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Abstract: Rapid detection of the new class of hypersonic targets (HTs) presenting unknown military
threats in space-based surveillance will guarantee aerospace security. This paper proposes an unsu-
pervised subclass definition and an efficient isolation forest based on an anomalous hyperspectral
feature selection (USD-EiForest) algorithm to detect the new class of never-before-seen HTs under
emerging hyperspectral sample streams. First, we reveal that the hyperspectral features (HFs) of
the new class of HTs have no anomaly characteristics when compared to the globally observed
samples while having prominent anomaly characteristics when compared to the subclasses of ob-
served samples. Second, an unsupervised subclass definition method adapted to HTs is utilized to
classify the observed samples into several subclasses. Then, an efficient isolation forest is designed to
determine whether the data stream sample in each subclass indicates anomaly features that mark the
detection of the new class of hypersonic targets (DNHT). Finally, we experiment on the simulated
hyperspectral HTs data sets considering the RAM-C II HT as the observed samples and the HTV-2 HT
as the unknown samples. The results suggest that the performance of our proposal has competitive
advantages in terms of accuracy and detection efficiency.

Keywords: hypersonic targets; hyperspectral feature; unsupervised subclass definition; anomaly
detection; density peak clustering

1. Introduction

Hypersonic targets (HTs), achieving significant space access and prompt global striking
ability, have attracted much attention over the past few decades [1]. The classification,
recognition and detection of the observed HTs are of great significance in aerospace security
defense [2]. Their observed features are degraded owing to the high moving speed of the
HTs, leading to difficulty in detection and recognition with radar and infrared detectors [3].
Fortunately, the HT surface will generate high temperatures from intense friction with the
surrounding atmosphere during the flight state. It ionizes air molecules around the vehicle,
developing a certain thickness of “plasma sheath” [4–8]. The generated plasma sheath
usually shows a thermodynamic nonequilibrium state and will continuously emit strong
spectral radiation, which can be used as a fingerprint feature to realize the detection and
classification of HTs [9–13].

When using the hyperspectral features (HFs) of HTs obtained by space-based detectors
for actual observations, greater emphasis should be placed on the unknown military threats
of the new class of HTs that the detectors have not observed [14]. An algorithm should
be proposed to distinguish whether the detected samples belong to previously observed
classes or a newly emerged class [15]. Developing an annotated data set is difficult even
if a certain number of HFs of the HTs observed with space-based hyperspectral detectors
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is accumulated to determine the unique value of the HTs [16]. Therefore, we propose the
detection of the new class of hypersonic targets (DNHT) method to be completed in an
unsupervised manner.

Many industrial fields are also facing the problem of new class target detection. Some
methods have been formulated for the detection of the new class as a two-class recog-
nition problem (unknown versus known) where both positive and negative samples are
relevant [17–19]. The common approach for detecting the new class is to collect both real
and fake data and try to learn a suitable two-class classifier, employing a supervised or
semi-supervised approach [20,21]. However, the collection of new HTs is difficult, and
the detection methods based on two classes are not suitable for DNHT. There are also
novelty detection methods that mainly identify data with unsupervised methods. Liu et al.
proposed iForest [22], and Yang studied a KNN-based approach for unsupervised novelty
detection [23,24]. Rettig et al. proposed online anomaly detection over big data streams [25],
and the unsupervised real-time anomaly detection for streaming data was subsequently
developed [26]. However, unsupervised new class detection requires a large difference
between the features of the new class and the existing class samples, that is, anomaly char-
acteristics. The interclass variability of the HFs of HTs might be smaller than the intraclass
variability, which results in a high error rate for the new class detection method based on
anomaly detection. Another line of work focuses on open-set recognition (OSR) [27], which
aims to classify known classes and reject novel ones. OpenMax utilized Weibull-based
calibration to augment the softmax layer and detect novel classes [28]. Proser proposed
reserving the probability for novel classes during close-set training and transformed closed-
set training into open-set training [29]. CPL optimized the embedding with margin-based
classification loss for better feature extraction [30]. However, these OSR models must be
trained with a large data set, and annotated observed HT data sets are currently unavail-
able. Additionally, the imbalanced hypersonic observations often degrade the network
performance [31].

In general, the above algorithms will encounter two challenges when applied to DNHT.
First, the accumulated observation samples are not labeled, and the new class HTs are
difficult to obtain, which causes the learning of the two-class classifier and OSR framework
to fail. Second, detecting the new class based on anomaly detection requires a large feature
difference between the new class and previous observations. However, the intraclass
variability of HTs is greater than the interclass difference, and the anomaly characteristic
of the new class is not apparent compared with globally observed samples. To detect
the new class hypersonic vehicle under streaming emerging HTs, we propose using the
unsupervised subclass definition and the efficient isolation forest based on anomalous
hyperspectral feature selection (USD-EiForest) method for DNHT based on unsupervised
classification and anomaly detection, which has the following distinguishing features:

• Existing algorithms train classifiers in a supervised or semi-supervised manner to
achieve new class detection. In contrast, the proposed USD-EiForest method employs
an unsupervised learning model to solve the problem of DNHT in the case where the
HFs data set of the HTs has not yet been constructed.

• The phenomenon is revealed, whereby the HFs of new class HTs have prominent
anomaly characteristics relative to the local subclasses of observed samples. To take
full advantage of the local anomaly characteristic for new class detection, we use the
unsupervised subclass definition method based on density peak clustering (DPC) to
achieve subclass division.

• Because the features of the observed targets are more concentrated and more conducive
to anomaly detection, an efficient isolation forest algorithm based on anomalous
HFs selection is proposed with high detection efficiency and accuracy for new class
detection with respect to subclass samples.

The rest of this paper is organized as follows. Section 2 describes the intuition of the
proposed algorithm. Section 3 describes the related definitions and details of the proposed
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algorithm. We report the experimental results in Section 4, which show that the proposed
method can accurately detect the new types of HTs. The conclusion is provided in Section 5.

2. Interclass and Intraclass Variation of HFs of HTs

The plasma sheath (thermochemical nonequilibrium flow field) is generated while an
HT is flying in near space [2], which usually exhibits the stated thermodynamic nonequi-
librium [32]. Research has revealed that the gas in the plasma sheath of the HT (O2, N2,
NO, N, O, NO+, N2

+, O2
+, N+, O+ and e−) has a strong spectral radiation effect [33,34].

Although the HFs of HTs based on actual space-based detectors are unavailable for the
development of HTs and are not comprehensive enough, acquiring HT samples will be
straightforward when HTs are put into practical applications in the future. To alleviate
the spatial redundancy of the spectral characteristics of the object, this section provides
the spectral radiation characteristics at the place with the strongest spectral intensity as
fingerprint features for classification and detection based on the numerical calculation
results of the surface flow field of the RAM C-II and HTV-2 re-entry HTs. This provides
data support for subsequent proposal verification and reveals the distribution of intraclass
and interclass HFs of HTs.

The process of obtaining the spectral radiation characteristics of the HTs using the
space-based spectral detector is shown in Figure 1. According to various gas kinetic models,
the air plasma sheath can contain several different compositions, such as 5, 7 and 11 species.
To consider the computational complexity and simulation accuracy of spectral radiation
characteristics at the same time, this paper adopted the gas model of seven species (N2,
O2, N, O, NO, NO+, e−). First, the emission and absorption coefficients that describe the
radiative properties are of great importance to the calculations of radiative transfer in the
thermochemical nonequilibrium flow field, which has been solved in the literature [13].
Second, the spectral radiation intensity on the surface of the plasma sheath that envelopes
the HT was calculated with the line of sight (LOS) method, assuming that each layered
medium is isotropic and isothermal; this was used to compute the radiation transfer equa-
tion with known emission and absorption coefficients [35]. Finally, the transmission model
was established based on MODTRAN5 software to reflect the atmospheric attenuation
effect of spectral transmission [36]. The brief process of the software is depicted in Figure 2,
including atmospheric data input, aerosol data input, geometric data input and spectral
information input. The 1976 American standard atmospheric model [37] was used to
simulate atmospheric transmission. The spectral radiation characteristics of HTs picked
up by the space-based detector after atmospheric attenuation were used for unsupervised
classification. The details of the whole process can be found in Ref [38]. However, owing to
the scarcity of plasma sheath flow field data of hypersonic targets, this paper only simulated
the HFs of RAM-C and HTV 2 hypersonic targets under different typical flight states.
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Figure 1. The flow chart for calculating spectral radiation characteristics for HTs. Figure 1. The flow chart for calculating spectral radiation characteristics for HTs.
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Figure 2. The brief MODTRAN5 process.

The spectral radiation characteristics of RAM-C II and HTV-2 HTs observed by space-
based low earth orbit (LEO) detectors under different flight states were calculated based on
the geometric model and the flow field distribution of these two HTs [38,39]. The results
are shown in Figure 3, indicating the intensities of the calculated spectral features not of the
same order of magnitude. Moreover, it is impracticable for space-based detectors to obtain
all the spectral bands of radiation characteristics of HTs. Therefore, 120 wavebands were
selected and normalized at the radiation intensity peak, as shown in Figure 4. To more
clearly reflect the intraclass and interclass variation of the HFs of HTs, principal component
analysis (PCA) was carried out on HFs, and the result is shown in Figure 5 and Table 1. The
pink represents the HTV-2 HTs, and the blue represents the RAM-C II HTs. We can see in
Figure 5 that the HFs of the same type of HTs were different when the flight states changed.
When combined with the specific values in Table 1, this shows that different types of HTs
flying in the same state have small HF differences.
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Figure 3. Cont.
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Figure 3. The simulated spectral radiation characteristic of HTs acquired by space-based detectors. 
(a) 40 km 15 Mach. (b) 40 km 20 Mach. (c) 40 km 25 Mach. (d) 50 km 15 Mach. (e) 50 km 20 Mach. 
(f) 50 km 25 Mach. (I) RAM-C II. (II) HTV-2. 
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15 Mach, 40 km 20 Mach and 40 km 25 Mach. (b) The flight states are 50 km 15 Mach, 50 km 20 Mach
and 50 km 25 Mach.

Anomaly detection techniques can be successfully used in the area of new class
detection if it is understood that the instance of any developing new classes is distant from
the known classes or at the edge of the data cloud of known classes. When RAM-C II was
viewed as the known class and HTV-2 as novel class, it is evident from Figures 4 and 5 that
the spectral radiation characteristics of HTV-2 did not differ significantly from those of the
global RAM-C II samples. The interclass variability between the two classes of HTs was
far lower than the intraclass variability, making it difficult to detect the new class using
anomaly detection methods.
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Figure 3. The simulated spectral radiation characteristic of HTs acquired by space-based detectors. 
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(f) 50 km 25 Mach. (I) RAM-C II. (II) HTV-2. 
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Table 1. The value of extracted PCA features.

Flight States RAM-C II HTV-2
PCA 1 PCA 2 PCA 1 PCA 2

40 km 15 Ma 0.09377 0.26556 0.07957 0.24599
40 km 20 Ma 0.92226 −2.45232 0.95889 −2.46476
40 km 25 Ma 0.10042 0.28921 0.03923 0.11015
50 km 15 Ma 0.03547 0.08771 0.03653 0.10195
50 km 20 Ma 0.05973 0.15594 0.03927 0.11026
50 km 25 Ma −3.08021 −0.97891 −3.0709 −1.06767

3. The USD-EiForest
3.1. The Core Idea of USD-EiForest

The regional distribution of abnormal and normal target features is depicted in Figure 6.
Anomaly targets are usually found far away from the normal region or spread on the edge
of the normal region. It can be observed in Figure 5 that when the region where the HFs of
RAM-C II are located was regarded as the normal region, the HFs of HTV-2 belonged to
the normal region and did not have an anomalous characteristic.
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The new class of HTs had no global anomaly compared to the observation samples.
Still, it had local anomaly features related to a subclass of observation HTs, which was the
fundamental premise for proposing the USD-EiForest. The pink dots in Figure 7 reflect
the newly emerging class HTV-2 with a flight state of 40 km 15 Mach. The blue point is
the mean value of the HFs of the previously observed target at typical flight states after
PCA dimensionality reduction. The blue area is the variation range of the HFs of the same
observation class at a given typical flight state, where ri is the maximum variation range,
and i = [1, 2, 3, 4, 5, 6] is the i-th flight state. If ri is less than the difference of HFs between
an observed target and a newly emerged class target, the new sample will present local
anomalous characteristics compared with observed HTs under a typical flight state.
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Based on the distribution of the HFs of HTs revealed above, we proposed the USD-
EiForest method for DNHT. As shown in Figure 8, the proposed new class detection
algorithm for HTs consisted of two steps. First, an unsupervised subclass definition
(USD) algorithm based on DPC, dividing the existing accumulated samples into multiple
subclasses, classified different flight states of the same HTs. Second, the improved efficient
iForest (EiForest) was used to determine whether the emerging sample was an anomaly
target compared to subclasses. If the emerging sample was an anomaly in each subclass,
we concluded that it was a new class. Otherwise, it was a known sample. Both the
unsupervised classification and the improved iForest are detailed in Section 3.2.

3.2. The Unsupervised Subclass Definition and Efficient Isolation Forest

The details of the proposed algorithm are described in this section, comprising unsu-
pervised classification of subclasses and improved iForest. Each sample in a data stream
is assigned a class label: emerging new class or one of the known classes. The pertinent
details in the procedure are provided in the following sections.

3.2.1. Unsupervised Subclass Definition

For the sample feature of the new class to conform to an anomaly characteristic instead
of the normal characteristic, an unsupervised classification method was used to divide the
observed samples into multiple subclasses. The overall flow chart is shown in Figure 9.
The same color dots in Figure 9 constitute the same super node.

Intraclass Variation Mitigation

The difference in the observation angle, position, atmospheric environment, the com-
plex internal structure of the detector and the spectral radiation mechanism of the hy-
personic targets lead to the phenomenon of intraclass variability of the spectrum. This
seriously affects the performance of the unsupervised classification of targets based on HFs.
The HFs of the super nodes are jointly represented by median filtering on sub-nodes in
themselves, which alleviate the phenomenon of intraclass variability of HFs. The observed
samples are represented as Yobs = [Y1, Y2, Y3, . . . , Ym], where m is the number of observed
samples, and Yi = [yi1, yi2, yi3, . . . , yif]. The observed samples after correction are shown as
Yobs’ = [Y1’, Y2’, Y3’, . . . , Ym’], where Yi’ is the corrected HFs of the i-th observed sample,
and Yi’ = [yi1’, yi2’, yi3’, . . . , yif’], where f is the number of HFs.
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Figure 8. The proposed USD-EiForest method for DNHT.
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Feature Extraction

The information on the fast and slow fluctuation of the HFs curve is extracted as
extraction features. The low-frequency part of the spectrum curve represents the slow
fluctuation of the spectral radiation characteristics of hypersonic targets, and the high
frequency represents abrupt fluctuation, which can be extracted by fast Fourier transform
(FFT) to distinguish the targets. When performing the f -point FFT operation on the HF of
each super node, the first k/2 low-frequency and last k/2 high-frequency information are
selected as the extracted features to implement dimension reduction from f to d. The HFs
of the i-th observed sample Yi’ are represented as Xi = [xi1, xi2, xi3, . . . , xid] after feature
extraction, where d is the number of extraction features.

Subclass Definition

An unsupervised classification algorithm based on cluster peak selection [40] is used
to find cluster centers and realize unsupervised classification without iteration. This step
divides the observed HT samples into n subclasses [Ysub_1, Ysub_2, Ysub_3, . . . , Ysub_n], and
the center samples of subclasses will be saved as [C1, C2, C3, . . . , Cn]. The j-th subclass
is represented as Ysub_j = [Yj1, Yj2, Yj3, . . . , Yjeach_j], where each_j is the number of HT
samples in the j-th subclass. The pseudo-code of the proposed subclass definition method
for hypersonic targets is reflected in Algorithm 1.

Algorithm 1. The unsupervised classification algorithm.

Input: the spectral feature of hypersonic targets Yobs, the number of vertex groups Ngrounp.
Output: classification label for each sample.
1 Randomly divide the input Yobs samples into Ngroup groups:
2 Calculate the adjacency matrix for each sub-group Vgroup_i.
3 Define super nodes for each group Vgroup_i and gather all:
{SN1, SN2, . . . , SNq} (q is the number of total super nodes);
4 Calculate the spectral radiation feature of super node SNi based on median filter:
Yobs’ ∈ 1 × f ;
5 Feature extraction based on FFT for Yobs’:
Ei ∈ 1 × d;
6 Calculate the distance and density for Ei based on DPC:
density ρi, and distance δi;
7 Determine the cluster center;
8 Complete subclass definition according to cluster center.
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3.2.2. The Efficient iForest

When performing new class detection for HT data stream samples, the high moving
speed characteristic requires high detection efficiency. Isolation forest (iForest) [41], an
anomaly detection algorithm, utilizes no distance or density measure and has a linear time
complexity with a low constant and a low memory requirement, which was improved and
applied to the recognition of a new class of emerging hypersonic samples in this paper.

Anomalous HFs Selection

Even though the anomaly detection based on iForest is efficient, the isolation trees
(iTree) that comprise the iForest are constructed using random feature selection, which will
bring additional computational redundancy in the anomaly detection of HTs.

Figure 3 shows that a specific HT sample is represented by 120 spectral bands, and
only a few bands have obvious HFs. To improve the efficiency of iForest construction and
remove redundant bands with weak spectral radiation, we set the spectral threshold sth at
0.02 and input a set of n subclasses [Ysub_1, Ysub_2, Ysub_3, . . . , Ysub_n]. The HF of each band
in samples of the j-th subclass is compared with sth, and the feature bands whose values
are higher than sth are recorded into the set [B_j1, B_j2, B_j3, . . . , B_jeach_j], where each_j is
the number of hypersonic samples in the j-th subclass, and Bj1 is the selected bands from
the first observed hypersonic samples of subclass j. Then, the feature band selected from
subclass j can be expressed as

B_all j = B_j1∪ B_j2∪ B_j3∪ . . . ∪ B_jeach_j (1)

where U means the union operation of the selected band. Figure 5 shows that the normal
region is constituted by the features of observed samples. It is obvious that when the
features of the observed targets are more concentrated, they are more conducive to anomaly
detection. Therefore, the HFs with small variance are selected to remove the redundancy of
bands, and the j-th subclass Ysub_j ∈ Reach_j × B_allj is input after removing the weak features.
The variance of each band is expressed as

V_j = [vj1, vj2, vj3, . . . , vB_all ] (2)

where the variance of the m-th band is expressed as

vjm =

each_j
∑

l=1
(dist(ylm, um))

2

Card(Ysub_j)
(3)

where Card (Ysub_j) is the cardinality of Ysub_j, um is the mean value of the m-th band
of all samples in subclass Ysub_j, dist is the Euclidean distance between xij and uj. The
anomalous HF selection method chooses those bands with a smaller varj as the input data
for anomaly detection.

iForest Building for Each Subclass and Data Streaming

Given the subclass and the sample to be detected, I = {Ysub_j, e}, where e is the sample to
be detected. Anomalous HFs are selected from I, represented as I’ = {Ysub_j’, e’}, to build an
iForest and calculate an anomaly score [41]. Details of the construction of iForest and iTree
can be found in Algorithms 2 and 3, respectively, where exNode{ } is either an external node
with no child, and inNode{ } is an internal node with one test and exactly two daughter
nodes (Left, Right) in Algorithm 3. The anomaly scores for the target to be detected are
recorded as Sj ∈ Reach_j+1, which is the average of the iForest score, where j = [1, 2, 3, . . . , n],
and n is the number of subclasses.
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Algorithm 2: iForest (I’, n_t, n_s)

Inputs: I’—input data, n_t—number of iTrees, n_s—sampling size of iTree
Output: a set of n_t iTrees
1: Initialize Forest
2: for i = 1 to n_t do
3: sub-I’ ← sample (I’, n_s)
4: Forest ← Forest U iTree(sub-I’, 0)
5: end for
6: return Forest

There are two input parameters in the iForest algorithm: the number of trees n_t and
the sample size of iTree n_s. The n_s controls the training data size. In this paper, when
the total number of observed HTs samples and data streaming is less than 500, n_s is the
number of all samples; otherwise, n_s is 500. The n_t represents iForest size, which affects
the training time and the detection accuracy of the algorithm and will be discussed in
Section 4.

Algorithm 3: iTree (I’, h)

Inputs: I’—input data, h—current tree height

Output: an iTree
1: if |I’| ≤ 1 or e’ is isolated then
2: return exNode{Size ← |I’|}
3: else
4: let B be the selected anomalous HFs
5: randomly select a band b ∈ B
6: randomly select a value a from max and min values of band b in I’
7. I’l ← filter(I’, b < a)
8. I’r ← filter(I’, b ≥ a)
9. return inNode{Left ← iTree(I’l, h + 1),

Right ← iTree(I’r, h + 1),
Split band ← b,
Split Value ← a}

End if

New Class Detection

The new class detection result is determined by the anomaly score {S1, S2, . . . , Sj,..., Sn}
obtained based on the improved iForest algorithm, where Sj is the anomaly score of the j-th
subclass and the sample to be detected e. We denote the maximum and average anomaly
scores in the subclass as Smax, Smean. The anomaly score of the sample to be detected is
Se. When Se satisfies the relationship of Equation (4), it means that e is an anomaly target
compared with the subclass.

Se > Smax, Se > Smean + λ(Se − Smax) (4)

If the e belongs to the anomaly target relative to all subclasses, the detected data are
considered to be a new class. It can be seen from Equation (4) that Se should meet two
conditions. Suppose the target to be detected is a new unobserved target type. In this case,
the corresponding anomaly score Se of the detected target with abnormal characteristics
should be higher than all the anomaly scores of the observed samples in the subclass and
further higher than the maximum anomaly score Smax of the subclass. The maximum value
of the observed subclass has a particularity. To make the detection result more reliable, the
Se of the new target to be detected should be greater than the average value Smean of the
observed subclass. λ(Se − Smax) defines the difference in anomaly scores between the Se
and Smean. When the value of λ(Se − Smax) is larger, it means that the target’s anomaly score
is much higher than Smean can be detected as a new type. In this case, when Formula (4)
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is satisfied, the high probability is a new type target, but the new unobserved type target
with a low anomaly score will be wrongly judged as a known target. On the contrary, if the
value of λ(Se − Smax) is relatively small, the real new type samples can be detected with
high probability. However, the observed targets with high abnormal scores that are not
new classes will be wrongly judged as a new type. Therefore, the value of λ(Se − Smax)
should be between Se and Smean—neither too large nor too small. We find that the value
of λ in the hypersonic data set is between 2/3 and 1/4, which can ensure the detection
accuracy and low false alarm rate, so the value of λ is 1/3 in this paper.

4. Experiment and Analysis

The experiments were conducted on simulated HFs of HTs to illustrate the perfor-
mance of the proposed method.

4.1. Simulated Hyperspectral Data Sets of Hypersonic Targets

The hyperspectral radiation characteristics of HTs of different classes and flight states
given in Section 2 were obtained from the theoretical model. Early in the development
of hyperspectral detectors, researchers hypothesized that the HFs of the same targets are
unique. However, as well as laboratory data, the variability in the radiation spectrum
of most targets was observed. Many mechanisms may lead to the observed variability,
including uncompensated errors in the sensor and uncompensated atmospheric and en-
vironmental effects. For the HFs of HTs, in addition to the influence of the above factors,
the changes in the atmospheric parameters of the actual flight state will also reduce HF
changes of the same type with a fixed flight state. Therefore, these combined factors lead
to the observed HFs of HTs in the same class and flight state comprising a set of random
curves that change according to a certain rule. This was proven in Ref [42]. The mean
vectors and covariance matrices of the HFs of subclass k are represented as Pk and ∑k. The
eigenvalues and eigenvectors of covariance matrices ∑k are computed and arranged as
diagonal matrices Λk and column matrices Φk, respectively. Thus, the i-th sample of the
k-th subclass can be expressed as

Pi = Pk + ΦkΛ1/2
k Ri (5)

where Ri is the spatial correlation matrix, and ΦkΛk
1/2 reflects the intraclass variability of

HFs. The larger the value, the more drastic the change of HFs within a class. According
to the actual observation experience of space-based hyperspectral detectors, the value of
ΦkΛk

1/2 was set from 0 to 0.2, randomly. Ri is the spatial correlation matrix, whose value is
a random number between 0 and 1. We simulated 400 observation samples for each flight
state of RAM-C II and HTV-2, from which 5 samples were randomly selected, as shown
in Figure 10. In the subsequent algorithm analysis, the samples of RAM-C II were set as
a known observation class to verify whether the sample could be detected as a new class
when the HTV-2 data stream sample appeared.

Comparing Figure 10I,II under the same flight state, we noted that the HFs of different
classes were relatively similar. For example, the HF difference between RAM-C II of 50 km
25 Mach and HTV-2 of 50 km 25 Mach was much smaller than that of RAM-C II of 50 km
20 Mach, which further indicates that the intraclass variability of HFs is much larger than
the interclass variability for HT. Each sub-figure in Figure 10 shows the difference of HFs
from the same class of HT in the same flight state, which made it more difficult to detect
whether an HT belonged to a new class or an observed known class.
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flight state of RAM-C II in conditions 1 and 3 were consistent, while condition 2 was non-
uniform. The results of the subclass centers of observed samples in conditions 1 and 3 are 
shown in Figure 11a, and the subclass centers in condition 2 are shown in Figure 11b. The 
red points in Figure 11 represent the subclass centers, and the remaining samples can be 
divided into subclass centers according to the distance between the center and samples. 
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(e) 50 km 20 Mach. (f) 50 km 25 Mach.
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4.2. The Analysis of Detection Accuracy

The performance of the proposed new class detection algorithm was analyzed by
taking the RAM-C II samples as the observed data. The simulation conditions are given,
as shown in Table 2. For each subclass, the parameters of the iForest were as follows: the
number of anomalous HFs was 6, which is generally an empirical value, and it was 5% of
the entire number of spectral bands. The number of iForest was 10, the number of iTrees in
each iForest was 4, and the node in each iTree was all samples.

Table 2. Experiment condition settings.

Conditions Observed Samples Data Streaming

Flight States Number Class

1

RAM-C II 40 km 15 Ma 400

HTV-2

RAM-C II 40 km 20 Ma 400
RAM-C II 40 km 25 Ma 400
RAM-C II 50 km 15 Ma 400
RAM-C II 50 km 20 Ma 400
RAM-C II 50 km 25 Ma 400

2

RAM-C II 40 km 15 Ma 100

HTV-C

RAM-C II 40 km 20 Ma 400
RAM-C II 40 km 25 Ma 200
RAM-C II 50 km 15 Ma 400
RAM-C II 50 km 20 Ma 300
RAM-C II 50 km 25 Ma 400

3

RAM-C II 40 km 15 Ma 400

RAM-C

RAM-C II 40 km 20 Ma 400
RAM-C II 40 km 25 Ma 400
RAM-C II 50 km 15 Ma 400
RAM-C II 50 km 20 Ma 400
RAM-C II 50 km 25 Ma 400

The performance of unsupervised classification based on the process in Section 3
is shown in this section. It can be seen from Table 2 that the observed samples of each
typical flight state of RAM-C II in conditions 1 and 3 were consistent, while condition 2 was
non-uniform. The results of the subclass centers of observed samples in conditions 1 and 3
are shown in Figure 11a, and the subclass centers in condition 2 are shown in Figure 11b.
The red points in Figure 11 represent the subclass centers, and the remaining samples can
be divided into subclass centers according to the distance between the center and samples.
The proposed subclass definition approach was compared with the traditional FCM [43],
DBSCAN [44], GMM [45] and HAC [46]. Since the FCM, GMM and AHC algorithms must
manually give the number of clusters before classification, we set the number of cluster
parameters to 6. DBSCAN can automatically determine the class number. Table 3 gives
the average value of overall accuracy (OA), average accuracy (AA) and Kappa coefficient
of four classification algorithms (over 20 runs), and the values of optimal classification
results are marked in bold. It can be seen from Table 3 that the FCM, DBSCAN and GMM
unsupervised classification algorithms were not suitable for HTs classification because of
the intraclass variability of HFs of HTs. Although HAC achieved accurate classification
under conditions 1 and 3, the classification accuracy decreased in condition 2 when the
data distribution was not uniform. Only the proposal achieved the correct unsupervised
classification of all samples in all conditions, which verified its robustness.
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known class. Figure 12 shows the results of one experiment. We repeated the tests 100 
times, and the detection accuracy of the proposal was 100%. 

Figure 11. The result of subclass center after unsupervised classification. (a) Condition 1 and 3.
(b) Condition 2.

Table 3. The average value of OA AA and Kappa coefficient.

Data Sets Evaluation Index FCM DBSCAN GMM HAC Proposal

Condition 1, 3
OA 74.6% 100% 50.0% 100% 100%
AA 75.0% 100% 25.0% 100% 100%

Kappa 69.5% 100% 40.0% 100% 100%

Condition 2
OA 74.8% 83.3% 33.3% 73.6% 100%
AA 75.0% 75.0% 22.2% 75.0% 100%

Kappa 69.8% 80.0% 20.0% 68.3% 100%

The proposed USD-EiForest was performed on the data streaming and observed
HTs under three conditions, as seen in Table 2. In this section, the improved anomaly
detection algorithm was performed on the six subclasses obtained from Figure 11 and
the data to be detected. The anomaly score of the HTs is shown in Figure 12, where the
purple line represents the anomaly score of the observed HTs, the red line represents the
anomaly score of the sample to be detected, and the yellow line represents the mean value
of the score of the observed target. According to the detection criterion of Equation (4) in
Section 3.2.2, the sample to be detected, belonging to the anomaly target compared with
each subclass in condition 1 and condition 2, was a new class. For condition 3, it can be
seen in Figure 12(3–a) that the anomaly score of the HT to be detected tended toward the
mean value of the observed sample, which proved that the HFs of the detected target
were close to the HF distribution of the accumulated HTs. Therefore, it belonged to the
observed known class. Figure 12 shows the results of one experiment. We repeated the
tests 100 times, and the detection accuracy of the proposal was 100%.

4.3. The Impact of Anomaly HFs Selection on the Proposal

The high mobility of the HTs required a high detection efficiency for DNHT. The
detection efficiency was determined by the number of iForests Nf and the number of
isolated trees Nt that comprised each isolated forest. Ref [22] points out that the method of
iForest usually works well before Nt = 100, even if the Nf is only 1 in practice. Therefore,
given a new data set stream, the iForest can work as long as Nt = 100, Nf = 1. For the
EiForest method proposed in this paper, the value of Nt < 100 can achieve anomaly target
detection. However, the minimum value of Nt that ensures the detection accuracy needs to
be analyzed according to the specific data set. As long as Nt ensures the accuracy of the
proposed algorithm, Nf can set any value. In this section, the node in each iTree was all
samples. The detection accuracies of the proposal with two conditions were compared;
anomalous hyperspectral features were selected (AHFS) or not selected (AHFNS) under
changed Nf and Nt, and the minimum values of Nf and Nt were given to accurately detect
new classes in subclasses of RAM-C II under flight state 40 km 25 Mach.
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Figure 12. Anomaly scores of subclasses and data streaming. (1) Condition 1. (2) Condition 2.
(3) Condition 3. (a) 40 km 15 Mach. (b) 40 km 20 Mach. (c) 40 km 25 Mach. (d) 50 km 15 Mach.
(e) 50 km 20 Mach. (f) 50 km 25 Mach.

Figure 13 shows the anomaly score results of the subclass of RAM-C II under flight
state 40 km 25 Mach and the HTV-2 sample to be detected, which were randomly selected
from 100 run times of the experiment. The values of Smax and Se directly determined the
detection accuracy of the proposal. Therefore, the discussion of the result in Figure 13
mainly revolved around Smax and Se, and the following conclusions can be drawn from
the result. (1) Except for condition a(Nf = 1, Nt =1), the anomaly score of HTV-2 Se was
always higher than 0.9 after AHFS, while the Se was lower than 0.9 with AHFNS. This
proved that the anomaly characteristic of the sample of HTV-2 was more obvious after
AHFS. (2) When fixing each set of values of Nf and Nt, it can be seen from Figure 13I,II that
the values of |Se − Smax| after AHFS were always greater than the value of |Se − Smax|
with AHFNS. The larger the difference between Se and Smax, the more beneficial it was
for new class detection, according to Equation (4). (3) Under the condition of AHFNS, the
value of |Se − Smax| changed slowly with the increase in Nf or Nt. However, the difference
between Nf and Nt could increase rapidly and tended to be stable under AHFS.

Figure 13 shows the effect of AHFS on detecting the anomaly target in the subclass,
and Table 4 further reveals the impact of AHFS on the proposed new class target detection
algorithm. Under Nf > 1 or Ns > 1, the detection accuracy was improved by up to 38–61%
with AHFS. When Nf = 1 and Ns = 1, the improvement in detection accuracy was not
obvious. Because the number of iForests and iTrees was too small, the anomaly score of
HTV-2 was similar to the observed subclass samples even after AHFS.
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4.3. The Impact of Anomaly HFs Selection on the Proposal 
The high mobility of the HTs required a high detection efficiency for DNHT. The 

detection efficiency was determined by the number of iForests Nf and the number of iso-
lated trees Nt that comprised each isolated forest. Ref [22] points out that the method of 
iForest usually works well before Nt = 100, even if the Nf is only 1 in practice. Therefore, 
given a new data set stream, the iForest can work as long as Nt = 100, Nf = 1. For the EiForest 
method proposed in this paper, the value of Nt < 100 can achieve anomaly target detection. 
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perspectral features were selected (AHFS) or not selected (AHFNS) under changed Nf and 
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state 40 km 25 Mach and the HTV-2 sample to be detected, which were randomly selected 
from 100 run times of the experiment. The values of Smax and Se directly determined the 
detection accuracy of the proposal. Therefore, the discussion of the result in Figure 13 
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result. (1) Except for condition a(Nf = 1, Nt =1), the anomaly score of HTV-2 Se was always 
higher than 0.9 after AHFS, while the Se was lower than 0.9 with AHFNS. This proved that 
the anomaly characteristic of the sample of HTV-2 was more obvious after AHFS. (2) 
When fixing each set of values of Nf and Nt, it can be seen from Figure 13I,II that the values 
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larger the difference between Se and Smax, the more beneficial it was for new class detection, 
according to Equation (4). (3) Under the condition of AHFNS, the value of |Se − Smax| 
changed slowly with the increase in Nf or Nt. However, the difference between Nf and Nt 
could increase rapidly and tended to be stable under AHFS. 
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Figure 13. Anomaly scores of subclasses and data streaming under different value of Nf and Nt. (I) 
AHFNS. (II) AHFS. (a) Nf = 1, Nt = 1. (b) Nf = 2, Nt = 1. (c) Nf = 3, Nt = 1. (d) Nf = 4, Nt = 1. (e) Nf = 5, Nt 
= 1. (f) Nf = 6, Nt = 1. (g) Nf = 1, Nt = 2. (h) Nf = 1, Nt = 3. (i) Nf = 1, Nt = 4. (j) Nf = 1, Nt = 5. (k) Nf = 1, Nt 
= 6. 

Figure 13 shows the effect of AHFS on detecting the anomaly target in the subclass, 
and Table 4 further reveals the impact of AHFS on the proposed new class target detection 
algorithm. Under Nf > 1 or Ns > 1, the detection accuracy was improved by up to 38–61% 
with AHFS. When Nf = 1 and Ns = 1, the improvement in detection accuracy was not obvi-
ous. Because the number of iForests and iTrees was too small, the anomaly score of HTV-
2 was similar to the observed subclass samples even after AHFS. 

Table 4. The detection accuracy of the proposal with different Nf, Nt values. 

 Detection Accuracy 
 AHFS AHFNS Accuracy Improvement 

iForest = 1 iTree = 1 11% 3% 8% 
iForest = 1 iTree = 2 76% 15% 61% 
iForest = 1 iTree = 3 83% 28% 55% 
iForest = 1 iTree = 4 90% 31% 59% 
iForest = 1 iTree = 5 96% 44% 52% 
iForest = 1 iTree = 6 97.7% 54% 43.7% 
iForest = 2 iTree = 1 61% 23% 38% 
iForest = 3 iTree = 1 77% 29% 48% 
iForest = 4 iTree = 1 86% 46% 40% 
iForest = 5 iTree = 1 97% 48% 49% 
iForest = 6 iTree = 1 99% 54% 45% 

Figure 13. Anomaly scores of subclasses and data streaming under different value of Nf and Nt.
(I) AHFNS. (II) AHFS. (a) Nf = 1, Nt = 1. (b) Nf = 2, Nt = 1. (c) Nf = 3, Nt = 1. (d) Nf = 4, Nt = 1.
(e) Nf = 5, Nt = 1. (f) Nf = 6, Nt = 1. (g) Nf = 1, Nt = 2. (h) Nf = 1, Nt = 3. (i) Nf = 1, Nt = 4. (j) Nf = 1,
Nt = 5. (k) Nf = 1, Nt = 6.

Table 4. The detection accuracy of the proposal with different Nf, Nt values.

Detection Accuracy
AHFS AHFNS Accuracy Improvement

iForest = 1 iTree = 1 11% 3% 8%
iForest = 1 iTree = 2 76% 15% 61%
iForest = 1 iTree = 3 83% 28% 55%
iForest = 1 iTree = 4 90% 31% 59%
iForest = 1 iTree = 5 96% 44% 52%
iForest = 1 iTree = 6 97.7% 54% 43.7%
iForest = 2 iTree = 1 61% 23% 38%
iForest = 3 iTree = 1 77% 29% 48%
iForest = 4 iTree = 1 86% 46% 40%
iForest = 5 iTree = 1 97% 48% 49%
iForest = 6 iTree = 1 99% 54% 45%

To determine the minimum values of Nf and Nt of the proposal, the values of Nf and Nt
were increased gradually to observe the detection accuracy under conditions of AHFNS and
AHFS. The gray curves are the contour lines, as shown in Figure 14, indicating the number
of iTrees and iForests on the gray curves that corresponded to the detection accuracy of
the proposed algorithm. When the values of Nf and Nt did not exceed 4 after AHFS, the
detection accuracy approached 100%. For the condition of AHFNS, when the values of
Nf and Nt were 20, the detection accuracy had not yet reached 100%. It can be concluded
that the complexity of the new class detection algorithm can be greatly reduced, and the
detection efficiency can be improved through AHFS, making the proposed algorithm more
suitable for detecting the new class of HTs.
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5. Conclusions

This paper addressed the HTs’ new class detection problem under challenging condi-
tions without new class samples and data sets. For this purpose, a USD-EiForest algorithm
based on unsupervised subclass definition and efficient iForest was presented. Benefiting
from the local anomaly characteristics of the new class HT sample relative to the subclasses,
the proposal determined whether the sample to be detected was a new class for each sub-
class to realize the DNHT. Experimental evaluation of the proposed algorithm on simulated
HFs of RAM-C II and HTV-2 HTs illustrated that the proposal could detect a new class
of HT with high detection accuracy and efficiency. The unsupervised subclass division
algorithm divided the observed HT samples into multiple subclasses, and the Nf and Nt of
EiForest were significantly reduced compared with the traditional iForest, improving the
detection efficiency. However, the algorithm proposed in this paper can only determine
whether a sample is a new class at present. With the construction of HFs data sets of HTs, it
will be necessary to develop an algorithm that enables both new class detection and known
class classification in the future.

Moreover, the research contribution of this paper lays the theoretical foundation for
the new class detection of HTs based on HFs. Because of the limitation of the military value
of hypersonic targets, we could only verify the algorithm on a simulation data set. However,
the spectral radiation characteristics of the simulated data set were calculated based on
the real measured flow field data, allowing the simulated hyperspectral data set and the
real observed data set to maintain a high consistency. Therefore, with the development of
hypersonic targets in the future, the proposed method in this paper may be applied to the
actual scene with a suitable space-based detector. The research in this paper is based on
the unlabeled observation data set to detect the new types of samples that have not been
observed. The classification and labeling of observed samples, construction corresponding
to the data set, and supporting type recognition of known hypersonic targets are the work
that we carried out and will be published later.
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Abbreviations

Original text Acronyms and abbreviations
Hypersonic target HT
Unsupervised subclass definition and efficient isolation

USD-EiForest
forest based on anomalous hyperspectral feature selection
Hyperspectral feature HF
Detection of the new class of hypersonic targets DNHT
Density peak clustering DPC
Line of sight LOS
Low earth orbit LEO
Principal component analysis PCA
Improved efficient iForest EiForest
Fast Fourier transform FFT
Isolation forest iForest
Isolation trees iTree
Overall accuracy OA
Average accuracy AA
Anomalous hyperspectral features are selected AHFS
Anomalous hyperspectral features are not selected AHFNS
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