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Abstract: The combination of natural environment changes and human activities affects the growth of
grasslands. In order to quantitatively assess the causes of spatial and temporal variation of grasslands
in Xilingol, this study assessed the spatial and temporal evolution patterns of grassland health based
on MOD13A1 long time series Normalized Difference Vegetation Index (NDVI) data from 2000–2019
using trend analysis. The geodetector model was used to explore the dominant drivers of spatial
variation in grassland NDVI, combined with 34 factors covering natural environmental changes and
human disturbances over the same period. The results show that the grasslands of Xilingol showed
an overall recovery trend from 2000 to 2019, with an average annual NDVI growth rate of 0.0028/a, a
monthly increasing rate of 0.0005/month, and 68.06% of the grassland at an average recovery level.
Moisture-dominated natural climate change factors, such as Growing Season Precipitation (Prep2),
Annual Mean Water Vapor Pressure (WVP), and Annual Mean Relative Humidity (RH), were the
underlying cause of grassland health changes during the study period, with the highest explanatory
factor being growing season precipitation (q value of 0.59 on a multi-year average). The influence of
primary production value among human activities was greater, and the explanatory factor of tertiary
production value showed an increasing trend. The interactions among natural and anthropogenic
factors significantly enhances their explanatory credibility for NDVI, with the type of interaction
dominated by the two-factor enhancement. Risk detection of the top 10 dominant drivers in terms of
q statistic were carried out to obtain the threshold range of each driver in the high zone of grassland
NDVI, which can provide a scientific reference for the sustainable restoration of grassland.

Keywords: NDVI; geodetector; anthropogenic activity; grassland health; dominant driving factor

1. Introduction

As one of the most important ecosystems, grasslands not only contain huge natural
resources, but also participate heavily in the global carbon cycle, and are closely related to
human production and life. Therefore, it is of great significance for regional sustainable
development to study the spatial and temporal patterns of grassland health and its driv-
ing mechanisms [1,2]. Normalized Difference Vegetation Index (NDVI) is an important
evaluation index to respond to the growth status of grassland vegetation [3], and its an-
nual maximum value can effectively respond to the above-ground biomass [4,5] and other
grassland health indicators. Previous studies investigated vegetation cover changes based
on time series NDVI data using Sen’s slope and Mann–Kendall test methods [6,7], and
analyzed the response of NDVI to natural environment conditions using statistical methods.
The results showed that climatic change explained vegetation growth better, whereas for
grassland, a fragile vegetation type, in addition to natural factors such as precipitation
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and temperature, the impact of human activities such as sheep stocking, large livestock
stocking, and livestock density on grassland health also needs to be considered. [8–10].

The geodetector model was developed by Wang et al. [11–13] based on Spatial Strat-
ified Heterogeneity (SSH), which is a tool to measure Spatial Heterogeneity (SH) and to
explore the determinants of SH. It can quantify the explanatory power of factors and the
power of interactions. In recent years, Tian et al. and Zhou et al. have quantitatively
evaluated the drivers of grassland health, but mainly analyzed from a single perspective,
such as meteorological factors [14,15] and human activity impacts [16], without considering
the integration of driving factors on grassland NDVI. The geodetector model can aptly
solve the above problems simply and quickly [17–19].

The Xilingol grassland is a typical area of arid semi-arid temperate grassland in
northern China and a major component of the Inner Mongolia grassland. The region is
currently the largest natural reserve of the grassland and meadow ecosystem type in China,
and holds an important spatial position and international influence in the conservation
of grassland biodiversity [20]. The Xilingol grassland is also the closest grassland pasture
and source of wind and sand to Beijing, Tianjin, and Hebei, and is an essential ecological
barrier for a vast inland region [21]. However, with overuse of grasslands due to increasing
population pressure, grasslands are also facing a series of ecological and environmental
health problems, such as productivity decline, area reduction, and land degradation, which
have huge impacts on the balance of grassland ecosystems and the sustainable development
of grassland grazing [22,23], as well as bringing risks to human health, such as the spread
of plague [24].

Therefore, our study selects Xilingol in Inner Mongolia as the study area, and explores
the spatial and temporal evolution patterns of grassland health in Xilingol League based on
MOD13A1 NDVI time series data from 2000–2019. There were 34 factors covering climate,
natural conditions, population, economy, etc., selected from both natural and human
activities, and the impact of these factors on NDVI changes was then quantitatively assessed,
and the suitable range of factors for healthy grassland was obtained through multi-year
analysis, so as to provide scientific support for grassland ecological project construction.

2. Materials and Methods
2.1. Study Area and Data Source
2.1.1. Study Area

The Xilingol grassland is the hinterland of the Eurasian steppe belt, located in the
central part of the Inner Mongolia Autonomous Region, with a geographical location of
115◦13′–117◦06′E and 43◦02′–44◦52′N (Figure 1). The total land area of the study area is
202,580 km2, with a grassland coverage of more than 95% [25]. The elevation of the study
area is between 761–1927 m, with an average elevation of 1104 m, and the topography
is mainly plateau plains, accompanied by hills, shallow mountains, and other landscape
types. The climate type is typical temperate arid semi-arid continental climate. The
average annual precipitation is 200–300 mm, mainly concentrated in the vegetation growth
season, and the precipitation gradually decreases from east to west, with obvious regional
differences. The average annual temperature of the whole region is 1–2 ◦C, the average
minimum temperature is −20 ◦C, and the average maximum temperature is 21 ◦C. The
soil types are black calcium soil, chestnut calcium soil, weathered soil, and brown calcium
soil. The study area has three types of grasslands: meadow grassland, typical grassland,
and desert grassland, which are distributed from east to west. Meadow grassland is mainly
distributed in the eastern mountainous region, with elevation above 1098 m. The region
is rich in precipitation, with annual precipitation above 350 mm, and the annual average
temperature is between 0.7–5.1 ◦C. Typical grassland is widely distributed with undulating
terrain, ranging from 740–1440 m, with annual precipitation between 240–350 mm, and an
annual average temperature between 3.1–4.5 ◦C. Desert grassland is more flat compared
to the other grassland types, with elevation ranging from 924–1098 m, average annual
precipitation less than 240 mm, and an average annual temperature greater than 4.5 ◦C.
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Figure 1. Location and elevation of the Xilingol (DW is Dongwuzhumuqin Banner, XW is Xiwuzhu-
muqin Banner, XL is Xilinhot, AB is Abaga Banner, SZ is Sunitezuo Banner, SY is Suniteyou Banner,
EL is Erlianhot, XH is Xianghuang Banner, ZXB is Zhengxiangbai Banner, ZL is Zhenglan Banner,
TP is Taipusi Banner, DL is Duolun County).

2.1.2. Data Source

The data used in this study include remote sensing data and statistical yearbook data.
Among them, remote sensing data are mainly NDVI, and also include soil type data, land
use data, etc.

MODIS NDVI data (MOD13A1: h25v04 and h26v04) for the period 2000–2019 May
to September each year were downloaded from the Level-1 and Atmosphere Archive
& Distribution System (LAADS) Distributed Active Archive Center (DAAC) (https://
ladsweb.modaps.eosdis.nasa.gov/(accessed on 10 July 2022)), with 500 m spatial resolution
and 16d temporal resolution. The NDVI data were geometrically corrected, stitched,
projected, and formatted using MRT; after which, the data were cropped according to the
study area. Pixel quality layers of MOD13A1 were used to eliminate invalid values and
poor-quality pixels; after which, monthly and yearly NDVI data were extracted in ArcGIS
by MVC (maximum value composite) for further analysis.

Meteorological data and DEM were provided by the Resource and Environment
Science Data Centre of the Chinese Academy of Sciences (http://www.resdc.cn (accessed
on 15 July 2022)); soil type and land use data were provided by National Tibetan Plateau
Data Center (http://data.tpdc.ac.cn (accessed on 1 July 2022)); population density data were
downloaded from the Worldpop (https://www.worldpop.org (accessed on 20 July 2022));
economic and livestock data were obtained from the statistical yearbooks provided by the
Bureau of Statistics of Inner Mongolia (http://tj.nmg.gov.cn (accessed on 20 June 2022))
and Xilingol (http://tjj.xlgl.gov.cn (accessed on 25 June 2022)); and the corresponding
data for 2000, 2005, 2010, 2015, and 2019 were downloaded. The DEM was adopted from
the SRTMDEM with a spatial resolution of 90 m; the slope and aspect were obtained on

https://ladsweb.modaps.eosdis.nasa.gov/(accessed
https://ladsweb.modaps.eosdis.nasa.gov/(accessed
http://www.resdc.cn
http://data.tpdc.ac.cn
https://www.worldpop.org
http://tj.nmg.gov.cn
http://tjj.xlgl.gov.cn
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this basis. Soil type data were obtained according to the soil classification method of
SYMBOL90 of the Harmonized World Soil Database (HWSD) [26], with 31 soil types and a
spatial resolution of 1 km.

In order to present the spatial heterogeneity of anthropogenic activities, socio-economic
and livestock data at the banner and county scales in the study area were gridded from
statistical yearbooks. Land cover data were also used to calculate the human activity
intensity of land surface (HALS) to determine the intensity of human utilization, mod-
ification, and exploitation on the natural land surface [27]. As the majority of the data
used in the study were at 1 km spatial resolution, and existing studies have taken the
same 1 km spatial resolution in the region [28], to reduce the cost of operations, the most
common nearest neighbor method was used to resample the above data to 1 km, using
the Asia_North_Albers_Equal_Area_Conic projection. Due to the method used in the
study requiring the input of category data, the above data needed to be reclassified into
8 categories from lowest to highest by data value field, except for soil type and land use
type, which maintained their original categories, and the segmentation method used was
the natural breaks (Jenks) method.

2.2. Materials

Xilingol grassland is ecologically vulnerable to variations of the natural environment
and disturbances from human activities [29]. In this study, the spatial distribution and
temporal changes of grassland health in Xilingol were analyzed based on long time series
NDVI data, and the trends of grassland changes over the past 20 years since 2000 were
calculated using trend analysis to obtain the spatial distribution of degraded and restored
areas. NDVI data for 2000, 2005, 2010, 2015, and 2019 were selected as dependent variables,
and the three independent variables of climate change, natural environment, and anthro-
pogenic activity were combined to analyze the driving factors of grassland health using the
geodetector model. The workflow of this research is shown in Figure 2.

2.2.1. Analysis of Vegetation Variation Trends

NDVI trends can reflect changes such as the degradation/restoration of land in the
study area. Xilingol has more than 95% grass cover, so the analysis of NDVI can reflect
the health of the grass. Stow D et al. found that when linear fit analysis of NDVI time
series data was performed, the slope of the fitted trend line can reflect the vegetation trend
over a long time series [30]. The NDVI time series data set obtained by smoothing with the
maximum synthesis method was used to calculate the NDVI trends in Xilinhot City on an
image-by-image basis over a 20-year period. The calculation method is as follows:

Slope =
n×∑n

i=1 i×NDVIi,xy −∑n
i=1 i×∑n

i=1 NDVIi,xy

n×∑n
i=1 i2 − (∑n

i=1 i)2 (1)

where Slope represents the vegetation change trend over a 20-year period from 2000–2019;
n represents the length of the time series from 2000–2019 with a value of 20; and i represents
the year number, 1–20 from 2000–2019, respectively. NDVI_(i, xy) denotes the image
element value of the raster image element in row x and column y on the maximum synthetic
NDVI image in year i. When Slope < −0.1%, it indicates that the vegetation of this image
element shows a degradation trend in the study time series, and the smaller the value, the
more serious the degradation; when Slope is between ±0.1%, it indicates that there is no
significant change in this image element in the study time series, and the vegetation growth
in the region is relatively stable; when Slope > 0.1%, it indicates that this image element
shows a recovery trend in the study time series, and the larger the value, the more obvious
the recovery is.
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2.2.2. Geodetector Model

Geodetector is a popular geostatistical model that analyzes spatial variations and
reveals the driving factors behind them. Geodetector consists of four subdetectors: factor
detector, interaction detector, risk detector, and ecological detector. In this study, the
former three detectors are used to investigate the driving mechanisms behind NDVI
change [11,12,31].

(1) Factor detector

The factor detector is calculated by the following q statistic:

q = 1− ∑L
h=1 Nhσ2

h
Nσ2 = 1− SSW

SST
(2)

where 0 ≤ q ≤ 1, and the larger the value, the greater the explanatory power of the factor.
When the q value is 0, it means factor has no relationship with NDVI. h is the number of
strata for variables or factors, N represents the number of units in stratum h, and σ2

h and σ2

denote the variance in the stratum h and entire study area, respectively. SSW and SST are
the sum of squares within the data and the total sum of squares, respectively.

(2) Interaction detector

The interaction detector was used to identify the explanatory power of the different
factors for NDVI when they were interacted with each other. The new variable can be
obtained as q(X1∩ X2), which indicates the explanatory power of the of the interaction of
variables X1 and X2 on Y. By comparing the relationship among q(X1∩ X2), q(X1), and
q(X2), interactions can be classified into five types, as shown in Table 1.
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Table 1. Interaction detector types.

q Value Comparison Interaction

q(X1 ∩ X2) < Min(q(X1), q(X2)) Non-linear weakening
Min(q(X1), q(X2)) < q(X1 ∩ X2) < Max(q(X1), q(X2)) Single-factor nonlinear attenuation

q(X1 ∩ X2) > Max(q(X1), q(X2)) Two-factor enhancement
q(X1 ∩ X2) = q(X1) + q(X2) Independent
q(X1 ∩ X2) > q(X1) + q(X2) Non-linear enhancement

(3) Risk detector

The mean NDVI values of each influence factor within different sub-regions are
calculated, and t-statistics are used to determine whether the differences between the
sub-regions are significant. Therefore, the risk detector is also commonly used to find the
appropriate range and type of NDVI drivers.

(4) Driving factor selection

In the study, the NDVI of grassland was used as the dependent variable, and 34 factors
were selectedas independent variables (Table 2) from climate change, fundamental natu-
ral environment, and anthropogenic activities, taking as reference the selection of factors
in Xilingol [32–34]. Seventeen indicators from meteorological stations were selected for
the climate change factor, including thirteen annual indicators, mainly selected for tem-
perature, precipitation, humidity, barometric pressure, wind speed, sunshine hours, etc.
The temperature indicators considered the annual average temperature, annual average
high temperature, and annual average low temperature, which were used to represent
the annual average of temperature, whereas the maximum and minimum temperatures
considered the influence of extreme weather conditions on grass growth. Four growing
season indicators were selected, mainly in terms of precipitation and air temperature.
Four indicators were selected as fundamental natural environment factors, as there were
differences among the natural habitats in terms of elevation, slope, aspect, and soil type.
For anthropogenic activity indicators, 13 indicators, such as population density, economic
and industrial structure, road density, and others, were considered, whereas for Xilingol,
as a typical grazing area, unreasonable grazing activities also bring risks to the healthy
development of grassland, so grazing-related indicators, such as livestock density, were
chosen [35].

Table 2. Grassland change driving factors.

Type Factors Abbreviation Unit

Climate Change

Annual Mean Temperature Temp1 ◦C
Annual Mean Maximum Temperature Temp2 ◦C
Annual Mean Minimum Temperature Temp3 ◦C

Annual Maximum Temperature Temp4 ◦C
Annual Minimum Temperature Temp5 ◦C

Annual Precipitation Prep1 mm
Annual Mean Air Pressure Pres1 hpa

Annual Maximum Air Pressure Pres2 hpa
Annual Minimum Air Pressure Pres3 hpa

Annual Mean Water Vapor Pressure WVP hpa
Annual Mean Relative Humidity RH %

Annual Sunshine Hours Sun h
Annual Mean Wind Speed Wind m/s

Growing Season Mean Temperature Temp6 ◦C
Growing Season Maximum Temperature Temp7 ◦C
Growing Season Minimum Temperature Temp8 ◦C

Growing Season Precipitation Prep2 mm
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Table 2. Cont.

Type Factors Abbreviation Unit

Fundamental Natural Environment

Elevation Elev m
Slope Slope degree

Aspect Aspect ◦

Soil Type Soil categorical

Anthropogenic Activity

Land-use Type LUT categorical
Population Density Pop people/km2

Gross Domestic Product GDP 10,000 yuan
Primary Industry PI 10,000 yuan

Secondary Industry SI 10,000 yuan
Tertiary Industry TI 10,000 yuan
Per Capita GDP PGDP yuan
Large Animals LA 10,000 heads

Sheep and Goats SG 10,000 heads
Livestock Density LD heads/km2

Human Activity Intensity of Land Surface HALS %
Cultivated Area CA %

Road Density RD km/km2

The indicators selected for this study were widely chosen to adequately consider the
factors affecting NDVI changes, so that potential influences would not be ignored.

3. Results
3.1. Spatial and Temporal Variation Patterns of NDVI in Xilingol
3.1.1. Spatial Distribution Characteristics of NDVI

The spatial distribution of NDVI of the Xilingol grassland from 2000–2019 has obvious
spatial heterogeneity (Figure 3). In general, the variation of NDVI ranged from −0.24 to
0.90, with a mean value of 0.39, showing a trend of low in the east and high in the west. The
NDVI in the east and northeast is high, with a mean value of 0.68. This area is a meadow
grassland, which is a transition zone from forest to grassland. The NDVI in the central
area is in the middle area, with a mean value of 0.39, and the grassland type is a typical
grassland, which is the main part of the Xilingol grassland. The NDVI in the west is low,
with a mean value of 0.19, and the grassland type in this area is a desert grassland, with a
dry climate, little rainfall, and sparse vegetation distribution. In the south, Taipusi Banner
and Duolun County have high NDVI values, with a mean value of 0.47. This area is in
the transition zone between grassland and farmland. There is one NDVI low value area
in Dongwuzhumuqin Banner, which is the high wall of Ulagai, which is in the catchment
area of the northeastern Inner Mongolia Plateau, so its NDVI value is low. Another NDVI
low value area is in the southern part of Abaga Banner, which is a sandy grassland in the
Hunsandak Sands running through the central part of Xilingol [10]. In this way, one can
observe how the spatial differentiation of grassland types in Xilingol determines the spatial
variability of NDVI.

3.1.2. Temporal Variation Characteristics of NDVI in Xilingol

The grassland NDVI in Xilingol showed a trend of a fluctuating increase on the time
scale. The temporal variation of grassland NDVI from 2000 to 2019 is shown in Figure 4.
Both the monthly and annual NDVI showed an increase, with an increasing rate of 0.0005/a
and 0.0028/a. The mean value of grassland NDVI during the growing season over 20 years
was 0.29, and the high value of NDVI occurred in July and August. The highest value of
the monthly average NDVI occurred in August 2018, and the lowest value occurred in
May 2006. Combining the hydrothermal conditions at the corresponding times revealed
that the precipitation and the average temperature were both high in July and August 2018,
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whereas the hydrothermal conditions were poor in May 2006. This indicates that grassland
NDVI is influenced by meteorological factors.
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Based on the fluctuating increasing trend in grassland NDVI during the 20-year period,
we divided this period into four phases, the first phase being 2000–2003. During this phase,
grassland NDVI showed a significant increase, with an increment rate of 0.037/a. The
second phase was 2003–2009. During this phase, NDVI showed a decrease, with a reduction
rate of 0.013/a. The third phase was in 2009–2012. During this phase, NDVI showed an
extremely significant increase, with an increment rate of 0.051/a. The last phase was
2012–2019, where NDVI showed a decrease again, with a reduction rate of 0.003/a.

3.1.3. Variation Trends of NDVI in Xilingol

The spatial distribution of grassland restoration and degradation over 20 years can be
shown by the variation trends of NDVI. As shown in Figure 5a, the variation trend ranges
from −0.0472 to 0.0371, with a mean value of 0.0028, indicating that grasslands within
the study area of Xilingol showed an overall recovery trend from 2000 to 2019, but there
is obvious spatial heterogeneity in grassland variation trends [36]. The areas with NDVI
increase are concentrated in the northeast, central, and southern parts of the study area,
and the areas with NDVI decrease are concentrated in the northern, eastern, and western
parts of the study area.

Variation trends were divided into five types by percentage, with less than −1% as
significant degradation, −1% to −0.1% as degradation, −0.1% to 0.1% as no significant
change, 0.1% to 1% as restoration, and greater than 1% as significant restoration. The
reclassification results of grassland variation trends are shown in Figure 5b. Combined
with the statistical results of different grades of variation trends within each administrative
division (Table 3), it was found that the highest percentage of general restoration areas
in the study area was 68.06% from 2000 to 2019, and the cities and counties were also
heavily dominated by restoration, which further illustrates the overall recovery trend of the
Xilingol grassland. Significant degradation areas accounted for 0.10%, mainly concentrated
in the eastern part of Xiwuzhumuqin Banner and the center of Xilinhot. The degraded
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areas in Xiwuzhimuqin Banner are concentrated in the NDVI high-value area, which is
influenced by human activities such as overgrazing [37]. The degraded areas in the Xilinhot
city center are mainly affected by the expansion of urban areas. The general degradation
areas are mainly distributed in the central area of desert grassland in Suniteyou Banner and
the high-altitude area in the north of Abaga Banner. Significant restoration areas accounted
for 2.32%, mainly concentrated in Duolun County, Taipusi Banner, Zhenglan Banner, and
the north-central part of Xilinhot City, indicating that many ecological projects such as the
return of cultivated land to forest and grass, the Green Wall of China, and the treatment of
Beijing–Tianjin wind and sand sources over the years have achieved certain results, and it
should be noted that the NDVI in the high-walled waters of Dongwuzhumuqin Banner in
Ulagai also showed an increasing trend, which may be due to the shrinking water area [38].
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Table 3. Percentage of grassland variation trends in different zones.

Significant
Degradation

General
Degradation

No Significant
Change

General
Restoration

Significant
Restoration

Dongwuzhumuqin Banner
Xiwuzhumuqin Banner

Xilinhot

0.09% 7.32% 14.21% 75.01% 3.37%
0.44% 7.40% 13.06% 77.52% 1.58%
0.22% 8.07% 12.91% 75.50% 3.30%

Abaga Banner
Sunitezuo Banner

0.04% 10.72% 18.44% 70.57% 0.23%
0.00% 4.11% 34.00% 61.84% 0.05%

Suniteyou Banner
Erlianhot

Xianghuang Banner
Zhengxiangbai Banner

Zhenglan Banner

0.00% 6.74% 43.76% 49.35% 0.14%
0.00% 1.22% 21.30% 77.20% 0.27%
0.00% 16.01% 31.91% 52.00% 0.08%
0.02% 14.49% 22.68% 62.58% 0.23%
0.03% 6.33% 13.57% 75.19% 4.88%

Taipusi Banner
Duolan County

0.07% 5.49% 7.57% 72.09% 14.77%
0.11% 2.87% 3.44% 65.71% 27.87%

3.2. The Relationship between NDVI and Driving Factors in Xilingol
3.2.1. Detection of Differences in the Explanatory Credibility of Different Factors

The geodetector model was applied to identify the impacts of driving factors on NDVI
distribution. The results of factor detection (q statistic) reflect the explanatory credibility of
each factor on NDVI. Figure 6 shows the average q statistic of each driving factor from 2000
to 2019. Prep2 has the strongest credibility, with a multi-year average q statistic of 0.59,
followed by Soil > WVP > PI > RH, and the q statistics of the above factors on NDVI are
greater than 0.5. In addition to natural conditions, the impact of the primary industry on
the spatial distribution of NDVI should not be neglected. The stronger factors were LD >
Wind > GDP > Prep1 > LA > SG > CA > Temp1 > PGDP > Temp2 > SI > TI> Temp6 > Temp3,
with the q statistics of all the above factors being greater than 0.4. Temp8, HALS, Pres1,
RD, Pres2, Pres3, Temp7, Temp4, Sun, Temp5, and LUT had fair explanatory credibility
in affecting NDVI, with q values ranging from 0.2–0.4. Slope, Elev, Pop, and Aspect had
insignificant effects on NDVI, with q values less than 0.12.
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The influence of natural conditions dominated the spatial distribution of NDVI, with
Prep2 having the strongest explanatory credibility. The interannual variation of 19 factors
with q statistics greater than 0.4 was counted, and the results are shown in Figure 7.
The interannual variation of the explanatory credibility of most meteorological factors
for NDVI is relatively consistent, showing a trend of fluctuating changes. Q statistics of
meteorological factors such as Temp, WVP, RH, and Wind are in the high-value zone in 2005
and 2015, in the low-value zone in 2000 and 2010, and in the medium-value zone in 2019.
Among them, the explanatory power of Soil for NDVI is high and stable from year to year,
fluctuating between 0.50 and 0.63. The explanatory credibility of Prep2 for NDVI showed
an increasing trend, from 0.33 in 2000 to 0.70 in 2019. RH had the strongest explanatory
power for NDVI in 2005 and 2015. Compared with Prep2, the explanatory credibility of
temperature factors such as Temp1, Temp2, Temp3, and Temp6 was weaker for NDVI.
In 2010, the q statistic of Prep2 decreased significantly, and the rest of the temperature
factors changed to a lesser extent.

The explanatory credibility of human activity factors on the spatial distribution of
NDVI is weaker compared with natural factors, and the interannual variation is larger.
From 2000–2005, the explanatory credibility of all factors increased significantly; from
2005–2010, the explanatory power of all factors decreased significantly, except for the SI and
the TI; from 2010–2015, the q statistics of SG, LD, and PGDP decreased, and the remaining
factors rose; and from 2015–2019, the q statistics of GDP, PI, SI, and LA decreased and
the remaining factors increased. The explanatory credibility of LD for NDVI was greater
than 0.5 in 2005, 2015, and 2019, and its trend was more consistent with SG. In terms of
economic structure, PI had the highest q statistic from 2000 to 2005, when PI remained in
the high-value area, but had a decreasing trend. SI increased significantly and surpassed
PI in 2010, and from 2015 to 2019, PI and SI q statistics all decreased, whereas TI was the
largest. The explanatory credibility of TI on NDVI has been increasing during the 20 years.
The explanatory credibility of the arable land area share on NDVI shows a fluctuating
upward trend.
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3.2.2. Interaction Detection of Different Driving Factors

An interaction detector was used to assess the explanatory credibility of different
driving factors when they acted together on the spatial distribution of NDVI. The results
show that the q statistics after the interaction of any two factors are larger than any single
factor, and the interaction types are two-factor enhancement and non-linear enhancement,
without weakening or mutual independence, thus indicating that different factors have
stronger effects on NDVI when they act together.

Figure 8 shows the interaction detection results of different driving factors. The
type of interaction is dominated by two-factor enhancement. In 2000, the explanatory
factor of the interactions of annual mean water vapor pressure (WVP) with other natural
and anthropogenic activity factors, and the interactions of soil type (Soil) with anthro-
pogenic activity factors on the spatial distribution of NDVI are dominant, with both being
greater than 0.62. The strongest explanatory power is annual mean water vapor pressure
(WVP) ∩ soil type (Soil)(q = 0.68). In 2005, the explanatory credibility of the interaction
between growing season precipitation (Prep2), annual precipitation (Prep1), annual mean
water vapor pressure (WVP), and the remaining factors is higher, and the strongest ex-
planatory factor is growing season precipitation (Prep2) ∩ Annual Minimum Temperature
(Temp5) (q = 0.68). In 2010, the explanatory credibility of the interaction of growing season
temperature (Temp6, Temp7, Temp8), annual mean temperature (Temp1), and soil type
(Siol) with anthropogenic activity factors is higher, all greater than 0.7, and the strongest ex-
planatory factor is growing season mean temperature (Temp6) ∩ primary industry output
(PI) (q = 0.73). In 2015, annual precipitation (Prep1), growing season precipitation (Prep2),
and annual mean water vapor pressure (WVP) interacting with the rest of the factors
have higher explanatory credibility, all greater than 0.78, and the strongest explanatory
factor is annual precipitation (Prep1) ∩ annual mean air pressure (Press1) (q = 0.82). In
2019, annual precipitation (Prep1) and growing season precipitation (Perp2) interacting
with the rest of the factors have higher explanatory credibility, all greater than 0.75, and
the strongest explanatory factor is annual precipitation (Perp1) ∩ gross domestic product
(GDP) (q = 0.80). All anthropogenic activity factors have significantly higher explanatory
credibility after interacting with other factors.

The non-linear enhancement was mainly concentrated in the interaction of single fac-
tors that have low q statistics with other factors. The interaction of elevation (Elev), slope
(Slope), and population density (Pop) with other factors in all years; the interaction of
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annual sunshine hours (Sun) with other factors in 2000 and 2005; the interaction of annual
maximum temperature (Temp4) with other factors in 2015; the interaction of road den-
sity (RD) with natural factors in 2019; and the interaction of temperature factors with air
pressure factors in some years were all non-linear enhancement.

3.2.3. Relationship between the Dominant Driving Factors and NDVI

The risk detector can determine whether the differences between the different types of
each factor are significant. The results found that, except for slope, there were significant
differences between the types of the driving factors, and all of them passed the t-test,
indicating that the spatial partitioning of the driving factors in this study is reasonable.
Based on the results of the factor detector and interaction detector, it was found that growing
season precipitation (Prep2), soil type (Soil), primary industry output (PI), annual mean
water vapor pressure (WVP), annual mean relative humidity (RH), annual precipitation
(Perp1), annual mean temperature (Temp1), annual mean wind speed (Wind), livestock
density (LD), and tertiary industry output (TI) could better explain the spatial distribution
of grassland NDVI in Xilingol, and were considered as the dominant drivers of grassland
health. Figure 9 shows the statistics of the risk detection results for the above 10 factors,
where the horizontal coordinates are the subinterval category amounts for each factor, and
the vertical coordinates are the corresponding mean NDVI values.

Among the natural environment factors, the NDVI of grassland tends to increase with
increasing growing season precipitation (Perp2), average water vapor pressure (WVP),
annual mean relative humidity (RH), and annual precipitation (Perp1). The highest NDVI
value is found when the category value is 8, which is the highest value in the range of the
factors, indicating that the precipitation-based moisture factor plays a role in promoting
grassland health. Additionally, the growing season precipitation was higher than the
mean NDVI values of all other factors, which also proves its dominant role in the spatial
distribution of NDVI. The trend of NDVI with annual precipitation in 2010 is very different
from other years, with NDVI reaching its highest value at the precipitation category, which
is 5. The spatial distribution of annual precipitation shows that the precipitation in that year
is concentrated in the southern part of the study area where agriculture and livestock are
intermingled, whereas the high-NDVI areas in the study area are mainly concentrated in
the eastern region, thus causing anomalous changes in the curve. As the mean wind speed
and mean annual temperature increased, the mean NDVI values of grassland showed a
decreasing trend, indicating that wind speed and temperature had a suppressive effect on
the growth of grassland. Among the soil types, the highest mean NDVI values were found
for grassland in the soil types Haplic Greyzems, Haplic Luvisols, and Chernozems, but
the most widely distributed soil type in the study area was that of Kastanozems, with the
average value of NDVI being 0.48.

Among the human activity factors, NDVI showed a fluctuating upward trend as the
output value of the primary industry increased, indicating that the mean NDVI value was
higher in areas with a developed primary industry. As the value of the tertiary industry
increases, NDVI also shows a fluctuating upward trend, but when the value of the tertiary
industry reaches the fifth category, NDVI remains stable or shows a decreasing trend,
indicating that the development of the tertiary industry on the one hand will promote the
healthy growth of the grassland, but may hinder growth when the excessive exploitation
of tourism resources causes damage to the health of the grassland. The NDVI increases
with the increase in livestock density until the category amount is 4; after which, the NDVI
remains stable.

Based on the NDVI high-value areas for the dominant drivers analyzed above, the ap-
propriate range for each driver factor at a high value of NDVI can be inferred. Table 4 shows
the appropriate threshold ranges for each of the dominant drivers for healthy grassland.
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Table 4. Suitable threshold range of dominant driving factors.

Factor Range Unit

Prep2 314.06–412.64 mm
Soil Greyzems Luvisols Chernozems −
PI 9.11–12.87 100 million yuan

WVP 6.39–6.65 hpa
RH 61.49–64.35 %

Prep1 413.36–490.91 mm
Temp1 0.64–1.61 ◦C
Wind 2.51–2.83 m/s

LD 170–263 heads/km2

TI 15.37–16.27 100 million yuan

4. Discussion
4.1. Dominant Driving Factors of Grassland Health in Xilingol

The fundamental cause of changes in grassland health in Xilingol over the years
has primarily been natural environment changes. The results of the factor detector show
that precipitation, soil type, mean water vapor pressure, and mean relative humidity
have a high explanatory power for NDVI, with moisture-dominated factors, including
precipitation, mean water vapor pressure, and mean relative humidity, dominating the
spatial distribution of grassland in the study area [39,40]. The influence of growing season
precipitation was significantly greater than that of annual precipitation [41]. The moisture
factor played a positive role in NDVI, whereas temperature played a negative role. The
results of interaction detection showed that in 2000, 2005, 2015, and 2019, precipitation and
mean water vapor pressure had the highest q values after interaction with other factors, but
in 2010, temperature had the highest q values after interaction with other factors, whereas
the q values of precipitation decreased significantly, and the mean NDVI values were lower
in the same years. Combining the actual precipitation and temperature data revealed that
precipitation dominated the spatial distribution of NDVI when precipitation was sufficient,
and temperature became the dominant driving force affecting the distribution of NDVI
when precipitation was insufficient. When water and heat conditions are favorable, soil
type is less influential, whereas when water and heat conditions are poor, suitable soil
types are more favorable for grassland growth.

4.2. Impact of Human Activities on Grassland Health

Among the anthropogenic disturbances, the output value of the primary industry has
the strongest explanatory power for the spatial distribution of NDVI. Livestock density is
consistent with the change in q value of primary industry output, indicating that grazing
is the main pillar of primary industry in the study area. As a typical pastoral area, the
population distribution in the study area is relatively sparse, so the influence of population
density on the distribution of grassland NDVI is relatively weak. The opposite change
in livestock density and the q value of the output value of the secondary industry also
indicates that grazing accounts for a smaller share in areas where the industry is more
developed. The q value of tertiary industry output is on the increase and is gradually
replacing primary industry output as the most important driver of the human activity
factors. The q value of livestock density is greater than 0.5 in 2005, 2010, and 2019, and the
main contribution of this value comes from the density of sheep in the study area. Industrial
restructuring had a large impact on the spatial distribution of NDVI. It gradually changed
from primary-industry-dominated to primary-and-secondary-industry-jointly-influenced,
and finally to tertiary-industry-dominated in 2000–2019.

4.3. The Differences among Interactions of the Natrual and Anthropogenic Factors

The results of the interaction detector are divided into three parts: the first part is the
interaction among natural environmental factors, the second part is the interaction between
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natural environmental factors and the anthropogenic disturbance, and the third part is
the interaction among anthropogenic factors. Over the years, the q statistics were higher
after the interaction of the first two components, whereas the q statistics of the third
component were consistently lower and less varied. This is because the spatial scales of
the anthropogenic disturbance factors used in this study are mostly at the banner and
county scales, and the administrative areas of Inner Mongolia are quite large, thus, to some
extent, blurring the differences between the different spatial scales, and resulting in a small
difference in q statistics between the anthropogenic factors.

Further work can take this as a starting point to improve the spatial resolution of
anthropogenic factors using remote sensing data, and, thus, evaluate the impact of anthro-
pogenic activities on changes in grassland health in a more detailed way.

5. Conclusions

This study uses trend analysis methods and geodetector methods to examine the
spatial and temporal evolutionary patterns of grasslands and their drivers from 2000–2019
in Xilingol, leading to the following conclusions.

The NDVI of Xilingol grassland shows a spatial distribution pattern of a high value in
the east and low value in the west, and a mean NDVI value of 0.39. The temporal pattern
shows a fluctuating upward trend, with a monthly increasing rate of 0.0005/month and an
annual increasing rate of 0.0028/a. Spatially, it also shows a trend of recovery, with 68.06%
of the grassland in the region at an average recovery level.

Using geodetector methods, the evaluation of the dominant drivers can be completed
quickly and effectively. The results show that moisture-dependent natural environmental
factors, soil type, and primary industry output are the dominant drivers of grassland health
in Xilingol. The essential causes of changes in grassland health are changes in natural
climatic conditions, with moisture factors playing a facilitating role, and temperature
and wind speed factors playing a suppressing role. Among the anthropogenic activities’
disturbances, the adjustment of industrial structure has the greatest influence on the spatial
distribution of NDVI. As a typical grazing area, livestock density also plays an important
role, but due to the limited spatial scale, the explanatory credibility varies less between the
factors. Different types of drivers can increase the explanatory credibility when they act
together. When the dominant driver is within the range of multi-year average thresholds,
it can contribute to the sustained recovery of grasslands.
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