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Abstract: Soil organic matter (SOM) is a key factor for evaluating soil fertility. Rapidly monitoring
organic matter content in desert soil can provide a scientific basis for the rational development and
utilization of reserve arable land resources. Although spectral inversion accuracy for SOM under
laboratory-controlled conditions is high, it is time-consuming and costly compared to the in situ
spectroscopic determination method. However, in situ spectroscopy causes losses in accuracy due
to interference from external environmental factors (e.g., the surface roughness of soil, changes in
weather conditions, atmospheric water vapor, etc.). Therefore, reducing or removing the interference
of external environmental factors to improve the accuracy of in situ spectroscopy for estimating SOM
is challenging. In this study, visible and near-infrared (Vis-NIR) in situ spectral data were collected
from 135 topsoil (0–20 cm) samples in a desert area of northwestern China, and organic matter
content was measured. Three spectral pre-processing methods—the standard normal transform
(SNV), reciprocal logarithm (log(1/R)) and normalization (NOR)—combined with three feature
variable selection methods—the particle swarm algorithm (PSO), ant colony algorithm (ACO) and
simulated annealing (SA) algorithm—were used to filter the spectral feature bands of SOM, and
then partial least squares regression (PLSR), a back propagation neural network (BPNN) and a
convolutional neural network (CNN) were used to construct the estimation models of SOM. The
results indicated that the SNV could enhance the spectral information related to SOM and improve
the accuracy of model estimation, and it was one of the most effective spectral pretreatment methods.
Compared with the model constructed with the full-band spectroscopy method, the feature variable
selection method could effectively improve the estimation accuracy of the Vis-NIR in situ spectroscopy
model. The most obvious improvement was found with PSO, where R2 and RPD were improved by
more than 0.34 and 0.16, respectively, and RMSE was reduced by more than 0.29 g kg−1. The accuracy
of the CNN model was higher than that of the BPNN and PLSR models, both for the inversion
model of SOM built from full-band spectral data and the bands selected by the characteristic variable
selection method. SNV-PSO-CNN is the optimal hybrid model for in situ spectral measurement of
SOM (R2 = 0.71, RPD = 1.88, RMSE = 1.67 g kg−1) and can realize the quantitative in situ spectral
inversion of SOM in desert soils.

Keywords: desert soil; soil organic matter; Vis-NIR in situ spectroscopy; feature variable selection;
deep learning

1. Introduction

Soil organic matter (SOM) is both a dominant source of nutrients for crops and an
important indicator of soil fertility. Soil organic carbon (SOC) is a major component of
SOM, making up about 58% of its mass [1]. The rapid monitoring of SOM content and
dynamics provides a scientific basis for the reclamation of arable land and environmental
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protection [2–4]. The traditional approach for SOM determination requires the collection
of soil samples and laboratory analyses and measurements, which limit the efficiency of
SOM monitoring due to the large demands in cost and time. Hyperspectral technology, a
relatively new approach for SOM prediction, can overcome the limitations of traditional
laboratory measurements and quickly obtain information on a variety of soil properties,
and it has been widely used in SOM monitoring [5,6].

Currently, applications of hyperspectral techniques for estimating SOM mostly
focus on indoor conditions where the environment is controlled, and inverse models are
rarely established with in situ Vis-NIR spectral data [7]. Standardized preprocessing of
the soil samples is required for indoor Vis-NIR measurements, which is time- and labor-
consuming. In situ Vis-NIR spectroscopy can reduce the need for soil sample collection
and air-drying, grinding or other soil pretreatments, making it more appropriate for
rapid monitoring of SOM in large areas [8]. However, the accuracy of the in situ spectral
estimation model of SOM is greatly restricted by the low signal-to-noise ratio due to
environmental factors, such as atmospheric water vapor and temperature, and the
redundancy of spectral data [9,10]. Therefore, how to reduce the interference of spectral
information irrelevant to SOM, choose a suitable inverse model and improve the accuracy
of SOM estimation with in situ Vis-NIR spectroscopy have become critical components
of research in related fields [11].

In recent years, many methods have been proposed to improve model performance
(linear and nonlinear) by using feature variable selection to eliminate irrelevant spectral
information variables. Instead of using all the spectral band data, only the characteristic
bands that are closely related to the measured soil properties, but not sensitive to the exter-
nal environmental variation, are selected to establish the model [12,13]. Moreover, it can
also reduce data redundancy and improve computational efficiency and model estimation
accuracy [14]. Therefore, applying feature variable selection is the prerequisite for estab-
lishing a suitable model for estimating SOM based on in situ Vis-NIR spectroscopy [15–17].
Competitive adaptive reweighted sampling (CARS), the ant colony algorithm (ACO) and
the genetic algorithm (GA) are widely accepted algorithms for feature variable selection
and have achieved satisfactory results in the spectral inversion of SOM based on indoor
Vis-NIR measurement spaces [18–20]. Sun et al. used a model based on indoor spectral
data combined with hyperspectral satellite images developed with the GA-PLSR to achieve
high accuracy estimation of SOM [21]. Bai et al. achieved better results with a full-band
sex ratio for CNN models built using feature bands selected with CARS, PSO, and ACO
methods [22]. However, there are fewer studies on soil organic matter content estimation
with Vis-NIR in situ spectroscopy using the particle swarm algorithm (PSO), simulated
annealing (SA) and the ant colony algorithm (ACO) to screen the feature bands.

In addition to the selection of feature variables, the modeling method is also a dom-
inant factor affecting the accuracy of a model. The commonly used linear regression
models, such as partial least squares regression, can mitigate collinearity due to spectral
overlap and improve model performance [23,24]. However, it has been found that spec-
tral variables do not have a simple linear relationship with SOM. Therefore, nonlinear
modeling methods, such as back propagation neural networks (BPNNs), random forests
(RFs), support vector machines (SVMs), multilayer perceptrons (MLPs) and convolutional
neural networks (CNNs), have started to be widely used [25,26]. It has been shown that
deep learning methods, such as CNNs, are more capable of mining spectral information
and enhancing the accuracy of model estimation [27]. Padarian et al. have shown that
CNNs can still successfully estimate soil properties without using spectral preprocessing
methods [28]. Veres et al. first applied deep learning in the field of soil spectroscopy
and demonstrated that one-dimensional (1D) CNNs can effectively estimate specific soil
properties [29]. Xu et al. suggested that the CNN is more capable of extracting effective
information from complex spectral data and has more accuracy in estimating SOM con-
tent by comparing three deep learning methods with traditional BP neural networks [30].
Currently, the deep learning method has achieved promising results in estimating SOM
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based on indoor spectra, but its applicability to the estimation of SOM with in situ Vis-NIR
spectroscopy needs to be further explored.

The main aim of this study was to explore the potential of Vis-NIR in situ spectroscopy
for the estimation of SOM in desert areas, realize large-scale monitoring of desert SOM and
provide a theoretical basis for the rational exploitation of soil resources. Our objectives were
twofold: (i) to assess the noise reduction capability of different feature variable selection
methods for in situ soil spectroscopy; and (ii) to select a high-precision inversion model for
in situ spectroscopy of SOM.

2. Materials and Methods
2.1. Study Area

The study area was located in Aksu in Xinjiang, northwestern China (80◦48′–81◦12′E,
40◦45′–41◦60′N). The area is situated at the southern foot of the Tianshan Mountains,
adjacent to the city of Alar to the south (Figure 1). It has a typical dry continental climate.
According to the World Reference Base for Soil Resources (WRB) soil classification, the soil
type in the study area is Solonchaks [31]. The mean annual temperature is 10.8 ◦C, the
annual evaporation is 1992.0–2863.4 mm and the annual precipitation is 46.4–64.5 mm. The
study area has abundant light and heat energy, with annual average sunshine of 2838.2 h
and an annual average frost-free period of 214 d. The main vegetation is halophytes, such
as Tamarix, Halocnemum strobilaceum and halostachyscaspica [32].

Figure 1. The geographical locations of Xinjiang province, China (a), and the study area (b) and the
spatial distribution of the sampling points (c).

2.2. Soil Sampling and SOM Measurement

Some studies have shown that SOM is mainly distributed in the top 0–20 cm layer
of soil [33]. Therefore, in this study, 135 top-layer (0–20 cm) soil samples were collected
from the study area using a random sampling method from 13 October to 15 October 2021.
The longitude and latitude of the sampling points were recorded with a handheld global
positioning system (GPS), and about 0.5 kg of soil was taken from each sample point. The
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collected soil samples were quickly put into sealed bags, labeled and brought back to the
laboratory for analysis. Debris was removed from the collected soil samples and they
were then air-dried, ground and passed through a 0.149 mm sieve. Then, the content of
soil organic carbon (SOC) was measured with the potassium dichromate oxidation outer
heating method at 180 ◦C for 5 min. Finally, the SOC was converted into SOM with a
conversion factor of 1.724 (SOM = 1.724 × SOC) [34].

2.3. In Situ Spectral Measurement and Pre-Processing

An ASD FieldSpec 4 geophysical spectrometer with a spectral range of 350–2500 nm
was used. When performing in situ Vis-NIR spectroscopy measurements, it was necessary
to first warm up the spectrometer for 30 min to ensure that the instrument was in a stable
state during the spectroscopic measurements. The in situ field spectra were measured in
clear and cloudless weather with sunlight as the light source between 11:00 and 15:00. The
field of view was measured at 25◦, and calibration of the whiteboard was performed every
15 min. Measurements were taken vertically at 1 m above the ground, and each sample
point was measured repeatedly 10 times. The average value of the 10 replicates was taken
as the actual in situ Vis-NIR spectral reflectance of the soil sample. In order to eliminate
the effects of high frequency noise and baseline shifts due to sample inhomogeneity, the
Vis-NIR in situ spectral data from the soil samples were preprocessed. The effects of edge
noise were first reduced by filtering out the 350–399 nm and 2451–2500 nm bands and
then further diminished with Savitaky–Golay smoothing. Finally, the smoothed spectral
data were subjected to standard normal variate (SNV), normalization (NOR) and reciprocal
logarithm (Log(1/R)) processing.

2.4. Feature Variable Selection Algorithms

The ant colony algorithm (ACO) is an intelligent algorithm that was proposed by
Dorigo et al. in 1992 that simulates the foraging behavior of ants to find an optimal path.
Ants release a secretion called a pheromone on the route they take during foraging, and
then other ants follow the pheromone to determine their direction of foraging. Once a
certain number of ants travel a certain shorter path, abundant pheromones will remain on
this route, attracting more ants to choose it and, thus, creating a positive feedback loop [35].

The particle swarm optimization (PSO) algorithm is a stochastic search method pro-
posed by Kennedy in 1995 to simulate the predatory behavior of birds [36]. The core
theory involves considering the solution of the problem to be optimized as a particle. Each
particle seeks the best solution in the search space and continuously updates its position
and velocity, which finally leads to the optimal solution for the particle population.

The simulated annealing algorithm (SA) is a global optimization algorithm that simu-
lates the solid annealing process. The basic principle involves replacing the spatial state of
a problem with the energy magnitude state of a metal substance. The full range of solutions
to the problem is replaced by the magnitude of the internal energy of the metallic solid, and
the objective function value of the problem then becomes equivalent to the energy value of
the metal. By simulating the cooling process of the metal and controlling it appropriately,
the minimum energy value of the corresponding metal is obtained, which converges with
the minimum objective function value [37–39].

2.5. Modeling Method

Partial least squares regression (PLSR) was proposed by Wold et al. in 1983 as a
multivariate statistical analysis method integrating multiple linear regression and principal
component analysis [40]. It is a classical linear model that adds a response matrix to the
consideration of the matrix of independent variables, allowing an estimation model to
be built in the case of a large number of estimation factors. It solves issues such as the
multicollinearity between small samples due to overlapping variables, which makes it
possible to effectively extract valid spectral information with strong explanatory power for
a system [41].
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The back Propagation neural network (BPNN) is an effective multilayer neural network
learning method consisting of an input layer, a hidden layer and an output layer, with
interconnections between neurons in adjacent layers. The learning process is divided into
two parts: forward transmission of the signal and reverse transmission of the error signal.
Subsequently, the neurons in each layer adjust the mapping values of the input and output
layers using the obtained error signals. In turn, the weights and thresholds of the neurons
are adjusted until the error in the network output meets the requirements or the learning
number reaches the set number, and then the learning ends [42,43].

The convolutional neural network (CNN) was the first multilayer structural learning
algorithm, proposed by Lecun et al. It consists of input, convolutional, pooling, fully
connected and output layers and is widely used in image processing, data mining and
other fields [44]. When constructing a model using the CNN, the values of the SOM are first
normalized, and the input layer can be regarded as a two-dimensional spectral information
matrix. Convolutional layers extract the spectral features of the input data using multiple
convolutional kernels at a certain stride. The pooling layer replaces the value of the original
range with the maximum or average value of a sampling range of a certain size to reduce the
amount of data processing and retain important feature information. The fully connected
layer performs a nonlinear combination of the extracted features to obtain the output
results, the hyperparameters of which are mainly the numbers of neurons. The output
layer is a value in the range of 0–1. Finally, the estimated value of the SOM is obtained
using anti-normalization. A single iteration of the process of the training and validation of
the dataset is called one epoch. The whole learning process involves extracting spectral
features autonomously by updating the weight parameter values through continuous
epoch cycles to reduce the loss function values. In the model construction process, the
activation function is generally located behind the convolutional and fully connected layers,
which serves to improve the expressiveness of the model through the use of a nonlinear
activation function [45].

The 1D-CNN structure constructed in this study is shown in Figure 2. The input layer
of the model uses the spectral data corresponding to the SOM, with 2051 data samples
in total. The estimated values of the SOM content are used for the output layer. For this
model, there are three convolutional layers (respectively labeled Conv1, Conv2 and Conv3),
a flat layer (labeled Flatten), a fully connected layer (labeled F1) and an output layer. The
hyperparameters set in this model are shown in Table 1. The specific settings are as follows:
the optimizer is adam, the learning rate is 0.00005, and the number of iterations is 1000.
The numbers of filters for the three convolutional layers are 5, 10 and 20, respectively. The
stride size of the convolution layer is 1, and the stride size of each pooling layer is 2. The
Relu function was chosen as the activation function.

Table 1. Hyperparameter settings in the deep learning SOM estimation model.

Hyperparameter Values

Kernel size 1 10
Kernel size 2 5
Kernel size 3 4

Batch size 11
Dropout layer 0.5
Max. epochs 1000
Learning rate 0.00005

Learning rate decay 0.001

2.6. Model Accuracy Evaluation

The estimation accuracy and stability of the model were determined using the co-
efficient of determination (R2), root mean square error (RMSE) and residual prediction
deviation (RPD) together. The R2 characterizes the stability of a model, and the closer that
R2 approaches 1, the more stable the model is and the better the fit. The RMSE reflects the
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difference between a valuation and a measured value, and the smaller the RMSE, the better
the estimation ability of a model is. The RPD is the ratio of the sample standard deviation to
the RMSE. When the RPD < 1.4, the estimation ability of the model is poor; 1.4 < RPD < 1.8
indicates fair estimation ability in a model, which could be used for rough estimation
of SOM; 1.8 < RPD < 2.0 indicates a model with good estimation ability; 2.0 < RPD < 2.5
represents a very good estimation ability in a model; and RPD > 2.5 indicates excellent
estimation ability in a model [46].

Figure 2. The CNN structure of the SOM estimation model.

3. Results
3.1. Descriptive Statistics for Soil Organic Matter (SOM) Content

To improve the accuracy of model estimation, the 135 samples were divided into
calibration and validation sets in a ratio of 2:1 in accordance with the Kennard–Stone
algorithm [47]. As can be seen from Figure 3, the 135 soil samples were normally distributed.
Most of the samples were distributed along the diagonal line, except for some slight
deviations for individual samples. As seen in Table 2, both the total sample and the
modeling set had SOM contents that ranged from 2.72 to 18.18 g kg−1, while the validation
set had SOM content that ranged from 2.80 to 17.02 g kg−1. The average value of the
135 samples was less than 10.00 g kg−1, indicating a low organic matter content compared to
the mean value of the global soil spectral library (21.60 g kg−1) [48]. The SOM content range
of the validation set was narrower than those of the total sample set and the calibration set,
which ensured that the SOM content of the validation set samples did not exceed the range
of the estimated model. The coefficients of variation for the total sample set, calibration set
and validation set were 32.87%, 32.94% and 32.91%.

Table 2. Descriptive statistics for soil organic matter (g kg−1).

Dataset Number Mean Min a Max b SD c CV d (%)

Calibration 90 9.38 2.72 18.18 3.09 32.94
Validation 45 9.36 2.80 17.02 3.08 32.91

Total 135 9.37 2.72 18.18 3.08 32.87

Note: a minimum; b maximum; c standard deviation; d coefficient of variation.
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Figure 3. Q−Q plot for organic matter.

3.2. Feature Variable Selected by PSO, ACO and SA algorithms

In order to screen out the characteristic bands of SOM that were less influenced by
environmental factors, we used three characteristic variable selection methods, the PSO,
ACO, and SA algorithms, to select the characteristic bands of SOM for the raw spectral
data (R) and three pre-processed spectral datasets (SNV, Log(1/R) and NOR), and the
feature variable selection results are shown in Figure 4. The R, SNV, Log(1/R) and NOR
were screened using the PSO, ACO, and SA algorithms, and the number of bands screened
out was more than 90% of the total. Among them, ACO retained about 71–93 of the
characteristic bands, PSO selected 63–65 and SA selected 36–42 of the characteristic bands.
The proportion of characteristic bands distributed in the 600–800 nm range was the largest
(38.1%) with PSO and the smallest with SA (20%).

Figure 4. The distributions of characteristic bands with different feature variable selection algorithms.
(a) the characteristic bands of SOM screened by particle swarm algorithm; (b) the characteristic
bands screened by ant colony algorithm; and (c) the characteristic bands screened by simulated
annealing algorithm.

On the whole, the bands screened by the three band-selection methods were mainly
located in the 600–800 nm range, and no spectral response bands with SOM were selected
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near 1400 nm and 1900 nm, and a large number of studies have shown that the vicinity
around 1400 nm and 1900 nm is the band that is more affected by moisture [49]. Therefore,
the characteristic variable selection method can effectively be used to select the characteristic
bands associated with SOM with less external environmental influence.

3.3. Estimation Accuracy for SOM with Different Models and Validation

Table 3 shows the results from comparing the accuracy of the PLSR, BPNN and CNN
models established using the SOM content with the corresponding full-band spectral data,
as well as the characteristic bands screened by the different methods. Compared with R,
the accuracy of the model estimation after SNV, NOR and Log (1/R) preprocessing was
improved to different degrees, with the accuracy of the model that used SNV processing
being the highest, with R2, RPD and RMSE values up to 0.71, 1.67 and 1.88 g kg−1. For all
three feature variable selection methods, the estimation accuracy of the model established
based on the characteristic band outperformed the full-band spectral data (400–2450 nm)
modeling for both the validation and calibration sets. In particular, the SNV-PSO method
obtained characteristic band modeling with 64 modeling variables, only accounting for
3.40% of the full band, but achieved the best stability for the SOM estimation model. The
ranking of the three methods’ ability to improve the model accuracy had the following
order: PSO > ACO > SA.

The ranking of the estimation accuracy of the three modeling methods for SOM content
was in the order CNN > BPNN > PLSR. In the PLSR model, only the model developed
with the characteristic bands screened by PSO could provide a rough estimate of SOM
with an RPD between 1.4 and 1.49. The method based only on the SNV-ACO and PSO-
selected characteristic bands in the BPNN model was capable of providing a rough estimate
of SOM (1.4 < RPD < 1.8). All the models constructed with CNN could estimate the
SOM content, except for the model constructed with full-band spectral data, which could
not effectively estimate the SOM content. Among them, the SNV-PSO-CNN (R2 = 0.71,
RPD = 1.67, RMSE = 1.88 g kg−1) model had the best estimation for quantitative estimation
of SOM.

Comparing the evaluation parameters of the PLSR, BPNN and CNN models, it could
be seen that the three modeling methods all attained the highest accuracy levels among the
models built with PSO combined with SNV preprocessing screening of the characteristic
bands (Figure 5). In this case, the actual and estimated values with SNV-PSO-CNN were
closer to the 1:1 line, and the model accuracy was higher. Compared with SNV-PSO-PLSR
and SNV-PSO-BPNN, the R2 and RPD values for the validation set were improved by 0.17
and 0.39 and 0.11 and 0.28, respectively, and the RMSE values were reduced by 0.54 g kg−1

and 0.29 g kg−1, respectively.

Figure 5. Scatter plots of measured versus estimated SOM contents based on PLSR (a), BPNN (b) and
CNN models (c) combined with PSO and SNV (for validation dataset). The solid red and gray lines
in each plot represent the regression line and 1:1 line, respectively.
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Table 3. Cross-validation for of the PLSR, BPNN and CNN calibration models for the spectral datasets
and the SOM (g kg−1).

Model Spectral
Pretreatments

Variable
Number

Calibration Validation

R2 RMSE R2 RMSE RPD

PLSR

R 2051 0.35 2.51 0.34 2.54 1.24
SNV 2051 0.45 2.35 0.42 2.46 1.28

Log(1/R) 2051 0.42 2.41 0.40 2.49 1.26
NOR 2051 0.38 2.44 0.37 2.53 1.24

R-PSO 63 0.53 2.21 0.51 2.19 1.41
SNV-PSO 64 0.59 1.81 0.54 2.12 1.49

Log(1/R)-PSO 63 0.52 2.15 0.53 2.14 1.43
NOR-PSO 65 0.50 2.25 0.48 2.21 1.40

R-ACO 71 0.45 2.46 0.43 2.50 1.27
SNV-ACO 92 0.48 2.39 0.49 2.30 1.35

Log(1/R)-ACO 75 0.47 2.41 0.45 2.47 1.30
NOR-ACO 93 0.49 2.31 0.47 2.40 1.31

R-SA 41 0.44 2.45 0.43 2.40 1.31
SNV-SA 42 0.46 2.37 0.45 2.38 1.32

Log(1/R)-SA 38 0.44 2.46 0.41 2.48 1.29
NOR-SA 36 0.43 2.48 0.42 2.43 1.30

BPNN

R 2051 0.37 2.40 0.36 2.53 1.25
SNV 2051 0.48 2.00 0.45 2.42 1.29

Log(1/R) 2051 0.44 2.12 0.43 2.47 1.28
NOR 2051 0.41 2.25 0.39 2.48 1.27

R-PSO 63 0.58 1.83 0.56 2.17 1.45
SNV-PSO 64 0.62 1.74 0.60 1.96 1.60

Log(1/R)-PSO 63 0.59 1.82 0.57 2.10 1.50
NOR-PSO 65 0.55 1.95 0.54 2.19 1.43

R-ACO 71 0.51 2.00 0.47 2.42 1.30
SNV-ACO 92 0.54 1.94 0.55 2.20 1.43

Log(1/R)-ACO 75 0.53 1.96 0.50 2.29 1.36
NOR-ACO 93 0.55 1.92 0.52 2.25 1.40

R-SA 41 0.47 2.11 0.45 2.39 1.32
SNV-SA 42 0.49 2.01 0.47 2.38 1.33

Log(1/R)-SA 38 0.45 2.13 0.43 2.41 1.30
NOR-SA 36 0.44 2.23 0.44 2.40 1.31

CNN

R 2051 0.39 2.44 0.38 2.52 1.27
SNV 2051 0.47 1.87 0.46 2.39 1.32

Log(1/R) 2051 0.46 1.89 0.44 2.42 1.30
NOR 2051 0.44 1.92 0.42 2.48 1.27

R-PSO 63 0.65 1.65 0.64 1.87 1.69
SNV-PSO 64 0.73 1.51 0.71 1.67 1.88

Log(1/R)-PSO 63 0.68 1.64 0.66 1.84 1.71
NOR-PSO 65 0.63 1.69 0.62 1.94 1.63

R-ACO 71 0.55 1.86 0.54 2.20 1.45
SNV-ACO 92 0.66 1.52 0.63 1.89 1.67

Log(1/R)-ACO 75 0.62 1.55 0.58 2.00 1.57
NOR-ACO 93 0.61 1.69 0.60 1.97 1.60

R-SA 41 0.53 1.86 0.54 2.21 1.44
SNV-SA 42 0.59 1.61 0.57 2.15 1.46

Log(1/R)-SA 38 0.55 1.82 0.52 2.25 1.40
NOR-SA 36 0.53 1.85 0.53 2.24 1.42
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4. Discussion
4.1. The Factors Affecting the Prediction of SOM with Vis-NIR In Situ Hyperspectral Data

The estimation efficiency for SOM can be improved by using Vis-NIR in situ spec-
troscopy compared to indoor spectroscopy, but there is a loss in model accuracy due to
the influence of environmental factors on the spectra in the field. This is attributed to
the fact that Vis-NIR in situ spectroscopy measurements are influenced by factors such as
soil moisture content, atmospheric water vapor, light intensity variations and soil surface
roughness [50,51]. Waiser et al. found that the estimation accuracy of models constructed
using laboratory spectra for air-dried, unground soil samples was higher than that of in
situ spectral models for moist soils, indicating that soil moisture is an important factor
suppressing the model prediction accuracy [52]. Hutengs et al. achieved high-precision
estimation of soil organic carbon in soil samples with relatively dry air and soil moisture
content between 1.50 and 16.80% [53]. However, the study area was located in Aksu in
northwestern China, where water is scarce and soil is relatively dry. The moisture content
of the collected soil samples ranged from 1.13% to 15.67%. October, during the dry season,
was chosen as the sampling time, which further served to avoid the effect of soil moisture.
The roughness of the soil surface also affects the soil spectral reflectance when measuring in
situ spectra, which in turn affects the accuracy of SOM estimation. Wu et al. revealed that
soil surface roughness and unevenness caused a partial loss of soil reflectance, resulting in
a decrease in the measured soil spectral reflectance, consequently affecting the accuracy
of SOM estimation [54]. Numerous studies have shown that the interference caused by
soil roughness on spectral acquisition is relatively limited when a relatively homogeneous
area of the surface is selected for measurement when determining in situ spectra [53,55].
Therefore, sites with relatively flat surfaces and no vegetation cover were selected for
sample collection and Vis-NIR in situ spectroscopy measurements in this study. In addi-
tion, the presence of atmospheric water vapor also affects Vis-NIR in situ spectroscopy
measurements. Bishop et al. identified the band near 1400 nm and 1900 nm as the band
where moisture has a strong influence [49]. As influenced by atmospheric water vapor,
light and other environmental effects, the spectral reflectance near 1400 nm and 1900 nm
was more than 1 when measuring in situ spectral data in the field in this study, which
greatly affected the inversion accuracy for SOM. However, this study used three methods to
screen the characteristic bands of SOM and found that no spectral variables were screened
near 1400 nm and 1900 nm. Consequently, the use of the PSO, ACO, and SA algorithms
could effectively remove the effects of noise and environmental factors and improve the
performance of models with Vis-NIR in situ spectral data in estimating SOM.

4.2. The Effect of Feature Variable Selection Algorithms on Model Accuracy

Existing studies have shown that SOM estimation models developed using character-
istic bands can reduce data redundancy and improve the efficiency of data analysis [56,57].
The CARS and GA have achieved relatively good results as common feature variable
selection algorithms [18]. However, the CARS and GA showed poor effects in this study
due to the special soil conditions in south Xinjiang, where salinization is more serious.
Therefore, three methods, the PSO, ACO, and SA algorithms, were selected for this study,
and the characteristic bands were selected to establish a model for estimation of SOM and
compared with the model constructed from full-band spectral data. As the results showed,
the accuracy of the SOM estimation model developed using the characteristic bands was
higher than that of the model established by the full-band spectral data. This was attributed
to the fact that the feature variable selection method can effectively filter out unrelated
spectral information, retain the effective spectral information and reduce the signal-to-noise
ratio, thus improving the model estimation accuracy. The selected spectral variables of
the three methods in this study were mainly focused around 600–800 nm. This region is
an important spectral response band for SOM, as has been demonstrated by numerous
studies [19,27,58]. Analysis of the model evaluation metrics comparing the three modeling
approaches revealed that, regardless of the modeling approach, the PSO-based model had
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the highest accuracy, ACO second highest and SA the worst. Li et al. also observed high
accuracy for the model built based on bands selected by the PSO [59], which is consistent
with the conclusions obtained in this study. We believe that SA has the worst prediction
accuracy because of the lowest number of remaining characteristic bands, over-excluding
some of the spectral variables related to SOM. Although ACO selected the most spectral
variables, the model accuracy was lower than that of PSO, which may have been due to the
interference of redundant information in the spectral variables selected by ACO.

4.3. Influence of the Different Modeling Methods on the SOM Prediction Accuracy

When building a model for hyperspectral estimation of SOM, the influence on the
determination of soil spectra varies across different geographic regions. Therefore, it is
difficult to establish a model for estimating SOM content suitable for all regions [60]. In this
paper, we analyzed and compared the evaluation metrics of the constructed models and
found that the model built with the CNN was better than those with BPNN and PLSR in
estimating SOM content, which is the same conclusion obtained by Khosravi et al. [61]. The
PLSR, which is a classical linear model, can solve the linear problem well, but the SOM and
the corresponding spectral variables are not simply linear. Therefore, it is difficult to fully
explain the complex nonlinearity between SOM and spectral variables using PLSR, and
there are limitations [62]. The BPNN has a strong nonlinear mapping capability that can
better simulate the relationship between SOM and spectral reflectance; however, because of
the large amount of data obtained with hyperspectral techniques, the BPNN has a limited
ability to handle complex relationships between bands, which greatly reduces the accuracy
and efficiency of the estimation of SOM content [63]. In contrast, the CNN, as the earliest
proposed deep learning model, has better model estimation capabilities than traditional
models, with deeper network layers and stronger feature extraction capabilities, and it can
dig out the important information contained in the spectrum, simplify the computational
procedure and improve the model estimation accuracy [64]. This study demonstrated
that SNV-PSO-CNN is the optimal combined model for estimating SOM. However, this
study is a regional study, and the applicability of models varies from region to region
due to differences in soil texture, soil water content and the external environment [65].
Therefore, the conclusions obtained in this study can provide research ideas for the study
of soil properties in different regions, and further research is needed to explore whether
this model is applicable to other regions.

5. Conclusions

In this study, three feature variable selection methods—the particle swarm algo-
rithm (PSO), ant colony algorithm (ACO) and simulated annealing (SA)—were used to
extract characteristic bands by combining the original spectral data and three pre-processed
spectral datasets, using three modeling methods—partial least squares (PLSR), the back
propagation neural network (BPNN) and the convolutional neural network (CNN)—to
establish the inversion model for SOM based on Vis-NIR in situ spectra. The ranking of
the estimation accuracy of the three modeling methods for SOM content was in the order
CNN > BPNN > PLSR. Compared to the models constructed from full-band spectral data,
all three feature selection methods could improve the accuracy of SOM estimation, but
PSO showed the most significant improvement. In addition, the CNN model developed
with SNV combined with PSO selection of characteristic bands was the optimal model for
estimating SOM (R2 = 0.71, RPD = 1.88, RMSE = 1.67 g kg−1), providing a good estimation
of SOM content and an effective method for monitoring SOM in desert areas using in situ
Vis-NIR spectroscopy.
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