
Citation: Zhang, S.; An, W.; Zhang,

Y.; Cui, L.; Xie, C. Wetlands

Classification Using

Quad-Polarimetric Synthetic

Aperture Radar through

Convolutional Neural Networks

Based on Polarimetric Features.

Remote Sens. 2022, 14, 5133. https://

doi.org/10.3390/rs14205133

Academic Editor: Sang-Eun Park

Received: 26 September 2022

Accepted: 5 October 2022

Published: 14 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Wetlands Classification Using Quad-Polarimetric Synthetic
Aperture Radar through Convolutional Neural Networks Based
on Polarimetric Features
Shuaiying Zhang 1,2,3, Wentao An 1,2, Yue Zhang 4, Lizhen Cui 5 and Chunhua Xie 1,2,*

1 National Satellite Ocean Application Service, Beijing 100081, China
2 Key Laboratory of Space Ocean Remote Sensing and Applications, Ministry of Natural Resources,

Beijing 100081, China
3 National Marine Environmental Forecasting Center, Beijing 100081, China
4 College of Oceanography and Space Informatics, China University of Petroluem (East China),

Qingdao 266580, China
5 College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: chxie@mail.nsoas.org.cn; Tel.:+86-1391-05909-289

Abstract: Wetlands are the “kidneys” of the earth and are crucial to the ecological environment. In
this study, we utilized GF-3 quad-polarimetric synthetic aperture radar (QP) images to classify the
ground objects (nearshore water, seawater, spartina alterniflora, tamarix, reed, tidal flat, and suaeda
salsa) in the Yellow River Delta through convolutional neural networks (CNNs) based on polarimetric
features. In this case, four schemes were proposed based on the extracted polarimetric features
from the polarization coherency matrix and reflection symmetry decomposition (RSD). Through
the well-known CNNs: AlexNet and VGG16 as backbone networks to classify GF-3 QP images.
After testing and analysis, 21 total polarimetric features from RSD and the polarization coherency
matrix for QP image classification contributed to the highest overall accuracy (OA) of 96.54% and
94.93% on AlexNet and VGG16, respectively. The performance of the polarization coherency matrix
and polarimetric power features was similar but better than just using three main diagonals of the
polarization coherency matrix. We also conducted noise test experiments. The results indicated
that OAs and kappa coefficients decreased in varying degrees after we added 1 to 3 channels of
Gaussian random noise, which proved that the polarimetric features are helpful for classification.
Thus, higher OAs and kappa coefficients can be acquired when more informative polarimetric features
are input CNNs. In addition, the performance of RSD was slightly better than obtained using the
polarimetric coherence matrix. Therefore, RSD can help improve the accuracy of polarimetric SAR
image classification of wetland objects using CNNs.

Keywords: polarization coherency matrix; reflection symmetry decomposition (RSD); polarimetric
features; four schemes; noise test; wetland classification; GF-3; quad-polarimetric synthetic aperture
radar (QP); convolutional neural network (CNN)

1. Introduction

Several types of ground objects are distributed in wetlands, making their classifica-
tion challenging [1]. Understanding the distribution of ground objects in wetlands can
help prevent alien species from encroaching on the living environment of local species
that may otherwise cause an imbalance in the ecological environment. A good survey
of the distribution of ground objects in wetland areas can provide technical support for
wetland protection. In recent years, a large number of studies have focused on the classi-
fication of wetlands. In 2008, Touzi et al. [2] proposed the Touzi decomposition method
for extracting polarization information from synthetic aperture radar (SAR) images and
applied the extracted polarimetric features to classify wetland areas which provided a new
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method of wetland classification. However, this decomposition method still has space to
advance. Chen et al. [3] investigated the influence of different polarimetric parameters
and an object-based approach on the classification results for various land use or land
cover types in coastal wetlands in Yancheng using quad-polarimetric ALOS PALSAR data.
The results showed that utilizing polarimetric parameters such as Shannon entropy can
notably improve the classification results. It also demonstrated that different polarimetric
parameters and object-based methods could notably improve the classification accuracy
of coastal wetland land cover using QP data. It shows that these polarimetric parame-
ters are helpful for wetland classification. Yang et al. [4] fused GF-1 wide format optical
image and RadarSat-2 SAR image, then used a support vector machine (SVM) method
for supervised classification. The results indicated that the accuracy of the fused image
was higher than that of the single. Moreover, using the SVM method of optical and SAR
image fusion could obtain more ground feature information and thus improve performance.
He et al. [5] proposed an efficient generative adversarial network: ShuffleGAN, which uses
Jilin-1 satellite data to classify wetlands. ShuffleGAN is composed of two neural networks
(i.e., generator and discriminator), which behave as adversaries in the training phase, and
ShuffleNet units were added in both generator and discriminator with a speed-accuracy
tradeoff. Compared with the existing generative adversarial network (GAN) algorithm,
the final overall accuracy of ShuffleGAN is higher by 2% and is effective for analyzing
land cover.

Apart from the above research, the following works are worth mentioning. Liu et al. [6]
used C-band sentinel-1 and L-band ALOS-2 PALSAR data to determine the distribution
of coastal wetlands in the Yellow River Delta. Using three classical machine learning
algorithms, namely naive Bayes (NB), random forest (RF), and multilayer perceptron (MLP),
they proposed an algorithm based on SAR coherence, backscatter intensity, and optical
image classification. The OA was 98.3%. This method is superior to a single data source,
indicating that using more satellite data can improve the classification accuracy of machine
learning algorithms. Gao et al. [7] combined hyperspectral and multispectral images based
on a CNN method and designed a spatial-spectral vision transformer (SSVIT) to extract
sequence relations from the combined images. This is also a case of using multiple satellite
data to classify wetland ground objects. In 2021, Gao [8] et al. proposed a depthwise feature
interaction network to classify the multispectral images of the Yellow River Delta region.
A depthwise cross-attention module was designed to extract self-correlation and cross-
correlation from multisource feature pairs. Thus, meaningful complementary information
is emphasized for classification. Chen et al. [9] used an object-oriented method to classify
polarimetric synthetic aperture radar (PolSAR) images of coastal wetlands based on the
scattering characteristics of polarization decomposition and finally achieved an overall
accuracy of 87.29%. However, this method was ineffective for separating reed from Spartina
alterniflora and could be improved for more detailed classification. Delancey et al. [10]
applied a deep CNN and a shallow CNN to classify large-area wetlands and compared
the effectiveness of the two CNNs. The experimental results indicated that a deep CNN
could extract more informative features of ground objects and be useful for complex land
use classification. However, the depth neural network is not suitable for all wetland
classification occasions, and it also needs to consider satellite spatial resolution, data type,
surface features, and other factors to determine the depth of the network. Banks et al. [11]
classified wetlands using an RF algorithm using images combined with SAR and digital
elevation model (DEM) data with different resolutions. The results indicated that PolSAR
data are reliable for wetland classification. From investigation, deep learning methods have
a wide application in wetland classification areas.

A PolSAR transmits and receives electromagnetic waves through different polarization
modes and multiple channels, forming a complete polarization basis. Thus, the polarization
scattering matrix and scattering features can be obtained. A PolSAR is used for active
remote sensing and observing targets by actively transmitting electromagnetic waves to
target surfaces; the PolSAR then receives scattered information reflected from targets.
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Moreover, it can capture all-day and all-weather high-resolution images. By using PolSAR
images from the GF-3 satellite, several polarization features of targets can be acquired
through polarization decomposition. The back-scattered information of different ground
objects is different. We incorporated this principle to classify PolSAR images through
convolutional neural networks (CNNs) in this study.

In addition, CNNs are highly popular in areas of computer vision and are used in
domains such as region of interest (ROI) [12–15], synthetic aperture sonar (SAS) image
classification [16–19], visual quality assessment [20], mammogram classification [21], brain
tumor classification [22], and PolSAR image classification [23–27] et al. Especially in the
field of PolSAR, in recent years, many new CNN frameworks were proposed by researchers.
These CNNs are superior to the existing methods either in accuracy or efficiency. For
example, Wang et al. [23] proposed a method named vision transformer (ViT) for Pol-
SAR classification. The ViT can extract features from the global range of images based
on a self-attention block which is suitable for PolSAR image classification at different
resolutions. Dong et al. [24] firstly explored the application of neural architecture search
(NAS) in the PolSAR area and proposed a PolSAR-tailored differentiable architecture search
(DARTS) method to adapt NAS to the PolSAR classification. The architecture parameters
can be optimized with high efficiency by a stochastic gradient descent (SGD) method
rather than randomly setting. Dong et al. [25] introduced the state-of-the-art method in
natural language processing, i.e., transformer into PolSAR image classification for the
first time to tackle the problem of the bottleneck that may be induced by their inductive
biases. This is a meaningful work that provided new thoughts in this underexploited
field. Nie et al. [26] proposed a deep reinforcement learning (RL)-based PolSAR image
classification framework. Xie et al. [27] proposed a novel fully convolutional network (FCN)
model by adopting a complex-valued domain stacked-dilated convolution (CV-SDFCN).
The proposed method adopts the FCN model combined with polarimetric characteristics
for PolSAR image classification.

Conventionally, the physical scattering features [28] and texture information [29] of
SAR are broadly adopted. Some SAR classifications at the pixel level are enough in low and
medium spatial resolution. However, for target recognition and classification, reflecting the
texture features of targets at the pixel level is not sufficient. Deep CNNs can effectively ex-
tract not only polarimetric features but also spatial features from PolSAR images which can
comprehensively classify ground object [30]. A few traditional classification methods, such
as the gray-level co-occurrence matrix [31] and four component decomposition [32], can be
used to classify PolSAR images; however, these methods could not extract all information
from the data. With the development of computer hardware, several excellent neural
networks have been proposed such as SVM, random forest (RF) [33], deep belief network
(DBN) [34], stack autoencoder (SAE) [35], and deep CNN [36,37]. Thus, the efficiency and
accuracy of data recognition and classification tasks have been improved considerably.
With the help of deep learning, the terrain surface classification using PolSAR images is a
direction of SAR. Several studies have applied these algorithms to the applications such as
classification [38], segmentation [39], and object detection [40] of SAR images [41–44] and
achieved desirable results.

Early research on neural networks primarily focused on the classification of SAR
images using the SAE algorithm and its variants [45–48]. Instead of simply applying
an SAE, Geng et al. [45] proposed a deep convolution autoencoder (DCAE) to extract
features automatically. The first layer of the DECA is the manually designed convolution
layer, wherein the filter is predefined. The second layer performs scale transformation
and integrates relevant neighborhood pixels to reduce speckles. After the two layers,
a trained SAE model was used to extract more abstract features. In high-resolution unipolar
TerraSAR-X images. Based on the classification of SAR using DCAE, Geng et al. [46]
proposed a deep supervised contraction neural network (DSCNN) with a histogram of a
directional gradient descriptor. In addition, a supervised penalty was designed to capture
the information between features and tags, and a contraction constraint was incorporated
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to enhance local invariance. Compared with other methods, DSCNN can be used to classify
images with higher accuracy. Zhang et al. [47] applied a sparse SAE to PolSAR image
classification by considering local spatial information. Hou et al. [48] proposed a method
that involved combining superpixels for PolSAR image classification. Multiple layers of an
SAE are trained pixel by pixel. Superpixels are formed with a pseudocolor image based
on Pauli decomposition. In the last step of k-Nearest neighbor superpixel clustering, the
output of the SAE is used as a feature.

In addition to using the SAE algorithm, some scholars also have realized the classifica-
tion of PolSAR images using CNNs [49–52]. Zhao et al. [49] proposed a discriminant DBN
for SAR image classification. It extracts discriminant features in an unsupervised manner by
combining ensemble learning with the DBN. In addition, most of the current deep learning
methods use the features of polarization information and spatial information of PolSAR
images. Gao et al. [50] proposed a two-branch CNN to achieve the feature classification of
two kinds of holes. This method involves two types of feature extraction: the extraction of
polarization features from a six-channel real matrix and the extraction of spatial features
through Pauli decomposition. Next, two parallel and fully connected layers combine the
extracted features and input them into a softmax layer for classification. Wang et al. [51]
proposed a CNN named full convolution network that integrates sparse and low-rank
subspace representation for PolSAR images. Qin et al. [52] applied an enhanced adaptive
restricted Boltzmann machine for PolSAR image classification.

The polarization coherency matrix (T) contains complete information regarding the po-
larization scattering of the targets. Since the back-scattering coefficients of different targets
are different, studies have used three diagonal elements and correlation coefficients of non-
diagonal elements of the T matrix to classify PolSAR images with high accuracy [53–56].
Instead of using the information in the T matrix for classification, a polarization covariance
matrix also be used. For example, Zhou et al. [53] first extracted a six-channels covari-
ance matrix and then inputted it into a trainable CNN for PolSAR image classification.
Xie et al. [55] used a stacked sparse auto-encoder for multi-layer PolSAR feature extraction.
In addition, the input data is represented as a nine-dimensional real vector extracted from
the covariance matrix. After polarimetric decomposition, surface scattering, double-bounce
scattering, and volume scattering could be acquired [56]. A few studies have implemented
these three components in CNNs with overall accuracy (OA) of as high as 95.85% [57].
A few studies have also combined the information in the T matrix and polarization power
parameters to classify PolSAR images with different weights. OA was higher by adjusting
the weights [58]. Chen et al. [54] improved the performance of a CNN by combining the tar-
get scattering mechanism and polarization feature mining. A recent work by He et al. [59]
combined the features extracted using nonlinear manifold embedding; next, they applied
FCN to input PolSAR images. The final classification was performed using the SVM in-
tegration method. In [60], the authors emphasized the computational efficiency of deep
learning methods and proposed a lightweight 3D CNN. They demonstrated that the classi-
fication accuracy of the proposed method was higher than that of other CNN methods. The
number of learning parameters was notably reduced, and high computational efficiency
was achieved.

Through the literature survey, we discovered that ground objects could be classified
using polarization features decomposed from PolSAR images. However, few studies
have focused on polarization scattering features decomposed using excellent polarization
decomposition algorithms. Reflection symmetry decomposition (RSD) [61] is an effective
algorithm and can be used to obtain polarization scattering characteristics. This study
investigated if higher classification accuracy can be acquired when more informative
polarimetric features were input CNNs. To this end, this paper proposes four schemes
to explore the combination of polarization scattering features for QP image classification
based on polarization scattering characteristics obtained through RSD and T matrix. The
remainder of this paper is as follows: the first section serves as an introduction to the current
research progress of using polarization scattering information and describes the innovations
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in current; the second section discusses the research area and data preprocessing; the third
section discusses the experimental method and the experimental process; the fourth section
presents an analysis of the experimental results and accuracy; finally, we discussed the
strengths and limitations of the experiment.

The main goals of this study were, therefore, (1) to provide a method for wetlands
classification based on polarimetric features; (2) to examine the power of classical CNNs
for the classification of back-scattering similar wetland classes; (3) to investigate the gen-
eralization capacity of existing CNNs for the classification of different satellite imagery;
(4) to explore polarimetric features which are helpful for wetland classification and provide
comparisons with different polarimetric features combinations; (5) to compare the perfor-
mance and efficiency of the most well-known deep CNNs. Thus, this study contributes
to the CNN classification tools for complex land cover mapping using QP data based on
polarimetric features.

2. Study Area and Data Preprocessing
2.1. Study Area and Data

GF-3 satellite is China’s first C-band high-resolution PolSAR. The satellite has 12 imaging
modes, and the spatial resolution ranges from 1 to 500 m. The images obtained by the satel-
lite are broadly used, for example, ship recognition [62], terrain surface classification [63],
and feature classification [64]. The quad polarization band 1 (QPSI) imaging mode of the
GF-3 satellite has an incidence angle range of 21◦–41◦ and an imaging bandwidth of 20–35
km, which is suitable for researching the Yellow River Delta. Therefore, we selected the
QPSI mode of GF-3 to classify ground objects in the Yellow River Delta.

The QP images can be downloaded from the China Ocean Satellite Data Service Sys-
tem [65]. We selected four scenes’ images (14 September 2021 [two images]; 13 October 2021
[one image]; and 12 October 2017 [one image]), the first three images were for training,
and the last one was for testing. The imaging mode selected was QPSI and 8 m in spatial
resolution. The longitude and latitude ranges were (118◦33′–119◦20′ E, 37◦35′–38◦12′ N),
and the incidence angle (inc. angle) ranges from 30.97◦–37.71◦. The images selected for the
experiment are specified in Table 1.

Table 1. Experiment images.

Id Date Time (UTC) Inc. Angle (◦) Mode Resolution Use

1 2021-09-14 22:14:11 30.98 QPSI 8 m Train
2 2021-09-14 22:14:06 30.97 QPSI 8 m Train
3 2021-10-13 10:05:35 37.71 QPSI 8 m Train
4 2017-10-12 22:07:36 36.89 QPSI 8 m Test

2.2. Data Preprocessing

Before inputting the QP images into CNNs, the images should be processed through
radiometric calibration, polarization filtering, polarization decomposition, pseudocolor syn-
thesis, data normalization, training dataset making, and so on. The radiometric calibration
formula was described in [66].

Owing to the imaging mechanism of PolSAR, speckles are inevitably generated in
the images, thereby reducing the accuracy. The non-local mean filtering method proposed
by Chen et al. in 2011 can effectively suppress speckles. In the non-local mean filtering
method, the neighborhood is considered a single unit [67]. This method not only focused
on the similarity between two individual pixels but also the similarity between two pixels.
It is more stable and effective than traditional neighborhood filtering methods. Therefore,
we adopted non-local mean filtering to despeckle PolSAR images.

The material, size, and shape of the ground objects could influence polarimetric fea-
tures. The back-scattering coefficients of different targets are different because of character-
istics such as shapes. In PolSAR, the back-scattering coefficient of the target is represented
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by the T matrix. Polarization decomposition theories have been proposed to decompose the
scattering matrix into several different components to interpret the scattering mechanism
of targets. Polarization characteristics are defined using the parameters extracted from
QP data, which can reflect the polarization characteristics of ground objects to a certain
extent, for example, total polarization power, scattering angle, and similarity parameters.
Polarization features are extensively used for polarization target feature extraction, target
classification, target detection, and parameter inversion.

Traditional polarization decomposition can only decompose a small number of polar-
ization features. For example, Freeman decomposition [56] can only save the information of
5 real elements of the original polarization coherence matrix along with loss of polarization
information occurring along with the presence of a negative power component in the
results. Yamaguchi decomposition [68] can only save six real elements. The de-orientation
Freeman decomposition [69] can save six real elements and the de-orientation Yamaguchi
decomposition [70] can save seven real elements. Cui decomposition [71] and improved Cui
decomposition [72] neither lead to polarization information loss nor have a negative power
component. However, the model of their third component is only a polarization coherence
matrix with rank 1. Thus, complete polarization decomposition was not achieved using
these methods. RSD is a novel algorithm-based non-coherent polarization decomposition
method that does not involve any loss of polarization information [61]. The decomposition
algorithm is complete and has excellent performance. The three components obtained
through decomposition using RSD satisfy the reflection symmetry assumption. RSD can
decompose all polarization scattering features and completely reconstruct the polarization
coherence matrix according to the decomposed polarization features. RSD is a highly
effective polarization decomposition scheme. With RSD, more polarimetric features can be
obtained. Therefore, the polarization scattering characteristics used in this study are new.
Owing to these advantages, we selected RSD as the polarization decomposition method in
this study.

The polarization features obtained after decomposition through RSD included volume
scattering value PV, surface scattering value PS, double bounce value PD, the total power
value of the second component of RSD P2, the total power value of the third component of
RSD P3, twice the orientation angle θ, twice the helix angle ϕ, power proportion of spherical
scattering in the second component of RSD x, power proportion of spherical scattering in
the third component of RSD y, the phase a of the second component of RSD, and the phase
b of the third component of RSD.

To label the targets on the images conveniently, the obtained polarization scattering
parameters are required to be synthesized in pseudo color. We assigned red, green, and
blue to PD, PS, and PV, respectively (Figure 1e). The pseudocolor images for training and
testing are displayed in Figure 1:

The correspondence of training and validating labels to QP image classification is nec-
essary. We used unmanned aerial vehicle (UAV) images (displayed in Figure 2), combined
with empirical knowledge, for marking targets to guarantee the accuracy of the labeled
training datasets. Different ground objects were randomly sampled to generate training
sets for the CNN. Next, the trained model was used to classify QP images that were not in
the training datasets; thus, the training images and testing images of the same scenes were
captured at different times.

In this study, we classified seven species according to the survey results: nearshore
water, seawater, spartina alterniflora, tamarix, reed, tidal flat, and suaeda salsa; we labeled
these targets from number 1 to 7, respectively. We selected 800 samples of each category for
training and 200 for validation. The details are shown in Table 2.
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Figure 2. UAV images of ground objects. (a) Nearshore water, (b) Seawater, (c) Spartina alterniflora,
(d) Suaeda salsa, (e) Tamarix, (f) Reed, (g) Tidal flat.

Table 2. Samples distribution.

Images Nearshore Water Seawater Spartina Alterniflora Tamarix Reed Tidal Flat Suaeda Salsa

20210914_1 500 400 1000 500 500 500 500
20210914_2 500 200 0 0 0 500 0
20211013 0 400 0 500 500 0 500

Total 1000 1000 1000 1000 1000 1000 1000

3. Method
3.1. Normalized Method

The polarization coherence matrix can be expressed in (1). The reciprocity theorem
was satisfied in the PolSAR images.

T =
〈

kkH
〉
=

 T11 T12 T13

T∗12 T22 T23

T∗13 T∗23 T33

 (1)

where the superscript * represents conjugation, the superscript H represents conjugate
transpose, <•> represents set average, and k is the Pauli vector. The relationship of the
elements of the polarization scattering matrix can be expressed in (2).

k =
1√
2

SHH + SVV

SHH − SVV

SHV − SVH

 (2)

The back-scattering coefficients of PolSAR images after RSD are distributed non-linear
because of the imaging mechanism of PolSAR. The linear normalization methods (such
as maximum and minimum normalization and Z-score standardization) are unsuitable
for PolSAR image processing. Therefore, according to the relationship between the total
polarization power of PolSAR and each polarization scattering feature, this study adopted
different methods to normalize polarimetric features. First, before employing the normal-
ization method for scattered polarization features, the total polarization power span is
required to be processed. Span refers to the sum of the diagonal values of the T matrix:

Span = T11 + T22 + T33 (3)

To better represent Span, it is converted into a quantity in dB:
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P0 = 10· log10(Span) (4)

Several different types of ground objects are distributed in the Yellow River Delta.
Understanding the distribution of the total polarization power values of the targets is
necessary. To further investigate the distribution of the classified features, we statistically
analyzed the features. The experimental results indicated that the ground features were
mainly distributed within the range [−30 dB, 0 dB] as well as P0. Therefore, we intercepted
[−30 dB, 0 dB] of the scattering characteristics for classification.

The input polarization features should be normalized before training and testing the
neural network. Since Span = T11 + T22 + T33 for variables processing in the T matrix,
Tij/Span (where i and j represent the row and column numbers of the T matrix) is used
to normalize each element in the T matrix. For the complex elements in the non-diagonal
elements of the T matrix, the real and imaginary parts are divided by Span to realize
normalization.

The following physical quantities have a lower magnitude than the total polarization
power Span: volume scattering component power value PV, surface scattering power
value PS, double bounce scattering power value PD, the total power value of the second
component of RSD P2, and total power value of the third component of RSD P3. Therefore,
these parameters were divided by the span value to realize normalization.

The power ratio x of the spherical scattering of the second component of the symmetric
decomposition of reflection and the power ratio y of the spherical scattering of the third
component of the symmetric decomposition of the reflection was within the range [0, 1].
Thus, these parameters were not required to be normalized.

The range of the double directional and double spiral angles was (-π/2, π/2]. The RSD
phase of the second component T12 element a and that of the third component T13 element
b were within the range [−π, π]. Therefore, these parameters were processed as follows (5):

X1 =
x− mmax + nmin

2
mmax − nmin

2

(5)

X1 is the normalized quantity and x is the quantity to be processed; mmax and nmin
are the maximum and minimum values within the range of the physical quantities to
be processed.

A few parameters processed using formula (5) were within the range [−1, 1]. To
match the value range of the neural network activation function, the range [−1, 1] of the
parameters was required to be reduced to [0, 1]. Next, the following formula was used:

z =
y + 1

2
(6)

where y is the quantity to be processed at range of [−1, 1], z is the quantity after processing
within the range [0, 1].

3.2. Schemes

Based on the polarization features generated through RSD and the T matrix, four
schemes were proposed. First, we used the polarimetric features in the polarization
coherence matrix (T) to classify QP images, which have been extensively reported in the
literature [53–56]. Among them, the three main diagonal elements of T (T11, T22, and
T33) contained most of the polarization information. The polarimetric features should be
normalized before input to CNNs. The input polarimetric features can be normalized
according to the relationship between the elements in the T matrix and Span. Therefore, we
considered these four elements as scheme 1.
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A substantial amount of polarimetric information was contained in the T matrix. In
addition to the three diagonal elements, the non-diagonal elements also include relevant
information. All elements of the T matrix and Span were regarded as scheme 2.

In addition to using the information in the T matrix, various polarization power
quantities (PS, PD, PV, P2, P3, θ, ϕ, x, y, a, b and P0) were decomposed using the RSD
method. Given that normalization was involved, 12 polarization quantities along with
Span were regarded as scheme 3. Finally, a total of 20 polarimetric features and Span were
selected as scheme 4. In order well understand, similar to picture processing, a polarimetric
feature was regarded as a channel here. The details are displayed in Table 3.

Table 3. Four schemes.

ID Channels Polarimetric Parameters

1 4 T11, T22, T33, P0
2 10 T11, T22, T33, Re(T12), Re(T13), Re(T23), Im(T12), Im(T13), Im(T23), P0
3 12 PS, PD, PV, P2, P3, θ, ϕ, x, y, a, b, P0

4 21 T11, T22, T33, Re(T12), Re(T13), Re(T23), Im(T12), Im(T13), Im(T23), PS, PD, PV,
P2, P3, θ, ϕ, x, y, a, b, P0

3.3. Exp

CNNs are used to process data with similar network structures. A complete CNN
is generally composed of data input layers, convolution layers, activation layers, pooling
layers, and full connection layers. CNNs with a certain depth and width can extract deeper
features of images and can perform better object recognition and classification. In 2012,
Geoffrey Hinton proposed AlexNet [73] which uses ReLU as the nonlinear activation
function, dropout was adopted to randomly deactivate a few neurons for the first time
which can avoid the overfitting of the model. The model has been applied by many scholars,
thus marking the emergence of a new era of deep learning. Only two years later, VGG-
Nets [74] were proposed and became a new star among relevant researchers. Both AlexNet
and VGG16 are classic models with shallow layers, good generalization performance, and
less time-consuming compared with other deeper state-of-art networks. Therefore, these
two CNNs were selected as the backbone networks in this study.

3.4. Experiment

The procedure of the experiment is available as follows: First, the PolSAR data should
be radiometrically calibrated [66] and filtered [67], a total of 21 polarimetric features were
extracted from the RSD [61], and four schemes were proposed. Next, the polarimetric
features were normalized before input CNNs [73,74]. Next, image cubes were extracted
from training images and then divided into training datasets and validation datasets.
We used training and validation datasets for model training. The model parameters are
described in [73,74]. We used the weights and other parameters for testing when the model
performed well. According to the processing methods, we took AlexNet for example, the
experimental flow is displayed in Figure 3. The flow chart can be roughly divided into two
lines. The first line is the main part of the experiment, and each color represents different
processing content. The second line explains the main processing part of the first line. The
orange box is the four research schemes designed, the green box is the visualization of the
batch data of the corresponding research scheme, and the red box is the architecture and
parameters of AlexNet.
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The pseudocodes of the experiment are as follows:

Pseudocodes of the experiment: QP Classification through CNNs Based on Polarimetric Features

Input: GF-3 quad PolSAR images.
Output: classified results.
1: Calibrate GF-3 PolSAR images [66].
2: Nonlocal filtering [67].
3: Polarimetric decomposition [61].
4: Extract polarimetric features.
5: Nonlinear normalization.
6: Four schemes are proposed based on the relationship between the T matrix and span.
7: Extract training datasets: validating datasets = 4:1.
8: Inputting datasets into CNN [73,74].

for i < N do
the train one time.

If good fitting, then
Save model, and break.

else if over-fitting or under-fitting, then
Adjust parameters includes, i.e., learning rate, bias.

end
9.Test images are input to the model, and do predict to the patches of all pixels.
10. Do method evaluation, i.e., Statistic OA and Kappa coefficient.
(N respents the epoches, H presents the image’s height and W presents the image’s width)

Conventional image classification involves feature extraction and classifier design.
The quality of the extracted polarimetric features is crucial. Spatial information not only
depended on the target itself but also was related to its neighborhoods. Neighborhood
data included polarization features and spatial image patterns around the center point,
indicating that different channel samples within the same range were input in AlexNet.
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The batch size was set at 64 in the experiment reported in [74], Kaiming initialization
was also used [75], with the initial learning rate being 0.1, attenuation rate being 0.1, the
initial weight being 0.9, and the weight attenuation rate being 0.0005 [8].

When the model fitted well and the validation accuracy improved, the parameters of
the model were stored for testing. The unit’s size of training and testing are the same.

We used the cross-entropy loss function, as expressed in (7).

LSo f tmax =
1
N ∑

i
Li = −

1
N ∑

i

M

∑
c=1

yiclog(pic) (7)

where M represents the number of categories, yic is a symbolic function (0 or 1) if the
real category of the sample is equal to 1, otherwise 0. The prediction probability of the
observation samples is denoted by pic.

After the convolution and pooling layers in CNNs, the feature size could be acquired.
Then the full connection and softmax layers were used to distinguish the category of a pixel.
We set an empty matrix of the same size as the test image. The predicted label of each pixel
was padded into the empty matrix one by one. Finally, the prediction results were output.

3.5. Evaluation Method

A confusion matrix was used to evaluate classification accuracy. A confusion matrix is
described in terms of row and column. Evaluation indicators include overall accuracy (OA),
mapping accuracy, user accuracy, etc. These accuracy indicators reflect the accuracy of the
image classification from different aspects. The confusion matrix was calculated by com-
paring the position and classification of each measured pixel at the corresponding position
and classification of the classified image. Each column of the confusion matrix represented
the prediction category; the total number of data points in each column represented the
number of data points in this category. Each row represented the appropriate category
of data, and the total number of each row represented the number of data instances. The
values in each column represented the number of real data points predicted in this category.

The overall accuracy can be expressed as follows:

ρc =
n

∑
k=1

ρkk
ρ

(8)

where ρ is the total number of classified pixels and ρkk is the number of correctly classified pixels.
The kappa coefficient was expressed as,

Kappa =

N
r
∑

i=1
xii−

r
∑

i=1
(xi+x+i)

N2 −
r
∑

i=1
(xi+x+i)

(9)

where r is the total number of columns in the confusion matrix (total number of categories);
xii is the number of pixels on row i and column i of the confusion matrix (number of
correct classifications); and xi+ and x+i are the total number of pixels in the row and column,
respectively; N is the total number of pixels used for accuracy evaluation.

4. Results

We classified the QP image obtained on October 12, 2017, according to the four schemes.
We selected 1000 samples of each category and obtained OA and kappa coefficients (K) to
evaluate the algorithm performance. According to the above schemes and experiment, the
results using the four schemes are displayed in Figure 4. We drew the ground-truth map of
the test image according to the investigation, as displayed in Figure 4e.
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According to the classification results on AlexNet, the highest OA and kappa coefficient
can be obtained when we adopt 21 total polarimetric features. The performance of scheme 2
and scheme 3 is similar but better than scheme 1. In addition, the OA and kappa coefficient
of scheme 3 is slightly higher than scheme 2. The confusion matrix is displayed in Table 4.

Based on the confusion matrixes of the four research schemes, we inferred that the
more polarimetric features were input AlexNet, the higher OA acquired. When 21 polari-
metric features were used for classification, the OA was 96.54%, which was 8.13% higher
than that obtained by using only the main diagonal elements of the T matrix, 2.88% higher
than that obtained using the matrix and non-diagonal elements, and 1.1% higher than that
obtained using polarization power and other polarimetric features. The OA of classification
can be improved by using more informative polarimetric features.
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Table 4. Confusion matrixes of the four schemes on AlexNet.

ID Ground-Objects Nearshore
Water Seawater Spartina

Alterniflora Tamarix Reed Tidal Flat Suaeda
Salsa Acc (%) OA (%) K

4

Nearshore water 898 1 0 0 0 101 0 89.9

88.41 0.88

Seawater 16 982 0 0 0 0 2 98.2
Spartina alterniflora 0 0 782 63 153 0 2 78.2

Tamarix 0 0 0 947 53 0 0 94.7
Reed 0 0 334 0 666 0 0 66.6

Tidal flat 34 24 0 0 0 942 0 94.2
Suaeda salsa 0 0 28 0 0 0 972 97.2

10

Nearshore water 964 7 0 0 0 29 0 96.4

93.66 0.93

Seawater 12 987 0 0 0 0 1 98.7
Spartina alterniflora 0 0 955 30 12 0 3 95.5

Tamarix 0 0 0 960 40 0 0 96
Reed 0 0 0 8 992 0 0 99.2

Tidal flat 72 212 0 0 0 716 0 71.6
Suaeda salsa 12 0 6 0 0 0 982 98.2

12

Nearshore water 796 0 0 0 0 204 0 79.6

95.44 0.95

Seawater 6 993 0 0 0 1 0 99.3
Spartina alterniflora 0 0 966 31 2 0 1 96.6

Tamarix 0 0 0 998 2 0 0 99.8
Reed 0 0 24 9 967 0 0 96.7

Tidal flat 1 1 0 0 0 998 0 99.8
Suaeda salsa 16 0 21 0 0 0 963 96.36

21

Nearshore water 921 6 0 0 0 11 0 92.1

96.54 0.97

Seawater 9 994 0 0 0 1 0 99.4
Spartina alterniflora 0 0 965 0 0 0 27 96.5

Tamarix 0 0 28 949 32 0 0 94.9
Reed 0 0 7 29 968 0 0 96.8

Tidal flat 70 0 0 0 0 988 0 98.8
Suaeda salsa 0 0 0 22 0 0 973 97.3

Similarly, we conducted experiments on VGG16 as well. The parameters are described
in [74] and [8]. The OA of scheme 4 is 94.93%, which is 5.4% higher than just using the three
diagonal elements of the T matrix. The performance of scheme 2 and scheme 3 is similar
but better than scheme 1. The results indicated that higher OAs and kappa coefficients can
be acquired when more informative polarimetric features are input VGG16. The confusion
matrix of VGG16 is displayed in Table 5.

Table 5. Confusion matrixes of the four schemes on VGG16.

ID Ground-Objects Nearshore
Water Seawater Spartina

Alterniflora Tamarix Reed Tidal Flat Suaeda
Salsa Acc (%) OA (%) K

4

Nearshore water 891 39 0 0 0 70 0 89.1

89.53 0.88

Seawater 5 992 0 0 0 0 3 99.2
Spartina alterniflora 0 0 861 46 93 0 0 86.1

Tamarix 0 0 0 963 37 0 0 96.3
Reed 0 0 62 0 938 0 0 93.8

Tidal flat 337 26 2 0 0 635 0 63.5
Suaeda salsa 0 0 13 0 0 0 987 98.70

10

Nearshore water 889 74 0 0 0 37 0 88.9

92.06 0.91

Seawater 7 991 0 0 0 0 2 99.1
Spartina alterniflora 7 0 993 0 0 0 0 99.3

Tamarix 0 0 0 979 21 0 0 97.5
Reed 0 0 73 0 927 0 0 92.7

Tidal flat 70 257 0 0 0 670 3 67
Suaeda salsa 0 0 11 0 0 0 989 98.9

12

Nearshore water 868 25 0 0 0 107 0 86.8

92.21 0.91

Seawater 5 995 0 0 0 0 0 99.5
Spartina alterniflora 0 0 964 36 0 0 0 96.4

Tamarix 0 0 206 648 0 0 146 64.8
Reed 0 0 0 6 994 0 0 99.4

Tidal flat 12 1 0 0 0 987 0 98.7
Suaeda salsa 0 0 1 0 0 0 999 99.9

21

Nearshore water 922 10 0 0 0 68 0 92.2

94.93 0.94

Seawater 5 993 1 0 0 1 0 99.3
Spartina alterniflora 0 0 968 32 0 0 0 96.8

Tamarix 0 0 12 846 142 0 0 84.6
Reed 0 0 7 29 968 0 0 96.8

Tidal flat 70 0 0 0 0 988 0 98.8
Suaeda salsa 0 0 0 22 0 0 973 97.3
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5. Discussion

To verify that the polarization features classified by employing CNNs were infor-
mative, we designed noise test experiments by adding one, two, and three channels of
Gaussian random noise to each scheme. The results on AlexNet indicated that after adding
one channel of Gaussian random noise, the OAs of schemes from schemes 1 to 4 were
81.36%, 85.47%, 94.93%, and 95.71%, respectively, and the kappa coefficients were 78.25%,
83.05%, 94.08%, and 95%, respectively. The OAs and kappa coefficients were lower than
those obtained using the original schemes. Similarly, upon adding two channels of Gaus-
sian random noise, the OAs using the four schemes were 81.2%, 90.44%, 94.9%, and 93.76%,
respectively, and kappa coefficients were 78.07%, 88.85%, 93.22%, and 92.72%, respectively.
Upon adding three channels of Gaussian random noise, the OAs of the four schemes were
85.09%, 91.87%, 93.89%, and 94.5%, respectively, and the kappa coefficients were 82.6%,
90.52%, 92.87%, and 93.58%, respectively. When we added noise on VGG16, the OAs and
kappa coefficient also decreased to varying degrees. The OAs and kappa coefficients ob-
tained upon adding the noise were worse than the original schemes, meaning that AlexNet
and VGG16 had a good anti-noise performance. Higher accuracy can be acquired when
adopting more informative polarimetric features to classify QP images. Furthermore, the
results of RSD were slightly better than the T matrix.

According to the results obtained using different schemes, the scheme with 21 polari-
metric features had the highest OA because of more scattering of polarization information.
The back-scattering coefficient is a crucial factor affecting the classification of targets.
A CNN can distinguish targets easily when the back-scattering coefficients of specific tar-
gets differ from those of other ground objects. For example, the back-scattering coefficients
of seawater and vegetation are considerably different; thus, the boundary between them is
apparent. Distinguishing seawater from nearshore water is challenging because of their
similar back-scattering coefficients.

6. Conclusions

In this study, we employed two well-known CNNs to classify QP images of the
Yellow River Delta captured during summer. Accordingly, the wetlands in this area were
classified as nearshore water, seawater, spartina alterniflora, tamarix, reed, tidal flat, and
suaeda salsa.

With the polarimetric features from RSD and T matrix, four schemes were proposed.
After radiation correction, polarization filtering, and normalization, the corresponding
ground objects of the images were divided into training and validation datasets. The OAs of
the classification were up to 96.54% and 94.93% which were 8.13% and 5.4% higher than the
T matrix. The OAs of the four schemes were all higher than 88%. The results indicated that
the accuracy was improved when more informative polarimetric features were input CNNs.
The classification results also confirmed that the CNN classification method accounting for
polarimetric features can be applied to QP images of wetlands classification. Furthermore,
the back-scattering coefficient is a crucial parameter for distinguishing ground objects. The
results obtained through RSD were slightly better than those obtained using the T matrix.
Therefore, RSD can help improve the accuracy of polarimetric SAR image classification
of wetland objects using CNNs. This study provides a method for wetlands classification
based on polarimetric features and will promote future research on wetland cover.

The QP images captured using the GF-3 satellite contain a substantial amount of
information with high utilization value. However, there only four summer-time images of
the Yellow River Delta captured between 2016 and 2022 are available. These images are
insufficient for analyzing the ground cover of the entire Yellow River Delta. Meanwhile,
there are no benchmarks for performance assessment. We intend to utilize more GF-3
QP images of the Yellow River Delta in the future to train a model that can be applied to
both summer and winter conditions. Furthermore, optical and QP images can be fused to
classify wetlands. In addition, we will use novel CNNs or propose algorithms to analyze
the Yellow River Delta in future studies.
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