88.91 89.32
Kappa 0.7236 0.7463 0.7717 0.8172 0.7978 0.8428 0.8764 0.8022 0.8699 0.8784
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Figure 9. Box plot classification analysis of each algorithm on Houton 2013.
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Figure 10. Visualization of results of different algorithms on Houston 2013 dataset.

3.3. Ablation Studies
3.3.1. Ablation Study for the Effectiveness of Dual-Branch Architecture

This ablation study aims to explore whether the dual-flow architecture is effective for
the HS image classification task; thus, we use different branches to verify this in this section.
This experiment is conducted on the Indian Pines dataset, and three design strategies
(a Transformer branch, a CNN branch, and the dual-flow architecture) are employed.
As shown in Table 9, the best performance is achieved by the proposed dual-flow method,
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obtaining an OA of 89.01%, an AA of 94.14% and a kappa of 0.8743. Moreover, it can be seen
that a single Transformer branch can obtain OA, AA and kappa values of 86.90%, 93.45%
and 0.8509, which is more effective than a single CNN branch, showing that Transformer
branches are more powerful in the HSI task compared with conventional CNN architectures.
As a result, it can be concluded that the proposed Hyper-LGNet can combine both spatial
and spectral information from two different branches, enabling the HSI classification
network to obtain more image local and global features and achieve the best classification
performance compared to single networks.

Table 9. Ablation study of various branches on Indian Pines dataset.

Classes Proposed Hyper-LGNet Transformer Branch CNN Branch

1 81.50 81.14 78.97
2 89.29 88.14 86.99
3 96.74 97.83 96.74
4 98.89 98.43 97.32
5 96.13 98.85 96.70
6 98.63 99.09 99.32
7 88.67 86.27 84.64
8 83.42 76.34 72.54
9 81.56 78.37 81.03

10 99.38 100.00 100.00
11 95.34 94.86 95.74
12 96.67 98.48 92.12
13 100.00 100.00 100.00
14 100.00 97.44 97.44
15 100.00 100.00 100.00
16 100.00 100.00 100.00

OA (%) 89.01 86.90 85.22
AA (%) 94.14 93.45 92.47
Kappa 0.8743 0.8509 0.8320

3.3.2. Ablation Study for Different Fusion Methods

When exploring the effectiveness of various fusion methods in the proposed dual-flow
architecture, there are three fusion approaches that are discussed, including the designed
SSFFM, direct addition and direct concatenation. It can be seen that in Table 10, the OA, AA
and kappa results of selecting direct addition and concatenation methods in this dual-flow
architecture are similar, while the results of OA, AA and kappa by the proposed SSFFM can
achieve the best performance, increasing OA by 1.3%, AA by 1.08% and kappa by 0.0148
compared with direct addition and increasing OA by 1.35%, AA by 1.07% and kappa by
0.0152 compared with direct concatenation. In particular, some difficult and small samples
can also be well discriminated, such as Class No.14 (Alfalfa). Therefore, the application
of SSFFM is capable of fully utilizing the advantages of spatial/spectral information from
both branches.

3.3.3. Ablation Study for the Suitable Choices of the Number of Transformer Block

The number of Transformer blocks (TB) is investigated in this section to explore the
suitable choices for the best HSI classification performance. A variety of Transformer block
numbers (e.g., 2, 4, 8) are employed on the Indian Pines dataset by the proposed deep
learning approach. It can be seen in Table 11 that the proposed Hyper-LGNet achieves
the best classification performance when the Transformer layer is set at 4, which is much
improved compared with method 1 (improving OA by 4.21%, AA by 2.06%, and kappa
by 0.0474) and marginally better than method 3 (improving OA by 0.94%, AA 1.4%, and
kappa by 0.0107). It can be seen from this table that the classification performance does
not increasingly improve when repeatedly stacking Transformer blocks, mainly due to
the overfitting problem and the difficulty of optimizing learnable parameters during the
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training phase. We believe that this ablation study is one inspiring work while applying
the Transformer model in the HSI classification problem.

Table 10. Ablation study of various fusion methods on Indian Pines dataset.

Classes Proposed SSFFM Direct Addition Direct Concatenation

1 81.50 79.19 80.27
2 89.29 92.73 88.14
3 96.74 98.37 97.28
4 98.89 95.53 97.99
5 96.13 93.97 95.12
6 98.63 97.49 97.95
7 88.67 81.05 85.84
8 83.42 83.91 80.40
9 81.56 81.74 81.74
10 99.38 100.00 100.00
11 95.34 92.60 96.30
12 96.67 97.58 95.76
13 100.00 100.00 100.00
14 100.00 94.87 92.31
15 100.00 100.00 100.00
16 100.00 100.00 100.00

OA (%) 89.01 87.71 87.66
AA (%) 94.14 93.06 93.07
Kappa 0.8743 0.8595 0.8591

Table 11. Ablation study of various Transformer block numbers on Indian Pines dataset.

Classes Method 1 (TB = 2) Method 2 (TB = 4) Method 3 (TB = 8)

1 87.72 81.50 80.49
2 81.38 89.29 88.78
3 95.11 96.74 93.48
4 96.20 98.89 97.54
5 91.54 96.13 95.70
6 97.95 98.63 98.41
7 88.02 88.67 83.55
8 70.02 83.42 83.09
9 74.65 81.56 81.03
10 100 99.38 100.00
11 93.57 95.34 95.74
12 99.70 96.67 96.36
13 100.00 100.00 100.00
14 97.44 100.00 89.74
15 100.00 100.00 100.00
16 100.00 100.00 100.00

OA (%) 84.80 89.01 88.07
AA (%) 92.08 94.14 92.74
Kappa 0.8269 0.8743 0.8636

4. Conclusions

In this study, we aimed at overcoming the respective limitations of CNN-based models
and Transformer-based models on HSI classification. Specifically, we proposed a dual-
branch architecture to combine the CNN and Transformer models, realizing a full utilization
of HSI spatial and spectral information. With the help of a lightweight and hierarchical
CNN branch, the crucial local features could be extracted accurately. In addition, the Trans-
former branch could capture clear long-range dependencies from a global perspective and
enhance the local features learned by the CNN branch. The Spatial-spectral Feature Fusion
Module (SSFFM) was designed to eliminate the difference between features obtained by
two branches for an effective fusion. The proposed Hyper-LGNet, composing of the above
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methods, achieved the best performance in terms of classification, overall accuracy, average
accuracy and kappa on three popular HSI datasets, demonstrating that it has a powerful
generalization ability. In particular, compared with the previous SOTA SpectralFormer
method and seven other algorithms, our proposed method obtained SOTA performance on
these three datasets. Some ablation studies were conducted to discuss the effectiveness of
various branches, feature fusion methods and Transformer block numbers.

Although this work is an inspiring work utilizing dual-flow architecture in HSI clas-
sification, still, several points regarding this work are left for further exploration. Firstly,
improvements of the Transformer branch are expected to be made by utilizing more ad-
vanced techniques (e.g., self-supervised learning), making it more suitable for HS image
classification tasks. Moreover, a more lightweight network could be established to reduce
the computation complexity while maintaining the performance. Finally, the fusion module
could be further improved for a better effect of fusion.
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