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Abstract: In recent years, non-contact human–computer interactions have aroused much attention. In
this paper, we mainly propose a dual view observation system based on the frontal and side millimeter-
wave radars (MWR) to collect echo data of the Air writing digits “0~9”, simultaneously. Additionally,
we also propose a novel distance approximation method to make the trajectory reconstruction more
efficient. To exploit these characteristics of spatial-temporal adjacency in handwriting digits, we
propose a novel clustering algorithm, named the constrained density-based spatial clustering of
application with noise (CDBSCAN), to remove background noise or clutter. Moreover, we also design
a robust gesture segmentation method by using twice-difference and high–low thresholds. In our trials
and comparisons, based on the trajectories formulated by echo data series of time–distance and time–
velocity of dual views, we present a lightweight-based convolution neural network (CNN) to realize
these digits recognition. Experiment results show that our system has a relatively high recognition
accuracy, which would provide a feasible application for future human–computer interaction scenarios.

Keywords: millimeter wave radar; air writing; dual view fusion; CDBSCAN; CNN

1. Introduction

In recent years, millimeter wave radars (MWR)@77–79 GHz have been heavily focused
on, especially in human activity monitoring areas. Typically, they are equipped with
unique traits or advantages over cameras, lasers, and other sensors; are able capture
subtle movements; and work well in dark environments, which protect users’ privacy. For
these reasons, human posture recognition and gesture recognition based on MWR use in
human–computer interactions, health care, intelligent control, and auxiliary information
transmission have aroused researchers’ attention [1–4].

Authors in [5] consider the traffic gesture recognition problem and propose a point
cloud-based graph neural network (GNN) network. Authors in [6] adopt a convolution
neural network (CNN) and cyclic neural network to extract features from the point cloud
data and track fingers’ movement online, so as to create cursor interaction between gestures
and non-contact devices. Generally, the point cloud-based manner is to jointly calculate the
distance and angle information of targets and further screen the spatial position of scattering
points through constant false alarm rate detector (CFAR) mechanism, then extract features via
manual or machine learning methods [7,8]. Despite the idea based on directly processing the
echo point-cloud data, the characteristic spectrum idea has also been proposed to recognize
gestures, which is aimed at exploiting the parameter estimations of range, Doppler, and
angle information. Once various characteristics spectra are obtained, the classifier would be
designed and attained. Authors in [9] combine the mix-up algorithm with an augmentation
mechanism to expand gesture data and further propose a gesture recognition method based
on a complementary multidimensional feature fusion network, which incorporates distance,
speed, and angle information. The methods or algorithms above have provided valuable
inspiration. Authors in [10] further propose a spiking neural network to improve hand
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gesture recognition, where a 2D fast Fourier transform (FFT) method is performed across fast-
time and slow-time dimensions to generate a range of spectrograms, Doppler spectrograms,
and angle spectrograms. Meanwhile, the meta-learning network has been proposed in order
to learn a model and to adapt to unseen hand gesture tasks with few training observations [11].
However, most methods are focused on single radar view, which has some limitations to
fully express the spatial linkage or correlation of gesture motions, even affecting gesture
perception and recognition. Among gesture recognition, hand air writing recognition is more
challenging. Traditional air writing observing mainly relies on cameras [12–14] or motion
sensors [15]; however, the former cannot work in a dark environment and the latter requires
the wearing of an auxiliary device. Obviously, MWR has some non-contact advantages and
independence from illumination and further reconstructs the handwriting trajectory to form
an intuitive interaction interface. In [16], authors use three radars to build a radar network,
and refine range estimation with trilateration technology to detect and locate the hand
marker. Authors in [17] propose a novel recognition scheme via two radars and formulate
a one-dimensional time convolution network (TCN) to extract features from local target
trajectories. Authors in [18] develop a novel air writing system using sparse radar network
to reconstruct and classify the drawn characters. Moreover, authors in [19] utilize a single
radar to locate hands with distance and angle estimation and then use the Hough transform
to remove certain unnecessary trajectories. Moreover, a novel air writing framework based
on a single ultra-wide-band radar has also been proposed but this idea cannot reconstruct the
trajectory [20]. Authors in [21] propose a novel spatiotemporal path selection algorithm to
separate the mixed gestures, and use a dual 3D CNN to extract feature and make recognition.

In this paper, we propose a novel MWR-based air writing trajectory reconstruction and
recognition system by using two frequency modulated continuous wave (FMCW) radars.
Via the theoretical derivation and experimental results, we find that the error between the
approximated instantaneous radial distance and the longitudinal distance from hand to
the radar plane is very small, so that we can adopt this simplification to tackle the hand
location problem. Therein, a fast and robust gesture detection method based on a twice-
time-difference and double-threshold is proposed, which has more reliable performance
than the traditional single-threshold. Additionally, we presented a constrained density-
based spatial clustering of applications with a noise (CDBSCAN) method to screen a hand
motion trajectory, which borrows the sliding median filter to constrain the clustering effect
and further remove outliers. Finally, compared with traditional trajectory reconstruction,
we integrate the discriminative feature of velocity information into the trajectory to enrich
the air writing digits information.

2. Raw Radar Data Preprocessing

Here, we use two MWRs of TI IWR 1443 board and DCA1000 board for data acquisition,
simultaneously. The collection environment is a semi-open microwave darkroom as shown
in Figure 1. Once obtain these echo data from two radars, an incoherent accumulation
method is proposed to average 50 adjacent chirp data to obtain one stack-chirp, which can
reduce random noise. Moreover, by conducting one-dimensional FFT on each chirp, the
target distance information can be obtained. Meanwhile, by arranging these accumulated
chirp-data along with time-units, we can obtain the time distance matrix (RTM). In this
way, the frontal range time matrix (FRTM) and side range time matrix (SRTM) of these
two views has been collected. Furthermore, the range-Doppler image can be obtained by
performing 2D-FFT on each frame of the echo data with a Hamming window. In one frame
of the range-Doppler image, the Doppler amplitude of gesture is obtained by searching the
spectral peak-value, and the time velocity characteristic matrix (VTM) is obtained through
a similar operation of frame accumulation. Finally, the frontal velocity time matrix (FVTM)
and side velocity time matrix (SVTM) were able to be collected, respectively.

Note that when using the radars of the TI IWR 1443 board, due to the coupling effect of
the transmitting antennas and receiving ones, a strong signal component always remains close
to radar. Usually, supposing that this coupling effect may be seen as a low frequency signal
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but with large amplitude, we could use the high-pass filter to remove these low-frequency
components. Typically, if the body, environmental parts and other targets also exist in echo
data, the corresponding band-pass filter can be carried out where its boundary frequency is
determined via the specific distance changing of a hand motion in FRTM and SRTM, respectively.
Namely, the antenna coupling interference is equivalent to forming a false static target near radar,
while the human body and test-environment can also be regarded as static targets. Therefore,
the average elimination method can be used to remove the interference of static targets. This
method first averages all received chirp data to obtain the referenced signal and then subtracts
the referenced signal from each original chirp to obtain the echo signal of suspicious moving
targets. Figure 2 shows the effect of clutter suppression through a high-pass filter, band-pass one
and average elimination method. Considering that if the distance between the hand and radar
changes little or remains unchanged for a period, the target signal may be greatly attenuated due
to this average elimination method, so we mainly use the band-pass method to preliminarily
remove the interference signal caused by the body and environmental clutter.
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3. Handwriting Trajectory Reconstruction
3.1. Distance Approximation Method

An experimental scenario is shown in Figure 1 of Section 2. When detecting the
hand-writing digit “1”, we have found that its side trajectory is displayed as a horizontal
straight line in SRTM. However, as the distance information reflects the radial distance
from the target to radar, it should be a curve style from far to near and then from near to
far; this result seems contradictory. Thus, the question is: how to define the spatial relative
position of hand and radars?

Assuming the horizontal distance from target to radar is x, the longitudinal distance
is y and the radial distance from the target to radar is r. The absolute error (AE) of
approximating the radial distance to the longitudinal distance is

AE = |y− r| (1)

where
r =

√
x2 + y2 (2)

AE can be represented as

AE =
√

x2 + y2 − y = x/(
√

x2 + y2 + y) (3)

The relative error (RE) is defined as

RE =
1
r
|y− r| × 100% = (1− y√

x2 + y2
)× 100% (4)

when the longitudinal distance is fixed, if the horizontal distance decreases, the angle
between the target and radar also becomes smaller and the AE and RE would be smaller.
Moreover, when the horizontal distance is fixed, the larger the longitudinal distance is,
and the smaller the error will be. Figure 3 shows the AE and RE where the radial distance
is replaced with the longitudinal distance when the horizontal distance varies from 0~15
cm and the longitudinal distance is 40 cm, 50 cm and 60 cm, respectively. Typically, the
range of air writing in this experimental scenario is a square area with a side length of
20 cm and the square center is 50 cm away from the radar. Obviously, the maximum AE
and RE appear simultaneously when the horizontal distance is 10 cm and the longitudinal
distance is 40 cm. At this point, the maximum AE is 1.231 cm and the maximum RE is
3.077%. Particularly if the longitudinal distance is 60 cm, the maximum AE is only 0.828
cm and the RE is close to 1%. Consequently, we propose a distance approximation method
which regards the radial distance measured by radar as the longitudinal distance. This
distance approximation idea has little impact on the results of trajectory extraction and
reconstruction. Furthermore, we conducted a simple experiment of moving the hand 20 cm
along the horizontal direction and uniformly from left to right relative to radar over 2 s
when the longitudinal distances are 40 cm and 80 cm, respectively, as shown in Figure 4.
The trajectory is like a straight line both at 40 cm and 80 cm, which verifies the feasibility of
the approximate distance method. Namely, by using this distance approximation method,
the previous trilateration process can be directly omitted and the target angle does not need
to be calculated, which greatly reduces the complexity of trajectory reconstruction.
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3.2. Trajectory Extraction Method Based on Peak-Value Search

As the FRTM and SRTM for one hand motion has some consistency, we further define
FRTM and SRTM as RF, RS ∈ Rhr×w where hr and w denote the height and length of
matrixes, respectively. Then, any element RF(d, t) or RS(d, t) at the distance unit d and
time unit t could reflect the signal strength. The larger the value is, the more likely there is
a target at this position. Via searching for the spectral peak-value, we were able to find the
row index of the maximum signal intensity at each time unit, which represents the distance
between the target and radar. Meanwhile, using the distance approximation method, this
distance information can be regarded as the longitudinal distance between the hand and
radar. In order to alleviate the impact of the noise part, we use the sliding average window
to improve peak searching in each time unit, expressed as

RF
w(d, t) =

1
L1

(
RF(d, t), RF(d + 1, t), . . . , RF(d + L1, t)

)
RS

w(d, t) =
1
L1

(
RS(d, t), RS(d + 1, t), . . . , RS(d + L1, t)

)
x(t) = argmax

d

(
RF

w(d, t)
)

y(t) = argmax
d

(
RS

w(d, t)
)

(5)
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where d = 1, 2, . . . , hr − L1 and L1 = 5 denotes the length of sliding window. Note that
the intensity of hand targets in RTM is very weak in some units. Moreover, the noise or
clutter of the body and environment incurs some outliers in these time-distance series,
which pollutes the trajectory reconstruction. In order to extract the accurate trajectory of
the hand motion and suppress the clutter, we introduce a novel clustering algorithm with
an adaptive neighborhood radius.

3.3. Trajectory Re-Extraction by CDBSCAN

Compared with k-means algorithm [22], DBSCAN does not need the number of
clusters but needs two other parameters: one is the adjacent radius epsilon (denoted as
EPS) and the other is the minimum number of points (denoted as Minpts) in the adjacent
area [23]. DBSCAN is very sensitive to neighborhood radius where a slight change may
lead to significant differences; therefore, the selection of the neighborhood radius is critical.
In our echo data processing, we selected the appropriate neighborhood radius to achieve
the ideal clustering effect for different trajectory cases. Through trials and comparison we
found that the sliding median filter seems relatively stable and reliable in order to achieve
trajectory smoothing, but it also has a poor effect on the continuous distribution of outliers.
Thus, we tried to design a novel DBSCAN method that uses the adaptive determination
mechanism of the neighborhood radius with the constraint of a sliding median filter (i.e.,
CDBSCAN), which could enhance the clustering task for different trajectories extraction.
The detailed steps of this idea have been listed as follows. Firstly, we defined the sliding
window length of this median filter, which was set as 1/10 of the data-sample length, then
applied the sliding median filter to these samples. Subsequently, we also defined the state-
flag on those outliers detected by the sliding median filter according to following principles:

Flagmedian(t) =
{

1, if point(t) is a outlier
0, if point(t) is not a outlier

(6)

where t ∈ [1, w]. Here, we set Minpts = 2, which means two points forming a cluster. Fur-
thermore, we denoted the variation interval of the neighborhood radius as [epsstart, epsend].
As usual, if the number of noise points is less than that of hand trajectories, the cluster with
the most points was seen as the hand trajectory. Naturally, all points of other clusters would
form a novel set of outliers. Importantly, we selected each EPS parameter in [epsstart, epsend]
to perform DBSCAN and set the state-flag by

Flagdbscan(t) =
{

1, if point(t) is a outlier
0, if point(t) is not a outlier

(7)

Then we calculated the Hamming distance between two groups as follows:

dhamming =
w

∑
t=1

(Flagmedian(t)⊕ Flagdbscan(t)) (8)

Finally, the optimal neighborhood radius was selected through the EPS parameter to
minimize the Hamming distance. Figure 5 shows the trajectory smoothing results using
different methods. Note that the sliding mean filter can only remove the outliers with a
sparse distribution. In contrast, the sliding median filter was able to remove most outliers
but with a poor effect of suppressing outliers given the continuous distribution. As shown
in (d), the minimum Hamming distance is fixed at 40 when EPS = 0.075. Namely, using
appropriate EPS to perform CDBSCAN, we removed nearly all outliers and obtained
excellent smoothing result.
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Additionally, if the number of points after CDBSCAN clustering is less than w, to
facilitate the trajectory reconstruction, we propose a novel interpolation idea. Suppose
that the trajectory interval is [a, b], we should first carry out linear interpolation within this
interval and then use following mechanism to obtain the final trajectory, i.e.,

track(t) =


track(a), 0 < t < a
track(t), a <= t <= b
track(b), b < t <= w

(9)

The frontal- and side-trajectories of hand air writing digits “0~9” after CDBSCAN
method have been shown in the Figure 6.
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3.4. Trajectory Reconstruction with Velocity Features

Similarly, we denote FVTM and SVTM as VF, VS ∈ Rhv×w, respectively, and calculate
the integrated velocity as follows:

V(t) =
1
hv

hv

∑
i=1
{(VF(i, t)− 1

w

w

∑
t=1

VF(i, t))
2

+(VS(i, t)− 1
w

w

∑
t=1

VS(i, t))
2

} (10)

where hv and w denotes the height-size and length-size of matrixes. The integrated velocity
curve of digits “0~9” is shown in Figure 7. We found that the velocity amplitude of these
digits has some differences, but the statistical trend is consistent, which indicates that the
velocity of air writing gesture has a good feature separability.
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Given the horizontal time-distance and time-velocity series and the vertical time-
distance and time-velocity series, we constructed several graphs with different grid-size
to demonstrate these handwriting trajectories. Figure 8 shows the typical trajectory of
handwritten digit “3” when the grid length is chosen from 10 to 34 with an interval of
6 units. The color of the trajectory reflects the integrated velocity. The trajectories of digits
“0~9” are shown in Figure 9. Generally, our proposed system supports any character input,
but it is possibly not ideal for a character trajectory with more transitional strokes.
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4. Gesture Segmentation Based on Twice-Difference and High–Low Thresholds

In this section, we propose a gesture segmentation idea with the twice-difference and
high–low thresholds, which separate the trajectory regions from the static parts. Assume
that after each hand motion, the hand remains stationary for a period before writing the
next number. When the hand is stationary, the distance measured by the radar remains
unchanged and the measured speed is nearly zero. Firstly, for the bidirectional time-
distance series {x1, x2, x3, . . . , xn} and {y1, y2, y3, . . . , yn} after CDBSCAN, we calculated
the first-order forward difference and the absolute value Dx(t) and Dy(t):{

Dx(t) = |xt+1 − xt|, t= 0, 1, . . . , w
Dy(t) = |yi+1 − yi|, t= 0, 1, . . . , w

(11)

Furthermore, we defined a novel threshold α. If Dx(t) or Dy(t) is greater than this
threshold, it will be judged as a suspicious point. Here, the first-order difference is cal-
culated again corresponding to the suspicious point and the time interval is obtained.
Normally, in the active area, these suspicious points should be continuously distributed,
which means the interval at this moment should be 1. Consequently, we set the first
suspicious point as the start point of the air writing digits and the last/end point as the
suspicious point of the tail before the first interval. To judge the time interval in time series,
namely, when the interval is less than threshold A (a high threshold), the action continues
and the end point jumps to the suspicious point before the next interval. If the interval
is greater than this threshold, it means the gesture has ended and then the duration is
calculated. If the duration is greater than threshold B (a low threshold), it means that the
duration is long enough to be recognized as a gesture (or part of one) and the first action
detection ends. The last/end point is set as the suspicious tail point before the interval
and the start and end point of the second gesture are reinitialized. If the point is less than
threshold B, the gesture duration is too short to be admitted as a valid motion, so that we
reinitialize the start and end point of first gesture in order and repeat the above operations.
In particular, we set α to 0.2, set the high threshold A = 2 s and low threshold to B = 0.4 s.
Figure 10 shows the processing results of air writing “0” and “1” in order. Our proposed
gesture segmentation method quickly achieved continuous gesture segmentation. For those
transitional actions between gestures, e.g., the hand lifting action returning to the original
position, a fixed sleep period can be set before the end of interval. Once the transitional
gesture action has been completed, the gesture detection was started after this sleep period.
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In our scenarios, as the hand moves parallel to the radar, the radial distance changes
little, which means the radial velocity calculated by the radar is almost zero. When there
is only one view, the amplitude difference detection of RTM is misjudged and the result
displays no hand movement. Fortunately, in the case of the dual view, as the gesture occurs,
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at least one of two radar systems (frontal or side) will detect the motion, and the final
decision is obtained by the merged result of two radars:

motion f inal = motionF ∪motionS (12)

where motionF and motionS denote the gesture motion detected by frontal and side radars,
respectively.

5. Air Writing Trajectories Recognition

As discussed in Section 1, the collected echo data are transmitted to the PC terminal
for further analysis and processing, where the PC system is Windows 10, Intel i7-8700 CPU.
The deep learning framework is Tensorflow 2.4 and Keras. The parameter configuration of
dual view radars is shown in Table 1.

Table 1. Radar parameters configuration.

Parameters Value Parameters Value

Number of transmitting antennas 1 Number of frames 100
Number of receiving antennas 4 Number of chirps 128

Frame period (ms) 20 Number of samples per chirp 64
Frequency slope (MHz/us) 50 Frequency band of front radar (GHz) 77–79

Sample rate (MHz) 2 Frequency band of side radar (GHz) 79–81

In this section, we build a lightweight-based CNN for trajectory classification and
its structure is shown in Figure 11. This lightweight network mainly contains three Con-
volution layers with a size of 3 × 3 kernels, three Maxpooling layers with stride of 2, a
Flatten layer, and a Fully connected output layer. Each Convolution layer applies the ReLU
activation function, and Dropout operation is used in the Flatten layer. Finally, the Full
Connected layer uses the Softmax activation function to output the probability of each digit.
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In order to build the whole dataset, we invited a total of 20 volunteers (aging from
19 to 23 years old) to complete the data collection in the semi-open microwave room,
as shown in Figure 1, comprising 10 females and 10 males. When conducting the data
collection, only one individual stood in the room and others remained outside the detection
area of the radars. All participants wrote the same digits in order but there were some
individual differences between the writing trajectories or speeds. A total dataset, including
12,000 FRTM and 12,000 SRTM and 12,000 FVTM and 12,000 SVTM was collected. After
processing, we obtain 12,000 trajectories of 0~9 digits in total, where each of these categories
had 1200 plane trajectories with velocity information. For each category, 1000 samples were
randomly divided into training sets and 200 were divided into testing sets. The batch size
of the network training is 32, the optimizer used the usual Adam one, the loss function
is categorical cross-entropy, and the evaluation criterion is the accuracy metric. Table 2
has listed performance comparisons for trajectory recognition under different input sizes.
Normally, the smaller of the input diagram size and fewer the network parameters are,
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then the faster the network training speed would be, but the recognition accuracy decreases.
When the size is reduced to 10 × 10, the network recognition ability decreases rapidly but
the average accuracy still reaches 93.62%. The accuracy changes for different sizes of the
trajectory diagram with the training epoch increasing are shown in Figure 12. The input size
with 28 × 28 and 34 × 34, in particular, almost achieved the best recognition performance.
Thus, we recommend 28× 28 as the final size of recognition, as the total amount of network
training parameters is only 29,354 with average recognition rate 99.23%. Figure 13 shows
the confusion matrix of the recognition results when the input trajectory is 28 × 28. Such a
small input size can achieve excellent recognition accuracy due to fact that trajectory image
has excellent spatial and velocity characteristics. These experiments have shown that this
lightweight-based CNN may have the potential for various engineering applications.

Table 2. Tests on the trajectory diagrams of different sizes.

Input Size Number of Parameters Time Cost (ms/step) Accuracy (%)

34 × 34 33,834 19 99.23
28 × 28 29,354 15 99.24
22 × 22 26,154 12 98.72
16 × 16 26,154 10 98.45
10 × 10 24,234 7 93.62
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To further evaluate the recognition performance for different feature-maps of air
writing motions, we also present the ablation analysis. As shown in Table 3, the light-
weighted network with single feature map, such as FRTM, SRTM, FVTM or SVTM, has
not achieved the ideal result in comparison with the trajectories in Table 2, where only
PVTM case obtained a high accuracy with 82.15%. Compared with the time-range feature
of a single view, the time–velocity feature, i.e., FVTM and SVTM, outperformed FRTM
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and SRTM. Additionally, we introduce the two-stream CNN, which is formulated by two
parallel light-weighted CNNs with similar parameters (seen in Figure 11) and attained
the information fusion of a dual-view in the Flatten layer, as shown in Figure 14. In this
case, two-stream CNNs using dual-view’s time–range or time–velocity feature map has
achieved better results than the single case but also had a poorer performance compared
with the results in Table 2.

Table 3. Tests on different input feature maps.

Input Feature Map Network Type Average Accuracy (%)

FRTM CNN 76.60
SRTM CNN 71.15
FVTM CNN 82.15
SVTM CNN 77.25

FRTM + SRTM Two-stream CNN 89.65
FVTM + SVTM Two-stream CNN 92.55
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6. Conclusions 
In this paper, we presented a novel dual-view MVR system to reconstruct and recog-

nize air writing trajectories based on the sequential feature fusion idea. In addition, we 
provided corresponding novel denoising and gesture segmentation methods and estab-
lished a dataset of air writing digits ”0~9”. Furthermore, by constructing a lightweight-
based CNN model, we achieved relatively ideal classification results. In the future, we 
will focus on air writing recognition in more sophisticated scenarios and propose more 
robust methods to suppress noise and clutter. Moreover, typical multi-hand gesture 
recognition is also one of our research interests. 
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6. Conclusions

In this paper, we presented a novel dual-view MVR system to reconstruct and recog-
nize air writing trajectories based on the sequential feature fusion idea. In addition, we pro-
vided corresponding novel denoising and gesture segmentation methods and established a
dataset of air writing digits ”0~9”. Furthermore, by constructing a lightweight-based CNN
model, we achieved relatively ideal classification results. In the future, we will focus on air
writing recognition in more sophisticated scenarios and propose more robust methods to
suppress noise and clutter. Moreover, typical multi-hand gesture recognition is also one of
our research interests.
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