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Abstract: Vegetation coverage information is an important indicator of desert ecological environments.
Accurately grasping vegetation coverage changes in desert areas can help in assessing the quality
of ecosystems and maintaining their functions. Improving remote sensing methods to detect the
vegetation coverage in areas of low vegetation coverage is an important challenge for the remote
sensing of vegetation in deserts. In this study, based on the fusion of MOD09GA and MOD09GQ
data, 2019–2021 low-altitude unmanned aerial vehicle (UAV) remote sensing data, and other factors
(such as geographical, topographic, and meteorological factors), three types of inversion models
for vegetation coverage were constructed: a multivariate parametric regression model, a support
vector machine (SVM) regression model, and a back-propagation neural network (BPNN) regression
model. The optimal model was then used to map the spatial distribution of vegetation coverage and
its dynamic change in the Junggar Basin of Xinjiang, China, over 22 years (from 2000 to 2021). The
results show that: (1) The correlation between enhanced vegetation index (EVI) obtained from image
fusion and vegetation coverage in desert areas is the highest (r = 0.72). (2) Among the geographical
and topographic factors, only longitude and latitude were significantly correlated with vegetation
coverage (p < 0.05). The average monthly temperature and precipitation from the previous six months
were correlated with the vegetation coverage (p < 0.05), but the vegetation coverage of the current
month had the highest correlation with the average temperature (r =−0.27) and precipitation (r = 0.33)
of the previous month. (3) Among the multivariate parametric models established by selecting the
five aforementioned factors, the multiple linear regression model performed the best (R2 = 0.64).
(4) The SVM regression model was superior to the other regression models (R2 = 0.80, mean squared
error = 8.35%). (5) The average vegetation coverage in the desert area of the Junggar Basin was 7.36%,
and from 2000–2021, the vegetation coverage in 54.59% of the desert area increased.

Keywords: Junggar Basin; image fusion; UAV; remote sensing; multifactor; inversion model;
trend change

1. Introduction

Vegetation is an important part of surface ecosystems and an important factor affecting
global climate change [1,2]. With the deepening of global change research, the dynamic
change in key vegetation parameters has become an area of intense interest in the study
of terrestrial ecosystems [3,4]. Vegetation coverage is usually defined as the percentage of
the vertical projection area of vegetation (including leaves, stems, and branches) on the
ground out of the total statistical area [5] and plays a key role in studies of the atmosphere,
geosphere, hydrosphere, and biosphere [6]. Human activities and climate change strongly
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impact vegetation coverage [7,8]. In addition, the distribution pattern and vegetation
coverage changes also affect regional climate change [9,10].

The main methods for obtaining vegetation coverage information include ground mea-
surement and remote sensing inversion [11]. Ground measurement is usually performed
at the quadrat scale, which is often affected by the spatial heterogeneity of different study
areas, but extending this approach to the entire area of interest is difficult. Moreover, due to
human factors, accurately estimating the vegetation coverage over a large area by ground
measurement is challenging [1]. Based on its large-scale data acquisition and continuous
observation abilities and the diversity of its data in terms of the spatial resolution, spectral
resolution, and temporal characteristics, remote sensing technology can obtain vegetation
coverage information and information on vegetation coverage changes at different scales.
This approach has become the main technical means of estimating vegetation coverage [12].

In the desert area of the Junggar Basin, Xinjiang, China, precipitation is scarce, and
evaporation is intense. In most desert areas, vegetation grows sparsely, the color of vegeta-
tion is “yellow,” the leaves are slender, the vegetation coverage is below 20% or even below
5%, and the information extraction process is prone to “contamination” of the target signal
by background (mainly soil) information. Therefore, the sensitivity of sensors to detect
the spectral information of vegetation in the desert area is reduced, and no obvious strong
absorption valleys or reflection peaks are observed. As a result, the spectral information
obtained from remote sensing images is extremely weak and even difficult to detect [13].
Therefore, improving the detection of vegetation in areas of low vegetation coverage by
remote sensing methods is an important problem in this arid desert area [14,15]. In current
research on vegetation coverage inversion in desert areas, the time resolution of commonly
used remote sensing data is generally not high, which leads to inevitable uncertainties in the
results. First, only one value can be selected within a given time interval, and consequently,
short-term vegetation-change information may be lost. Second, the field observation time
can only be within the time given by the remote sensing data, increasing the difficulty of
field sampling [16]. Medium resolution satellite remote sensing data can cover large areas
and have a high time resolution, which may be more suitable for large-scale use.

In remote sensing, the vegetation index is widely used in the inversion of vegetation
coverage due to its easy acquisition and simple calculation. The commonly used vegetation
indexes include the normalized vegetation index (NDVI) [17], enhanced vegetation index
(EVI) [18], soil regulated vegetation index (SAVI) [19], optimized soil regulated vegetation
index (OSAVI) [20], and improved soil regulated vegetation index (MSAVI) [21]. However,
the accuracy of using a single vegetation index is low and is affected by factors such as
the topography, vegetation type, region, and climate [22]. In particular, the inversion of
low vegetation coverage is most difficult. Therefore, in the construction of vegetation
coverage data, adding factors such as the climate, topography, and geographical location
can significantly improve the accuracy of vegetation coverage inversion [23,24].

With the development of computer technology, machine learning methods have been
used to estimate vegetation biomass and coverage [25]. Commonly used machine learning
methods include support vector machine (SVM) regression, random forest, and neural
networks [26–28]. Compared with the traditional parametric regression model, the machine
learning method can better solve the multivariate nonlinear regression problem and has
a high robustness. Yang et al. [22] compared the grassland biomass model established
by traditional parametric regression with the grassland coverage model established by
the artificial neural network method and found that the artificial neural network method
outperformed the traditional parametric regression model in terms of accuracy and sta-
bility in the inversion of grassland biomass on the Tibetan Plateau. In the inversion
of low coverage in desert areas, determining how to select the optimal model requires
further exploration.

The unmanned aerial vehicle (UAV) method fills the gap between the quadrat and the
satellite remote sensing data-gathering methods on the observation scale, providing a basis
for upscaling studies for monitoring vegetation. Chen et al. [29] compared the vegetation
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coverage obtained by the UAV method and the traditional photography method at the
pixel scale of remote sensing data. They proposed that the UAV inversion of vegetation
coverage at the pixel scale is more accurate and effective than the traditional ground survey
method and more suitable for obtaining large-area data. However, studies that use the UAV
method to extract vegetation coverage information have the disadvantage of a high reliance
on the manual control of UAVs during aerial photography, which has led to low aerial
photography speeds, small UAV aerial photography areas, and low spatial resolutions. In
this study, FragMAP software was selected as the aerial photography system of the UAV.
Each plot was photographed 16 times, resulting in a large plot area, and the flight height
was relatively low (20 m), which ensured that the aerial photography coverage area was
large (250 m× 250 m). The analysis system of aerial data (Proposal Based Manual Classifier
Proposal Based Manual Classifier) had a high processing speed and a high accuracy when
extracting UAV photographs. FragMAP and the Proposal Based Manual Classifier Proposal
Based Manual Classifier have been used to monitor species distribution, biomass, and
rat-hole information in the Qinghai–Tibet Plateau and other areas [30–32]. In addition
to ensuring the area and spatial resolution of the UAV aerial photography, the imaging
time is also important. In a review on the UAV detection of pests, weeds, and diseases,
Kaivosoja, J., et al. [33] described the effect of the imaging time on detection; e.g., for
sunflowers, the best time to locate weeds is the early growth stage; for wheat, due to visual
differences, green Dahurian wildrye can be detected in yellow wheat fields in the mature
stage. Abdollahnejad, A. et al. [34] selected periods of persistent and severe disturbance
caused by abiotic and biotic factors to study the spectral correlation between healthy and
unhealthy trees. In this study, to obtain the maximum annual vegetation coverage in the
Junggar Basin and reduce the effect of the bare soil background on the spectral information
of vegetation, UAV aerial sampling was performed during the peak vegetation growth
period (July–September).

At present, the spatial matching between the size of the UAV aerial photography area
and the spatial resolution of the satellite remote sensing data is an issue; i.e., the size of
the images taken by the UAV is often small due to the spatial resolution of the UAV aerial
photography data, but the spatial resolution of the commonly used daily multispectral
products is mostly 500 m × 500 m or higher. Image fusion, which is a technique for
processing and fusing information acquired by several different imaging sensors on the
same object or scene, can be used to solve this issue [35]. This approach can make rational
and effective use of the useful information in an image, increase the spatial and spectral
resolutions of the original image, and reduce the bias and uncertainty in the description
of the target object using a single imaging sensor [36]. At present, scholars in China and
around the world widely apply the spatiotemporal fusion technique of multisource remote
sensing data to different fields to fuse remote sensing data with different spatial and spectral
resolutions to obtain multispectral remote sensing data with a high spatial resolution [37,38],
but few studies have used image fusion to identify vegetation coverage. Commonly used
image fusion algorithms include the Gram–Schmidt (GS), principal component (PC), and
Brovey methods [37,39,40], and the GS method has been widely and effectively used [38,41].

In summary, this study used the UAV method instead of traditional sampling methods
to obtain field vegetation coverage information. In addition, new products were used after
image fusion to obtain remote sensing data, and the following processing and analyses
were performed for the Junggar Basin in Xinjiang: (1) changes in correlations among
vegetation indexes before and after image fusion; (2) selection of vegetation indices and
environmental factors with the highest correlation with areas of low vegetation coverage of
the desert area of the Junggar Basin; (3) selection of the best model for the inversion of low
vegetation coverage in this desert area; (4) analysis of the spatiotemporal variation trend of
the vegetation coverage in this desert.



Remote Sens. 2022, 14, 5146 4 of 20

2. Materials and Methods
2.1. Study Area

The Junggar Basin is located in the north of the Uygur Autonomous Region, Xinjiang,
China [42]. It is the second largest inland basin in China and is located between the
Tianshan Mountains and the Altay Mountains [43], with a roughly triangular shape and
an approximate range of 43–49◦N and 80–91◦E (Figure 1). In the basin, the Gurbantonggut
Desert is the largest fixed or semifixed desert in China. The basin has a moderately
temperate climate and is characterized by aridity, heat, sand, and a fragile ecological
environment. The average elevation of the Junggar Basin is approximately 600 m, and the
multiyear average temperature is 1.3–9.8 ◦C. The multiyear average precipitation in the
basin is low, and the annual average precipitation does not exceed 150 mm. The average
precipitation of the desert area in the center of the basin is only 70–100 mm, with an annual
evaporation of up to 2000 mm [44]. The vegetation in the basin is sparse, and the species
richness is low. The main plant species include Chenopodiaceae, Tamaricaceae, Asteraceae,
and Leguminosae, and ultra-arid semi-trees, semi-shrubs, and shrubs or dry succulent
plants predominate. The desert vegetation in the Junggar Basin plays an irreplaceable role
in wind prevention, sand fixation, soil water conservation, water conservation, biodiversity
protection, and regulation and stabilization of the temperature in the desert area [45].

Figure 1. Location of sample plots for vegetation coverage in the Junggar Basin (obtained by UAV)
in 2019–2021.

2.2. Acquisition of Vegetation Coverage Field Data

The UAV was used to collect field survey data of the vegetation coverage in the
peak growing season (from June to September) from 2019 to 2021 and to select the typical
vegetation community with a uniform vegetation species distribution and growth state as
the sample plot, with a size of 250 m × 250 m. The center of the sample plots coincided
with the center of the MODIS data pixels. The field sample plots were arranged in the
form of the Chinese character “井 ” to ensure uniform sampling in the Junggar Basin. The
longitude, latitude, elevation, grassland type, and dominant species of each plot were
recorded. According to the Map of Chinese Grassland Resources (Natural Resources
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Comprehensive Survey Commission, Chinese Academy of Sciences) [46], nine grassland
types were identified in the study area, and the grassland types with a ratio of more than
1% to the study area were all assigned plots. For details, refer to Table 1. The longitude,
latitude, altitude, grassland type, and dominant species of each sample plot were recorded.
From 2019 to 2021, a total of 171 sample plots were included (66 in 2019, 28 in 2020, and
77 in 2021). The UAV used in this study was the DJI Mavic 2 Zoom-Drone Quadcopter
UAV with an Optical Zoom Camera. The positioning accuracy of this UAV is ±1.5 m
horizontally and ±0.5 m vertically. The 1/2.3′′ CMOS Sensor has an effective pixel size
of 12 million and a maximum photograph size of 4000 × 3000. When carrying out aerial
field photography, the time period of 11:00–16:00 with clear weather and sufficient light
was selected. Before each UAV flight, the white balance of the UAV camera was adjusted to
ensure that high-quality UAV photographs were obtained. The flight speed of the UAV was
6 m/s (3 m/s when there was wind). The flight path of the UAV used the FragMAP aerial
photography system [47]. The flight altitude was approximately 20 m, and 16 photographs
were taken in each sample plot (250 m × 250 m).

Table 1. Main grassland types, vegetation types, and number of sample plots in desert area of Junggar
Basin, Xinjiang.

Type Percentage of the
Study Area

Average
Altitude (m)

Number of
Sample Plots Main Vegetation Types Average Vegetation

Height (m)

Non-grassland (bare land or
sparse vegetation) 13.65% 210 41 Haloxylon ammodendron, etc. 0.63

Lowland meadow 1.24% 335 4 Achnatherum splendens, Phragmites
australis, Seriphidium borotalense, etc. 0.81

Temperate steppe desert 8.30% 913 12 Calligonum mongolicum, Stipa glareosa,
Anabasis salsa, etc. 0.11

Temperate desert steppe 1.58% 1122 5 Festuca ovina, Seriphidium kaschgaricum,
Anabasis brevifolia, etc. 0.16

Temperate steppe 75.05% 541 109 Haloxylon ammodendron, Tamarix
ramosissima, Kalidium foliatum, etc. 2.06

Total 99.82% 171

2.3. UAV Aerial Photography Data Processing and Data Analysis

The photographs taken by the UAV were processed by Pixel Classifier software [48].
The vegetation coverage of each photograph was extracted using Pixel Classifier software,
and the average vegetation coverage of the 16 photographs was taken as the true vegetation
coverage of the sample plot. Pixel Classifier software divides each pixel in a photograph
into bare land and vegetation by specifying a threshold. According to the enhanced
greening index (EGI), the threshold is adjusted to the optimal threshold, which represents
the vegetation coverage of the photo. The generated vegetation coverage is much better
than that of the traditional five-point sampling method and is very close to the real coverage
of the entire sample plot [48].

2.4. MODIS Data and Processing

The MODIS data were selected from the MODIS daily surface reflectance product
(MOD09GA) of the United States National Aeronautics and Space Administration (NASA)
for the 2000–2021 period and orbital numbers of h23v04 and h24v04. These data can be
downloaded from the LAADS DAAC (https://ladsweb.modaps.eosdis.nasa.gov/search/,
accessed on 18 December 2021). All images were processed according to the following steps:
(1) The MOD09GA and MOD09GQ data were converted to GeoTIFF format and WGS84
geographic projection using the MODIS Reprojection Tool released by NASA, and then the
surface spectral reflectance of bands 1–7 was extracted. (2) GS image fusion was performed
on the MOD09GA and MOD09GQ data in the ENVI software to generate MOD09GA_GQ.
(3) ArcGIS was used to extract the pixel values corresponding to the field measured plots
in the red band, near-infrared band, and blue wave segment data of the new fused product

https://ladsweb.modaps.eosdis.nasa.gov/search/
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MOD09GA_GQ (2019–2021). According to the formula, the NDVI, EVI, SAVI, OSAVI, and
MSAVI were calculated. The calculation formula is shown in Table 2.

Table 2. Vegetation index calculation formula and reference.

Variable Formula References

Normalized Difference Vegetation Index (NDVI) (Nir− R)/(Nir + R) Tucker and Sellers [49]

Enhanced Vegetation Index (EVI) 2.5× (Nir− R)/(Nir + C1R−C2 B + L1) Huete et al. [50]

Soil-Adjusted Vegetation Index (SAVI) ((Nir− R)/(Nir + R + L2))× (1 + L2) Huete [51]

Optimized Soil-Adjusted Vegetation Index (OSAVI) (Nir− R)/(Nir + R + 0.16) Steven [52]

Modified Soil-Adjusted Vegetation Index (MSAVI)
(

2Nir + 1−
√
(2Nir + 1)2 − 8(Nir− R)

)
/2 Qi et al. [53]

Note: R, Nir, and B represent the bidirectional surface reflectance of red, near-infrared, and blue light, respectively;
L1 and L2 are the soil adjustment coefficients (L1 = 1, L2 = 0.5); C1 and C2 (6.0 and 7.5, respectively) are the aerosol
resistance coefficients.

2.5. Environmental Factors and Pretreatment

The v4 Version 1 SRTM digital elevation model (DEM) data from the Geospatial Data
Cloud, download address (http://www.gscloud.cn/home, accessed on 20 December 2021),
were used in this study. The spatial resolution was 90 m, and the format was GeoTIFF. In
total, six data scenes, with track numbers of 53-03, 53-04, 54-03, 54-04, 55-03, and 55-04,
were required for the Junggar Basin. To match the spatial resolution of the MOD09GA_GQ
data, the DEM data were resampled from a spatial resolution of 90 m to one of 250 m, and
ArcGIS software was used to extract the longitude, latitude, aspect, slope, and elevation of
each pixel within the study area.

The meteorological data were from the National Earth System Science Data Center,
National Science & Technology Infrastructure of China (http://www.geodata.cn, accessed
on 5 March 2022), and the product with interpolated monthly data was used to extract
the temperature and precipitation of the grids corresponding to the field survey sample
plots in ArcGIS. Due to the cumulative effect of climatic factors, in addition to the cur-
rent climatic conditions that may affect vegetation growth, previous climatic conditions
also affect vegetation growth [54]. Therefore, in this study, the monthly climatic factors
were extracted several months before the field survey. The linear regression relationships
between the collected field vegetation coverage in the current month and the average tem-
perature and cumulative precipitation in the current month, in the previous month, in the
second-to-last month . . . , and in the fifth-to-last month were obtained. The meteorological
factors in the month with the strongest correlation were selected to establish the vegetation
coverage model.

2.6. Establish and Evaluate the Inversion Model of Vegetation Coverage

The vegetation coverage inversion models included the multivariate parametric regres-
sion model, the SVM regression model, and the back-propagation neural network (BPNN)
regression model. In MATLAB, the data of 171 plots were randomly divided into two parts
at a ratio of 70:30. The extracted training set data were used to establish the multivariate
regression model, the SVM regression model, and the BPNN regression model; the other
test set data were used to verify the accuracy of all models.

2.6.1. Screening of Vegetation Coverage Sensitivity Indicators

We screened the relevant factors for the multivariate regression model, including the
geographical location and topography (longitude, latitude, elevation, slope, aspect), meteo-
rology (average temperature, cumulative precipitation), and vegetation indices (NDVI, EVI,
SAVI, OSAVI, MSAVI). Factors, i.e., vegetation indices and environmental characteristics
with a high correlation with vegetation coverage and passing the F test, were used to
construct the models (including the multivariate regression model, the SVM regression
model, and the BPNN regression model).

http://www.gscloud.cn/home
http://www.geodata.cn
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2.6.2. Establishment of the Vegetation Coverage Inversion Model

(1) The factors that were significantly correlated with vegetation coverage were se-
lected as independent variables, and linear, exponential, and logarithmic regression models
were constructed in SPSS 26 (Equations (1)–(3)):

y = β0 + β1x1 + β2x2 + · · ·+ βixi + ε (1)

y = β0eβ1x1eβ2x2 · · · eβixieε (2)

y = β0 + β1lnx1 + β2lnx2 + · · ·+ βilnxi + ε (3)

where y is the vegetation coverage; x1, x2 · · · , xi are the selected independent vari-
ables; β0, β1, β2 · · · , βI are the parameters representing the model; and ε represents
the error term.

(2) The SVM regression model is a machine learning method commonly used to solve
nonlinear regression estimation problems [55]. The SVM model is not sensitive to the
sample size of the training set. Compared with other machine learning methods, the SVM
model can achieve considerable accuracy with a small training sample size [56]. The factors
with a significant correlation with vegetation coverage were selected as the model input,
and the vegetation coverage extracted from the UAV images was selected as the model
output to establish the SVM model. SVM regression was completed using the “LIBSVM”
package in MATLAB (R2019b).

(3) The BPNN model is a popular neural network that can effectively estimate surface
vegetation variables [57]. Therefore, the BPNN model was selected to compare the perfor-
mance of the methods. In this study, the Levenberg–Marquardt algorithm was selected for
training the model, the input and output of the model were consistent with those of the
SVM model, and the number of nodes in the hidden layer was four. The establishment
and validation of the BPNN model were performed using the neural network toolbox in
MATLAB (R2019b).

2.7. Model Evaluation Indicators

R2 and mean squared error (MSE) were selected as the basis for evaluating the accuracy
of the model. The formulas for R2 and MSE are as follows:

R2 =
SSE
SST

= 1− SSR
SST

(4)

SSR =
n

∑
i=1

( cover i − fcover (i))
2 (5)

SST =
n

∑
i=1

(fcover (i)− cover)2 (6)

MSE =
1
n

n

∑
i=1

(coveri − fcover (i))
2 (7)

where SSR is the sum of squares due to regression, SST is the total sum of squares, coveri
represents the ith field survey vegetation coverage, cover represents the average field
survey vegetation coverage, fcover (i) represents the ith vegetation coverage estimated by
the model and n represents the number of test sets.

2.8. Spatial Distribution and Dynamic Changes in Vegetation Coverage

Using the optimal model and the dataset required by the optimal model, the yearly
maximum vegetation coverage (i.e., July–September coverage) in the study area from
2000 to 2021 was determined using MATLAB software. After averaging these vegetation
coverage datasets, the spatial distribution map of 22 years of average annual maximum
vegetation coverage in the Junggar Basin was obtained.
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The temporal variation in the maximum vegetation coverage from 2000 to 2021 was
analyzed using the slope linear trend model. The model has the characteristics of simplicity
and stability [58]. The model can simulate the change in vegetation coverage of each pixel
to extrapolate the change in the entire study area [59]. To further analyze the importance of
changes in the vegetation cover over time, we introduced the F-test [60]. By superimposing
the slope and F test datasets, the changes in the vegetation cover for the entire study area
were divided into four categories: significant increase (slope > 0%/yr and F > 4.60), increase
(slope > 0%/yr and f < 4.60), decrease (slope < 0%/yr and f < 4.60), and significant decrease
(slope < 0%/yr and F > 4.60) [61]. The slope equation is as follows:

slope =
n×∑n

i=1 i× cover i −∑n
i=1 i ∑n

i=1 cover i

n×∑n
i=1 i2 − (∑n

i=1 i)2 (8)

where n is the total number of years (22); i is a number from 1–22, representing the year
from 2000 to 2021; and coveri is the annual maximum vegetation coverage stimulated by
the selected optimal model in year i:

F =
R2(m− 2)

1− R2 (9)

r =
∑m

i=1
(
i− i

)
( cover i − cover)√

∑m
i=1 (i− i )2 ∑m

i=1( cover i − cover)2
(10)

where m is equal to the total number of years (22); R2 is the square of the correlation
coefficient (r) between the coverage in each pixel and the time series; i is the average of the
numbers 1–22, which is equal to 11.5; cover i is the annual maximum vegetation coverage
simulated by the optimal model in year i; and cover is the annual average maximum
vegetation coverage from 2000 to 2021.

3. Results
3.1. Spatial Distribution of Vegetation Coverage in Sample Plots Obtained from UAV Aerial
Photography in 2019–2021

From 2019 to 2021, a total of 171 field sample plots were surveyed by UAVs. The
spatial distribution and vegetation coverage of each sample plot are shown in Figure 2.
The vegetation coverage of the sample plots was between 0% and 45%, and the average
vegetation coverage of the sample plots was approximately 4%. Areas with a vegetation
coverage of 0–5%, 5–10%, and >10% accounted for 80%, 10%, and 10% of the study area,
respectively. The overall trend of vegetation coverage in the sample plots gradually de-
creased from north to south and from west to east. The sample plots collected near the
Altay Mountains in the northwest and northeast of the Junggar Basin showed a relatively
high vegetation coverage (>5%).

3.2. Correlations of Vegetation Coverage before and after GS Image Fusion

The MOD09GA_GQ data generated by fusing the 2019–2021 MOD09GA and MOD09GQ
data of the study area using the GS sharpening method were used to calculate five veg-
etation indexes, including the NDVI, EVI, SAVI, OSAVI, and MSAVI, for the 171 sample
plots, and the relationship of each vegetation index with the corresponding vegetation
coverage obtained by the UAV aerial photography was analyzed. The results show that the
correlations between the five vegetation indices obtained from the MOD09GA_GQ data
and the vegetation coverage of the sample plots were all higher than those obtained directly
from the MOD09GA data (Table 3), and the correlation between the MOD09GA_GQ EVI
and the vegetation coverage was the highest (r = 0.72, p < 0.001), followed by SAVI (r = 0.71,
p < 0.001), OSAVI (r = 0.70, p < 0.001), MSAVI (r = 0.70, p < 0.001), and NDVI (r = 0.69,
p < 0.001), indicating that the MOD09GA_GQ EVI generated by the GS sharpening
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method is the optimal vegetation index for the inversion of the vegetation coverage of the
Junggar Basin.

Figure 2. Spatial distribution of vegetation coverage in the sample plots taken by UAVs from
2019–2021 (n = 171).

Table 3. Linear regression analysis of vegetation coverage based on the vegetation index (n = 171).

Vegetation Index Remote Sensing Data Formula r F

NDVI
MOD09GA y = 49.826x − 1.559 0.62 104.97 **

MOD09GA_GQ y = 52.535x − 2.046 0.69 155.21 **

EVI
MOD09GA y = 68.290x − 1.709 0.65 124.82 **

MOD09GA_GQ y = 90.716x − 3.743 0.72 186.51 **

SAVI
MOD09GA y = 67.653x − 1.361 0.61 100.76 **

MOD09GA_GQ y = 85.472x − 3.143 0.71 166.80 **

MSAVI
MOD09GA y = 71.027x − 1.057 0.61 98.38 **

MOD09GA_GQ y = 92.058x − 2.974 0.70 165.11 **

OSAVI
MOD09GA y = 67.442x − 1.525 0.62 105.22 **

MOD09GA_GQ y = 77.922x − 2.656 0.70 164.778 **
Note: ** represents p < 0.001.

3.3. Results of Screening of Vegetation Coverage Sensitivity Indicators

In terms of the geographical location and topographic factors, the vegetation coverage
showed the highest correlation with the longitude (r = −0.17, p < 0.05) and latitude of the
observation site (r = 0.36, p < 0.001). The elevation, slope, and aspect were not significantly
correlated with the vegetation coverage. In terms of the climatic factors, because vegetation
growth often lags behind the variation in climatic factors [62], climate changes in the
month of the field survey were not the factors with the strongest correlation with the
vegetation coverage. An analysis of the climatic factors and vegetation coverage indicated
that the correlation between the vegetation coverage of the current month and the average
temperature of the previous month was the strongest (r = −0.27), reaching an extremely
significant level (p < 0.001) (Table 4). The correlations between the vegetation coverage and
the precipitation in the current month, previous month, and second-to-last month reached
an extremely significant level, but the correlation with the precipitation in the previous
month was the highest (r = 0.33, p < 0.001).

Therefore, the indicators that were most closely correlated were the MOD09GA_GQ
EVI (r = 0.72, p < 0.001) (Table 3), longitude (r = −0.17, p < 0.05) (Table 4), latitude (r = 0.36,
p < 0.001) (Table 4), cumulative precipitation of the current and previous months (r = 0.33,
p < 0.001) (Table 4), and the average temperature of the current and previous months
(Table 4). Therefore, five factors, i.e., the EVI, longitude, latitude, average temperature
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of the current and previous months, and cumulative precipitation of the current and
previous months, were used as sensitive indicators of the vegetation coverage to construct
an inversion model of vegetation cover in the Junggar Basin.

Table 4. Linear regression analysis of vegetation coverage based on a single factor (n = 171).

Main Factor Independent Variable Formula r F

Geographic location
and topography

Longitude (◦) y = −0.58x + 54.61 −0.17 4.83 *
Latitude (◦) y = 2.996x − 132.09 0.36 25.44 **
Elevation (m) y = 0.003x + 2.642 0.12 2.64
Slope (◦) y = −0.531x + 4.457 −0.05 0.5
Aspect (◦) y = 0.001x + 3.928 0.01 0.03

Meteorology

Average temperature of the current month (◦C) y = −0.356x + 13.899 −0.21 8.179 *
Average temperature of the current and previous months (◦C) y = −0.519x + 17.542 −0.27 12.778 **
Average temperature of the current and previous two months (◦C) y = −0.468x + 15.26 −0.24 10.143 *
Average temperature of the current and previous three months (◦C) y = −0.464x + 13.925 −0.24 10.619 *
Average temperature of the current and previous four months (◦C) y = −0.426x + 11.442 −0.23 9.056 *
Average temperature of the current and previous five months (◦C) y = −0.335x + 8.344 −0.18 5.622 *

Cumulative precipitation for the current month (mm) y = 0.244x − 0.407 0.31 17.62 **
Cumulative precipitation for the current and previous months (mm) y = 0.169x − 2.624 0.33 21.304 **
Cumulative precipitation for the current and previous two months (mm) y = 0.134x − 3.487 0.29 14.965 **
Cumulative precipitation for the current and previous three months (mm) y = 0.086x − 1.745 0.24 10.256 *
Cumulative precipitation for the current and previous four months (mm) y = 0.082 − 2.405 0.26 12.226 *
Cumulative precipitation for the current and previous five months (mm) y = 0.074x − 2.594 0.26 12.239 *

Note: * represents p < 0.05, ** represents p < 0.001. The current month represents the month in which the UAV
aerial photographs were taken.

3.4. Evaluation of the Multivariate Parametric Regression Models

Table 5 assesses the accuracy of the multivariate parametric regression models based
on the EVI, longitude, latitude, average temperature of the current and previous months,
and the cumulative precipitation of the current and previous months. Among the three
multivariate regression models, the multivariate linear model performed the best (R2 = 0.64,
MSE = 9.11%). The power model (R2 = 0.51, MSE = 11.15%) showed a good performance.
The logarithmic model (R2 = 0.47, MSE = 17.45%) performed the worst (Table 5). Therefore,
the multivariate linear model can simulate the vegetation coverage in the Junggar Basin
well, and its formula is shown in Table 6.

Table 5. Evaluation of multivariate parametric regression models for vegetation coverage.

Model
Training Dataset (n = 120) Test Dataset (n = 51)

r R2 MSE (%) r R2 MSE (%)

Linear 0.79 0.62 14.64 0.80 0.64 9.11
Logarithmic 0.66 0.43 19.269 0.68 0.47 17.45

Power 0.78 0.61 13.99 0.71 0.51 11.15

Table 6. Parametric regression models based on multiple factors.

Formula R2

Linear y = −97.230 − 0.050X + 2.013Y + 97.891EVI + 0.141P + 0.057T 0.62
Logarithmic y = −285.546 − 29.123ln(X) + 113.239ln(Y) + 6.581ln(EVI) − 0.792ln(P) + 1.990ln(T) 0.43
Power y = 0.341 × (X−8.141) × (Y11.629) × (EVI1.485) × (P−0.533) × (T−0.078) 0.61

Note: X, Y, P, and T are the longitude, latitude, cumulative precipitation of the current and previous months, and
average temperature of the current and previous months, respectively.

3.5. Accuracy Evaluation of the Multivariate Regression Models Based on the SVM and BPNN

Table 6 lists the accuracy evaluation results of the SVM and BPNN regression models.
The SVM regression model performed better (R2 = 0.80, MSE = 8.35%) (Figure 3b). The
BPNN regression model found R2 = 0.77 and MSE = 7.52% (Figure 3d). A comparison of
Tables 5 and 7 reveals that the SVM and BPNN regression models were significantly better
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than the linear nonlinear regression model based on multiple factors in the inversion of
the low vegetation coverage in the desert area of the Junggar Basin. Therefore, the SVM
regression model best simulated the vegetation coverage in the Junggar Basin. The details
of the SVM model are given in Table 8.

Figure 3. Relationships between the estimated and measured vegetation coverages in the training
set (a) and test set (b) by the SVM regression model and in the training set (c) and test set (d) by the
BPNN regression model.

Table 7. Evaluation of vegetation coverage using the SVM and BPNN regression models.

Model
Training Dataset (n = 120) Test Dataset (n = 51)

r R2 MSE (%) r R2 MSE (%)

SVM regression model 0.83 0.69 16.16 0.89 0.80 8.35
BPNN regression model 0.81 0.65 16.05 0.88 0.77 7.52

3.6. Comparative Analysis of the Multivariate Parametric Regression Models and Machine
Learning Regression Models

This study established multivariate parametric regression models (linear, logarithmic,
and exponential), an SVM regression model, and a BPNN regression model based on
UAV field vegetation coverage data, geographic location, terrain, meteorological data,
and vegetation indices. Large differences were observed in the stability and accuracy of
the models. In general, compared with the multifactor parametric model, the machine
learning models (the SVM regression model and the BPNN regression model) showed
better accuracy and stability values, and the R2 value increased by 0.13–0.33. Although the
machine learning model was more accurate than the parametric regression model in the
inversion of the vegetation coverage, the machine learning regression models have some
shortcomings. For example, the BPNN model often has an overfitting problem. For the
SVM model, the choice of the kernel function affects the analysis results, but choosing the
optimal kernel function is difficult in practice. At present, the most suitable kernel function
can only be selected based on previous experience and personal debugging in practice. In
addition, because the SVM model depends on the support vector, not all training samples
can be used (as a support vector). Therefore, as the number of samples increases and deep
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learning technology matures, other algorithmic models can be explored to more accurately
estimate the vegetation coverage.

Table 8. Structure of the SVM regression model.

Parameter Value

SVM type Epsilon-SVR
Kernel function type Radial basis function (RBF)

Kernel coefficient gamma for RBF 0.0078
Penalty factor C of the error term 128

Epsilon 0.1
Tolerance for stopping criterion 1 × 10−4

3.7. Analysis of the Spatial Distribution and Trend of Vegetation Coverage

In this study, the longitude, latitude, average temperature, cumulative precipitation,
and EVI were selected, and the SVM regression method (best model) was used for the
inversion of the yearly maximum vegetation coverage (i.e., the maximum coverage in
July–September) in the study area for 22 years (2000–2021) using MATLAB software.
Figure 4 shows the spatial distribution of the average yearly maximum vegetation coverage
over the 22 years. The vegetation coverage in the Junggar Basin was between 0 and 67.44%,
with an average coverage of 7.36%. The vegetation coverage in the northern and western
regions of the Junggar Basin was relatively high, while that in the center of the basin was
relatively low. Overall, the spatial distribution of the average yearly maximum vegetation
coverage in the basin gradually decreased from the north and south sides to the center and
from west to east.

Figure 4. Spatial distribution of the average yearly maximum vegetation coverage in the Junggar
Basin from 2000 to 2021.

In the past 22 years, the change trend of vegetation coverage in the desert of the
Junggar Basin has mainly been concentrated around −0.5–0.5%/yr (Figure 5b), and the
regions with a change trend above 0.5%/yr are distributed near the Tianshan and Altay
Mountains. As shown in Figure 5c, the annual maximum vegetation coverage in 44.59%
of the desert area in the Junggar Basin has increased, and the significantly increased area
accounts for 10.00% of the desert area. Only 43.85% of the desert area of the basin has shown
a decrease in vegetation coverage, of which 1.55% was significantly reduced (Figure 5c).
These areas essentially coincide with the distribution of the areas of low vegetation coverage
(Figure 4). Overall, from 2000 to 2021, the vegetation coverage in the study area increased.
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Figure 5. The trend of the yearly maximum vegetation coverage (a), spatial distribution of the change
trend (b), and the corresponding classification results (c) in the Junggar Basin from 2001 to 2021.

From 2000 to 2021, the variation of average temperature and accumulated precipitation
in the desert area of Junggar Basin was little. The average temperature in the desert
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area of Junggar Basin over 22 years showed an increasing trend, while the accumulated
precipitation showed a decreasing trend. The regions where the average temperature
showed an increasing trend were mainly distributed in the middle and west of the study
area, and the average temperature in the east of the study area showed a decreasing
trend (Figure 6a). The change in cumulative precipitation in the study area was quite
different from the change in average temperature (Figure 6b). The cumulative precipitation
in the west, east, south, and north of the study area near the Altay Mountains showed
an increasing trend, while the cumulative precipitation in the middle and south of the
study area near the Tianshan Mountains showed a decreasing trend. Figure 5c also showed
that the areas with increasing vegetation coverage in the study area are mainly distributed
in the east, west, and near the Tianshan Mountains and Altay Mountains in the north and
south. Simultaneously, the cumulative precipitation in these areas showed an increasing
trend, while the average temperature showed a decreasing trend. This is consistent with the
results in Table 4 and Figure 6. The vegetation coverage in the desert area of Junggar Basin
was positively correlated with the accumulated precipitation and negatively correlated with
the average temperature. For the impact on the desert vegetation growth, the accumulated
precipitation had higher influence than the average temperature (r = 0.33, F = 21.304 **,
r = −0.27, F = 12.778 **, respectively).

Figure 6. Variation trend of annual mean temperature (a) and cumulative precipitation (b) in Junggar
Basin Desert Area from 2000 to 2021.
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4. Discussion
4.1. Comparison of the Applicability of the Five Vegetation Indices in Modeling the
Vegetation Coverage

The vegetation indices that are commonly used to study the vegetation coverage
include the NDVI, EVI, SAVI, OSAVI, and MSAVI [63]. The NDVI is currently the most
widely used vegetation index, and it has been used in the inversion of vegetation dynamics
in many studies [42]. To eliminate the influence of the soil background, the SAVI and
MSAVI were improved from the NDVI by Qi et al. [53] and Huete [51], respectively, but
these indices are not superior to the NDVI in terms of quantifying the vegetation coverage
in arid environments [64,65]. The EVI is more suitable for areas with a high biomass than
the NDVI [66]. We found that the EVI performed better than the NDVI in the arid region,
similar to the results of Evrendilek and Gulbeyaz [18], who proposed that the EVI could
better reflect the vegetation coverage in the arid and semiarid regions of Asia. In desert
areas, the NDVI is more susceptible to the spectral effects of the soil texture, moisture,
atmosphere, and other factors compared to the EVI [67]. Therefore, when constructing the
vegetation coverage model in the desert area of the Junggar Basin, the EVI is the optimal
vegetation index.

4.2. Advantages, Disadvantages, and Future Prospects of Image Fusion

In this study, MOD09GA and MOD09GQ data were fused using the GS sharpening
method, and the results show that the spatial mismatch between the measured data and
the remote sensing data was effectively solved by image fusion [68]. In contrast to this
study, most image fusion studies in the field of ecology have focused on the fusion of
high-precision remote sensing images. Quan et al. [69] fused GF-3 and Sentinel-2A im-
ages to obtain products with a spatial resolution of 10 m for land classification, and the
results indicated that image fusion has the potential to improve the accuracy of land cover
classification by remote sensing data. Dao et al. [70] used the ESTARFM method to fuse
Landsat and MODIS data to generate data with a spatial resolution of 30 m to study flood
inundation, and they found that the image fusion technique was useful for the observation
of flood inundation in vegetated areas. To obtain remote sensing data with high spatial
and temporal resolutions, remote sensing data from two different remote sensing image
sources, such as MODIS and Landsat, and GF-3 and Sentinel-2A, are usually required;
however, each remote sensing image source has its own specifications, such as the orbital
altitude, band limits, and relative spectral response of the sensor, which can introduce new
errors in the fusion process [71,72]. The MOD09GA and MOD09GQ data used in this study
were both from the MODIS sensor onboard the Terra satellite; therefore, errors caused
by the sensors were avoided. The accuracy of the vegetation index estimation generally
tends to decrease as the pixel size of the remote sensing data increases [68], and fusing the
remote sensing data from two remote sensing sources is consequently still necessary to
improve the accuracy. Therefore, in future studies, we will focus on producing large-area,
high-precision, and full-band remote sensing products with reduced sensor errors using
image fusion.

4.3. Factors Affecting the Accuracy of the Optimal Vegetation Coverage Inversion Model

Compared with the other models in this study, the SVM regression model showed
higher stability and a better prediction ability, but problems remain due to the limitations
of various factors.

First, due to the sparse vegetation in the Junggar Basin, the bare soil background
could have caused interference with the spectral characteristics of the vegetation [73]. In
addition, moderate-resolution (250 m) remote sensing images were used in this study, and
the corresponding spectral bands extracted from the remote sensing images had a low
accuracy [74]; therefore, the calculated vegetation indices could have underestimated the
actual vegetation coverage of the study area, resulting in inaccurate inversion by the model.
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Even if the sample plot is located in an area with uniform vegetation during field sampling,
these errors will still affect the accuracy of the model.

The choice of factors for establishing the model will also affect the prediction accuracy
of the model [23,75]. Yang et al. [22] found that the vegetation coverage was correlated
with biomass and height. However, in the desert area of the Junggar Basin, vegetation is
extremely scarce, and the average height of the vegetation in some areas is above 5 m, which
makes it difficult to measure. In the desert area of the basin, obtaining aboveground biomass
by logging is forbidden, and the data obtained by other means are inaccurate [76]. Therefore,
in this study, factors (such as the geographical location, topography, meteorological data,
and vegetation index) that are easy to obtain and do not affect the ecological environment
were used to build the model.

4.4. Trend of Vegetation Coverage and Possible Causes

Climate change is an important factor that can lead to changes in the vegetation
coverage in arid areas. Liu et al. [2] showed that changes in the vegetation coverage in arid
areas are affected by the combined or synergistic effects of the comprehensive or synergistic
effects of climate conditions such as the temperature, precipitation, and humidity. This
study analyzed the relationships of the vegetation coverage with the temperature and
precipitation in 2019–2021 and found that the vegetation coverage in the Junggar Basin
was positively correlated with precipitation and negatively correlated with temperature.
In the past few decades, Xinjiang has experienced simultaneous increases in temperature
and precipitation [77]. The vegetation coverage in the desert area of the Junggar Basin in
Xinjiang has obviously increased, which shows that the positive impact of precipitation
on the vegetation coverage in the desert area of Junggar Basin is higher than the negative
impact of temperature, which is consistent with the research of Xue et al. [78]

Of course, human activities can also lead to changes in the vegetation coverage. Hu-
man activities can help restore vegetation to previous ecological levels [79]. Zhang et al. [80]
demonstrated that most of the increase in grassland productivity in Xinjiang from 2000 to
2014 came from human intervention. The increase in the vegetation coverage in the desert
area of the Junggar Basin may be related to the grassland protection projects launched in re-
cent years [81]. We believe that vegetation protection projects in the desert area have played
an important role in increasing the coverage of desert vegetation. We should continue to
maintain corresponding policies and promote the development of desert vegetation.

5. Conclusions

This study used the UAV-measured vegetation coverage data of the Junggar Basin
from 2019 to 2021, downloaded and preprocessed the MODIS VI product, analyzed the
influencing factors of the vegetation coverage in the Junggar Basin, constructed three types
of inversion models for vegetation coverage, and evaluated the accuracy and stability of
the models. The following conclusions can be drawn.

(1) The daily full-band product MOD09GA_GQ with a spatial resolution of 250 m
was obtained by processing MOD09GA and MOD09GQ data through GS fusion, which
improved the correlation between the vegetation coverage extracted from the UAV images
and the vegetation indices obtained from the remote sensing data. This result indicates that
image fusion can solve the problem of spatial matching between remote sensing data and
UAV images.

(2) Five vegetation indices, the NDVI, EVI, SAVI, OSAVI, and MSAVI, were highly
significantly correlated with the vegetation coverage (p < 0.001). The EVI had the strongest
correlation (r = 0.72, p < 0.001). Considering only the geographic and topographic vari-
ables, the vegetation coverage had the strongest correlation with the longitude (r = −0.17,
p < 0.05) and latitude (r = 0.36, p < 0.001); based on the meteorological factors, the vegetation
coverage had the strongest correlation with the cumulative precipitation in the current
and previous months (r = 0.33, p < 0.001) and the average temperature in the current and
previous months (r = −0.27, p < 0.001).
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(3) Based on the EVI, longitude, latitude, cumulative precipitation of the current and
previous months, and the average temperature of the current and previous months, we
built a multiple factor linear regression model (R2 = 0.64, MSE = 9.11%), an SVM regression
model (R2 = 0.80, MSE = 8.35%), and a BPNN regression model (R2 = 0.77, MSE = 7.52%),
and they all performed well when inverting the vegetation coverage of the Junggar Basin.
The SVM regression model had the highest accuracy.

(4) From 2000 to 2021, the average yearly maximum vegetation coverage in the desert
area of the Junggar Basin was 7.36%, and the vegetation coverage in the Junggar Basin
gradually decreased from the north and south sides to the center and from west to east. In
the past 22 years, the vegetation coverage in 54.59% of the Junggar Basin increased.
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