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Abstract: Aboveground biomass (AGB) is an important indicator for crop-growth monitoring and
yield prediction, and accurate monitoring of AGB is beneficial to agricultural fertilization management
and optimization of planting patterns. Imaging spectrometer sensors mounted on unmanned aerial
vehicle (UAV) remote-sensing platforms have become an important technical method for monitoring
AGB because the method is convenient, rapidly collects data and provides image data with high
spatial and spectral resolution. To confirm the feasibility of UAV hyperspectral remote-sensing
technology to estimate AGB, this study acquired hyperspectral images and measured AGB data over
the potato bud, tuber formation, tuber growth, and starch-storage periods. The canopy spectrum
obtained in each growth period was smoothed by using the Savitzky–Golay filtering method, and the
spectral-reflection feature parameters, spectral-location feature parameters, and vegetation indexes
were extracted. First, a Pearson correlation analysis was performed between the three types of
characteristic spectral parameters and AGB, and the spectral parameters that reached a significant
level of 0.01 in each growth period were selected. Next, the spectral parameters reaching a significance
of 0.01 were optimized and screened by moving window partial least squares (MWPLS), Monte
Carlo uninformative variable elimination (MC-UVE), and random frog (RF) methods, and the final
model parameters were determined according to the thresholds of the root mean square error of
cross-validation (RMSEcv), the reliability index, and the selected probability. Finally, the three optimal
characteristic spectral parameters and their combinations were used to estimate the potato AGB in
each growth period by combining the partial least squares regression (PLSR) and Gaussian process
regression (GPR) methods. The results show that, (i) ranked from high to low, vegetation indexes,
spectral-location feature parameters, and spectral-reflection feature parameters in each growth period
are correlated with the AGB, and these correlations all first improve and then degrade in going
from the budding period to the starch-storage period. (ii) The AGB estimation model based on
the characteristic variables screened by the three methods in each growth period is most accurate
with RF, less so with MC-UVE, and least accurate with MWPLS. (iii) Estimating the AGB with the
same variables combined with the PLSR method in each growth period is more accurate than the
corresponding GPR method, but the estimations produced by the two methods both show a trend
of first improving and then worsening from the budding period to the starch-accumulation period.
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The accuracy of the estimation models constructed by PLSR and GPR from high to low is based
on comprehensive variables, vegetation indexes, spectral-location feature parameters and spectral-
reflection feature parameters. (iv) When combined with the RF-PLSR method to estimate AGB in
each growth period, the best R2 values are 0.65, 0.68, 0.72, and 0.67, the corresponding RMSE values
are 167.76, 162.98, 160.77, and 169.24 kg/hm2, and the corresponding NRMSE values are 19.76%,
16.01%, 15.04%, and 16.84%. The results of this study show that a variety of characteristic spectral
parameters may be extracted from UAV hyperspectral images, that the RF method may be used for
optimizing and screening, and that PLSR regression provides accurate estimates of the potato AGB.
The proposed approach thus provides a rapid, accurate, and nondestructive way to monitor the
growth status of potatoes.

Keywords: UAV; hyperspectral; spectral feature; location feature; vegetation indexes; potato; above-
ground biomass

1. Introduction

Aboveground biomass (AGB) is an important agronomic parameter that character-
izes the life activities of crops. It is closely related to the nutritional status and growth
status of crops and is commonly used to monitor crop seedlings and evaluate farmland
productivity [1–3]. Field management and yield prediction therefore rely on the rapid,
non-destructive, and accurate determination of the temporal and spatial dynamics of
AGB [4–6]. Traditionally, AGB is measured by a destructive sampling method that requires
manual crop harvesting, weighing, and recording. This method is not only time-consuming,
laborious, and destructive but is also limited to small areas due to the limited number of
sampling points and monitoring range. It therefore does not suit the needs of quantitative
monitoring of a large-scale crop AGB [7–10].

Because ground objects can reflect and absorb electromagnetic radiation, the spectral
information of different crop canopies can be obtained by remote-sensing technology
in a long-distance, high-throughput, and nondestructive manner. The application of
mathematical analyses to interpret the spectral characteristics from multiple perspectives
allows for nondestructive quantitative monitoring of crop physiological and biochemical
indicators [11–13]. Currently, the main categories of sensor platforms for earth observation
based on remote-sensing technology are ground, spaceborne, and airborne. Using ground
sensors to obtain canopy spectral data in the field can sometimes damage crops. At the
same time, it is challenging to monitor physical and chemical parameters in large areas
for a long time due to physical constraints [14–16]. Although spaceborne remote-sensing
technology can be used for nondestructive monitoring, it is expensive, imposes long transit
periods, and yields images of coarse spatial resolution, which limits its application in
precision agriculture [17–19]. Compared with other remote-sensing technologies, remote
sensing from unmanned aerial vehicles (UAVs) has become an essential means to monitor
crop growth due to its advantages of solid controllability, simple operation, economic
suitability, and the ability to obtain high-resolution crop canopy orthophoto images under
clouds [20–22].

At present, UAV platforms are typically equipped with digital, multispectral, and
hyperspectral sensors to obtain spectral information on crop canopies and thereby monitor
crop growth [23]. UAV hyperspectral remote sensing offers continuous narrow-band spec-
tral information on the crop canopy, which allows the hidden details of the crop canopy
spectrum to be mined [24,25]. Seeking the characteristic spectrum establishes the AGB
monitoring model, which can effectively evaluate crop growth and predict yield [26]. In
addition, UAV hyperspectral remote sensing also provides orthophotos of fields, which
facilitates the mapping and display of AGB spatial variations [27]. Therefore, UAV hyper-
spectral remote-sensing technology with simultaneous acquisition of image and spectral
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information is vital for the accurate monitoring of crop AGB and to support real-time field
management strategies [28,29].

Currently, the methods to estimate AGB from spectral information obtained by hy-
perspectral sensors fall into three main categories: (i) those based on spectral-reflectance
features, (ii) those based on spectral-location features, and (iii) those based on vegetation
indexes. The original canopy spectrum characterizes the ability of the crop canopy to
radiate energy, which is related to variations in AGB content, so it can be directly used
to estimate AGB. For example, Wang et al. [30], Jia et al. [31], and Kong et al. [32] used
the successive projection algorithm to screen the characteristic wavelengths of the original
crop canopy spectrum and combined different regression methods to estimate the AGB of
winter wheat. Spectral-location features reflect the absorption and reflection of biochemical
components in crops, and these feature locations contain rich crop-growth information
that can be extracted to monitor crop AGB. For example, Tao et al. [33], Fu et al. [34],
and Gnyp et al. [35] analyzed the position of the red edge and found that the red-edge
parameters correlate strongly with wheat AGB, which means that the position of spectral
features can be used to estimate AGB. The vegetation index enhances vegetation informa-
tion and is usually composed of two or more spectral bands in a specific mathematical
way to reduce or eliminate the effect of background noise on the crop canopy spectral
information. For example, Jin et al. [36] found that the enhanced vegetation index and the
three-band water index can be used to estimate maize AGB. Hansen et al. [37] showed that
band combinations of the normalized vegetation index within the central wavelength band
680–750 nm correlate strongly with maize AGB and that an accurate estimation could be
achieved by using the partial least squares regression (PLSR) method. Finally, Liu et al. [38]
used the chlorophyll content index to estimate rice AGB.

Although these studies show how to effectively monitor AGB using different spectral
features, most of them use only one type of spectral variable as an input parameter for
their model. No studies have compared the performance of different forms of spectral
parameters for estimating AGB. We do not yet know which spectral information is beneficial
for potato AGB estimation and what is the accuracy of the model constructed. As a result,
they fail to comprehensively evaluate how multiple types of spectral variables affect AGB
estimation results, which may prevent hyperspectral information from being fully utilized,
thus restricting the accuracy of estimation models. In addition, due to the high information
redundancy between adjacent bands of hyperspectral data, most studies estimate AGB
by directly inputting spectral characteristic variables into the model without optimizing
the model’s input data, which reduces the predictive power and robustness of the model.
Although research has shown that the use of UAV hyperspectral data can lead to reasonable
estimates of the AGB of winter wheat, corn, rice, and other crops, the morphological
structure of potato plants differs significantly from those crops, and the crop nutrient
absorption, transportation, and transfer also differ considerably. Therefore, to determine
which spectral information is most beneficial for potato AGB estimation and to validate
whether methods used for AGB estimation in other crops are applicable to potato crops, we
evaluated the performance of various spectral variables to estimate AGB in potato multiple
growth stages. Briefly, the main objective of this study was to determine the best spectral
information and estimation method for estimating potato AGB.

In order to obtain the best spectral information for estimating potato AGB, this study
used moving window partial least squares (MWPLS), Monte Carlo uninformative-variable
elimination (MC-UVE), and random leapfrog (RF) to optimize spectral-reflection features,
spectral-location features, vegetation indexes, and their combinations. Finally, model pa-
rameters with low redundancy were selected to establish AGB estimation models combined
with PLSR and Gaussian process regression (GPR). We selected the optimal estimation
model and regression technique. The resulting model provides rapid and nondestructive
monitoring of potato-crop growth.
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2. Materials and Methods
2.1. Experimental Design

The potato cultivation experiment took place at the Xiao Tangshan National Precision
Agriculture Research Center (40◦10′N, 116◦26′E), Changping District, Beijing, China. In the
field, we planted two precocious potato varieties (Zhongshu 5, (Z5) and Zhongshu 3, (Z3))
with different planting densities (P plots), nitrogen treatments (N plots), and potassium
fertilizer treatments (K plots). The experimental area contained 48 plots and each plot
covered 32.5 m2. Please see Ref. [39] for the specific experimental design. To accurately
correct UAV hyperspectral images, the three-dimensional information of eleven ground
control points was obtained by using the differential global positioning system. The specific
plan of this study is shown in Figure 1.
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Figure 1. Location and design of experimental area: (a) location of Changping District in Beijing,
(b) Xiao Tangshan National Precision Agriculture Research Center, (c) P1, P2, and P3 represent
planting density treatments of 60,000, 72,000, and 84,000 plants/hm2, respectively. N0, N1, N2, and
N3 represent nitrogen fertilization treatments of 0, 244.65, 489.15, and 733.50 kg/hm2, respectively. K0,
K1, and K2 represent potassium fertilization treatments of 0, 970.50, and 1941 kg/hm2, respectively.

2.2. Ground-Data Collection and Processing

AGB data were collected during four potato-growth periods including the budding
period (13 May 2019), the tuber-formation period (28 May 2019), the tuber growth period
(10 June 2019), and the starch-accumulation period (20 June 2019). To obtain the ground-
truth AGB data, three plants representative of the overall growth level were randomly
selected from each plot. After random field sampling, we quickly took it back to the
laboratory. We used an oven to dry the samples to a constant mass before weighing. For
each growth period, the plant density and dry mass of the stems and leaves of each plant
sample as measured by a high-precision balance were used to calculate the potato AGB of
each plot (in kg/hm2). The specific steps of collection are available in the literature [39].
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2.3. UAV Hyperspectral Data Acquisition and Processing

A six-rotor electric UAV (SZ DJI Technology Co., Ltd., Shenzhen, Guangdong, China)
was used as the ultralow-altitude remote-sensing platform. The UAV was equipped with
a GPS module to record the attitude and spatial position during image shooting and two
1800 mAH batteries (25 V, which can maintain autonomous flight for 25 min on the specified
route). The UAV had a maximum takeoff mass of 6 kg and a flight speed of about 8 m/s.
The UAV platform carried a UHD 185 firefly imaging spectrometer, referred to as “UHD
185” for short. The flying height of the UAV is 20 m, and the obtained image resolution is
1.3 cm. Before each operation of the UAV, black and white panel data were collected on the
ground using UHD185 for radiometric calibration.

UAV hyperspectral image processing includes two main parts:

(i) Image mosaic and terrain correction. First, with the help of the Agisoft Photoscan
software, which is based on a motion structure algorithm, image mosaic and terrain
correction were carried out in combination with the position of ground control points
(the correction error of each growth period is less than 2 cm). Second, hyperspectral
and grayscale images were fused by using the Cubert Cube-Pilot software to form
new hyperspectral digital orthophotos [40].

(ii) Extraction of canopy spectral reflectance. According to the ratio method, the digital
number value of the hyperspectral image is converted into the surface reflectance
based on the black and white panel data collected on the ground. To eliminate the
boundary effect, ArcGIS 10.2 software was used to draw the maximum region of
interest (a total of 48 plots) for each plot. Based on ENVI 5.3 software, the average
spectral reflectance of all pixels in each region of interest was calculated, and the
average spectrum obtained served as the spectral reflectance of the potato canopy for
each experimental plot [41].

2.4. Selection of Model Parameters

Due to the sensitivity of the imaging spectrometer itself and to the interference of the
external environment, the acquired crop canopy spectrum is easily affected by noise in the
process of image acquisition. To improve the signal-to-noise ratio of the spectral data and
further improve the accuracy of AGB estimates, the spectral data must be smoothed. The
Savitzky–Golay (SG) filtering method was proposed by Savitzky and Golay in 1964 and is
a low-pass filtering method that smooths time-series data by applying a local polynomial
regression model. Its biggest advantage is to remove noise while maintaining the shape and
width of the signal [42]. The SG filter used in this study has a width of 5, a smoothing order
of 0, and a smoothing degree of 2. Figure 2 shows the canopy spectral-reflectance features
of potatoes (Z5 and Z3) before and after SG filtering at each growth stage. Comparative
analysis showed that the canopy spectral curve retained the original shape and became
smoother after SG filtering. Before constructing the AGB estimation model for each growth
period, the spectral-reflectance features, spectral-position features, and vegetation indexes
were extracted from the canopy spectral data after SG filtering.

2.4.1. Extraction of Spectral-Reflection Features

The characteristic spectral-reflectance parameters extracted in this study include
mainly canopy original reflectance spectra (CRS) and first-order differential spectra (FDS).
CRS is the most direct expression of the response of the internal cell structure of the plant
leaf to the incident optical spectrum. The depth analysis of the changes in spectral reflection
and absorption characteristics in the visible and near-infrared bands provides the basis for
the establishment of the AGB estimation model. FDS represents the change of reflectance,
that is, the slope of wavelength, which can remove the influence of partial linear back-
ground noise on the spectral information of crop canopy, refine the differences between
spectra, and enhance the spectral sensitivity. The UHD 185 sensor covers numerous bands,
which is suitable for first-order differential processing. The FDS formula is
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FDSλ(i) =
Rλ(i−1) − Rλ(i+1)

8
(1)

where FDSλ(i) is the first-order differential spectral reflectance at a central wavelength i
between waveband i− 1 and i + 1. Rλ(i−1) and Rλ(i+1) are the reflectances in the waveband
i− 1 and i + 1, respectively.
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2.4.2. Extraction of Spectral-Position Features

De-enveloping line processing, also known as the continuous removal method, is a
processing method that normalizes the canopy spectral data to unity so that the spectral
data have the same background, retain most of the information, and effectively highlight
the difference between the spectral information and the variation in AGB, which produces
accurate AGB estimates [43–45]. The potato canopy spectral data range obtained by the
UHD185 sensor ranges from 454 to 950 nm, but as of 750 nm, the shape of the absorption
valley of the potato canopy de-envelope spectrum is slightly smaller, and the difference
between the spectra does not suffice to express the AGB variations. Therefore, in this study,
only the absorption valley between 454 and 750 nm is studied in-depth. As shown in
Figure 3, after the spectral data for this study are processed by applying the continuous
removal method, the characteristic parameters of the two absorption valleys (V1 and V2)
are extracted and mainly include the absorption valley depth (DP1 and DP2), the absorption
valley area (A1 and A2), the absorption valley width (W1 and W2), the absorption valley
left slope (SL1 and SL2), and the absorption valley right slope (SR1 and SR2). See Table 1
for details.
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Figure 3. Potato canopy continuous removal spectra. V1 and V2 are two absorption valleys, DP1 is
the first absorption depth, W2 is the second absorption width, A2 is the second absorption area, and
SL2 and SR2 are the left and right slopes of the second absorption valley, respectively.

Table 1. Spectral position characteristic parameters.

Parameter Names Variables Definition and Description

Absorption valley depth DP The distance from the lowest point of the absorption valley to the baseline
Absorption valley area A Absorption valley integration of continuous removal spectra
Absorption valley width W Distance on either side of the absorption valley at half the depth
Slope of the left side of the
absorption valley SL Slope of the line connecting the starting point on the left side of the absorption

valley with the bottom point of the absorption valley
Slope of the right side of
the absorption valley SR The slope of the line connecting the starting point on the right side of the

absorption valley with the bottom point of the absorption valley
Green edge amplitude Dg Maximum value of the 1st derivative with a green edge (502–554 nm)
Green edge position λg Wavelength at Dg
Green edge area SDg Sum of the 1st derivative values within the green edge
Blue edge amplitude Db Maximum value of the 1st derivative with a blue edge (490–530 nm)
Blue edge position λb Wavelength at Db
Blue edge area SDb Sum of the 1st derivative values within the blue edge
Yellow edge amplitude Dy Maximum value of the 1st derivative with a yellow edge (562–638 nm)
Yellow edge position λy Wavelength at Dy
Yellow edge area SDy Sum of the 1st derivative values within the yellow edge
Red edge amplitude Dre Maximum value of the 1st derivative with a red edge (682–758 nm)
Red edge position λre Wavelength at Dre
Red edge area SDre Sum of the 1st derivative values within the red edge
Red valley amplitude Drv Maximum value of the 1st derivative with a red valley (650–690 nm)
Red valley position λrv Wavelength at Drv
Red valley area SDrv Sum of the 1st derivative values within the red valley
Green peak amplitude Dgp Maximum value of the 1st derivative with a green peak (510–558 nm)
Green peak position λgp Wavelength at Dgp
Green peak area SDgp Sum of the 1st derivative values within the green peak

At 502–554, 490–530, 562–638, 682–758, 650–690, and 510–558 nm, the absorption of
chlorophyll varies with the scattering degree of leaves and canopy in different directions,
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defining the green edge, blue edge, yellow edge, red edge, red valley, and green peak
positions, respectively. These bands contain a large amount of sensitive crop canopy
spectral information. The features extracted by the first-order differential spectrum are
collectively referred to as “four sides, one valley, and one peak” parameters and reflect
the growth status of potatoes in different periods. Therefore, the variations in potato AGB
in different growth periods can be explored by studying the typical spectral position of
characteristic parameters. This study extracts three types of parameters from the “four
sides, one valley, and one peak” group: amplitude, position, and area [46].

2.4.3. Selection of Vegetation Indexes

Previous studies confirm that the vegetation index is closely related to physiological
and biochemical parameters of crops, so it is often used to monitor crop growth. Therefore,
we selected 20 commonly used vegetation indexes to estimate potato AGB. The specific
names and mathematical expressions are listed in Table 2.

Table 2. Vegetation indexes used in the study.

Vegetation Indices Equation Reference

MCARI (modified chlorophyll absorption ratio index) [(R700 − R670) − 0.2 × (R700R550)](R700/R670) [33]
TCARI (transformed chlorophyll absorption reflectance index) 3 × [(R700 − R670) − 0.2(R700 − R550)(R700/R670)] [33]
TVI (triangular vegetation index) 0.5 × [120(R750 − R550) − 200 × (R670 − R550)] [24]
NDVI (normalized difference index) (R800 − R680)/(R800 + R680) [35]
SIPI (structure-insensitive pigment index) (R800 − R445)/(R800 + R680) [11]
GNDVI (green normalized difference vegetation index) (R800 − R570)/(R800 + R570) [12]
RDVI (re-normalized difference vegetation index) (R800 − R670)/(R800 + R670)1/2 [12]
OSAVI (optimized soil adjusted vegetation index) 1.16 × (R800 − R670)/(R800 + R670 + 0.16) [33]
MSR (modified simple ratio index) (R800/R670 − 1)/(R800/R670 + 1)1/2 [33]
NDRE (normalized difference red edge) (R790 − R720)/(R790 + R720) [11]
EVI (enhanced vegetation index) 2.5 × (R800 − R670)/(1 + R800 + 6 × R670 − 7.5 × R500) [12]
PSND (pigment specific normalized difference) (R800 − R470)/(R800 + R470) [33]
SPVI (spectral polygon vegetation index) 0.4 × [3.7(R800 − R670) − 1.2 × |R530 − R670|] [33]
PSRI (plant senescence reflectance index) (R680 − R500)/R750 [11]
SAVI (soil adjusted vegetation index) 1.5 × (R800 − R670)/(R800 + R670 + 0.5) [12]
NRI (nitrogen reflectance index) (R570 − R670)/(R570 + R670) [12]
CRI (carotenoid reflectance index) 1/R570 + 1/R800 [12]
NDI (normalized difference index) (R850 − R710)/(R850 + R680) [12]
WDRVI (modified wide dynamic range vegetation index) (0.1 × R800 − R670)/(0.1 × R800 + R670) [12]
LCI (linear combination index) (R850 − R710)/(R850 + R670)1/2 [33]

2.5. Analysis Method

This study selects three spectral feature screening methods: MWPLS, MC-UVE, and
RF. MWPLS is based on interval partial least squares. The moving window technology
is used to scan all wavebands, move one wavelength point backward each time with a
specific window width, establish a partial least squares model, and repeat the operations
many times. The root mean square error of cross-validation (RMSEcv) is used as the
evaluation standard for wavelength screening intervals. This method avoids information
redundancy [47]. MC-UVE is a widely used and effective band-selection method in the
field of chemometrics. By randomly selecting the spectral variable matrix as noise, adding
it to the original matrix, and then establishing the partial least squares model by the cross-
validation method to eliminate one by one, the regression coefficient matrix is obtained,
and the stability or reliability of the quotient of the mean and standard deviation of
the regression coefficient is analyzed. Finally, the threshold is determined based on the
importance of the noise variables, and the variables with importance below this threshold
are deleted to obtain the optimal model variables [48]. The RF algorithm is a heuristic swarm
evolution algorithm that computes efficiently and offers excellent global search capability,
similar to the reversible jump Markov chain Monte Carlo algorithm, which calculates the
selected probability of each variable by simulating a Markov chain obeying the steady-state
distribution in the model space to evaluate the importance of the variable [49].
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PLSR and GPR are used to build a model to estimate AGB. PLSR is a combination
of multiple linear regression and principal component analysis. It provides a many-to-
many regression model by fully considering the multicollinearity between independent
variables. Especially when the number of independent variables is large and there is
a certain autocorrelation, and the number of dependent variables is small, the model
constructed by PLSR is more accurate than the traditional regression analysis and allows
predictions to be made from a small number of factors [50]. Gaussian process regression
is a nonparametric probabilistic statistical model that learns the relationship between
independent variables (e.g., spectral features) and dependent variables (e.g., AGB) based
on the Bayesian theorem and uses mean and covariance functions to train samples according
to the maximum likelihood estimation method. Compared with conventional machine
learning, parameter optimization is simpler and more suitable for training small-sample
data. At the same time, the prediction and its related confidence interval are provided,
which allows the reliability of the prediction results to be evaluated [51]. The characteristic
variable selection and model construction for this study were carried out using MATLAB
2020b software.

2.6. Accuracy Evaluation

To estimate the AGB, this study selects the repeat 2 and repeat 3 data (32 groups total)
as the calibration set, and the repeat 1 data (16 groups total) as the validation set to check
the reliability and stability of the model. The coefficient of determination (R2), root mean
square error (RMSE), and normalized root mean square error (NRMSE) are used to evaluate
the model accuracy.

3. Results and Analysis
3.1. Estimation of AGB Using Spectral-Reflectance Features

Figure 4 shows the correlation coefficient changes of CRS and FDS with AGB at
different potato-growth periods. Figure 4a–d shows that the correlation coefficients for
CRS, FDS, and AGB in each growth period differ significantly. Overall, the correlation of
the two reflection spectra increases from the budding period to the tuber growth period but
decreases slightly in the starch-accumulation period. There are also significant differences
in the wavelength range where CRS, FDS, and AGB reach a very significant correlation level.
At the budding period, CRS correlates significantly with AGB at 454–714 and 742–914 nm,
whereas the wavelength range where FDS correlates significantly with AGB is scattered
and mainly spread over five ranges: 470–498, 546–602, 702–774, 790–834, and 854–946 nm.
During the tuber-formation period, the number of wavelengths in the bands 554–698
and 726–950 nm with a significant correlation between CRS and AGB increases, and the
correlation coefficient also increases somewhat. Similarly, the number of wavelength bands
(454–506, 542–598, 654–666, 698–950 nm) with significant correlation between FDS and AGB
increases, and the correlation coefficient increases. During the tuber-growth period, the
correlation between CRS, FDS, and AGB is the highest over all the growth periods, and
the wavelength ranges with extremely significant correlations are 454–702, 718–950 nm,
and 454–498, 514–534, 546–646, 682–774, and 786–950 nm, respectively. During the starch-
accumulation period, the correlation between CRS, FDS and AGB is slightly less than
in the previous period. The wavelength ranges that produced an extremely significant
correlation were 454–702, 714–950 nm and 454–490, 510–534, 550–666, 678–786, 806–830,
and 846–950, respectively.

MWPLS, MC-UVE, and RF methods were used to screen the spectral-reflectance
features of CRS and FDS that reached a very significant correlation in each potato-growth
period. Figure 5 shows the variations in RMSEcv, reliability index, and selected probability
obtained by using different wavelength-screening methods in each growth period. If the
RMSEcv of the partial least squares model established in the selected wavelength interval is
lower or the reliability index and the selected probability of a single wavelength are higher,
it is more likely to become the parameter of the AGB estimation model. The combined
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results of many tests indicate that the threshold for extracting spectral features by using
three sensitive wavelength screening methods at each potato-growth period was finally
determined. The budding period based on CRS and FDS is 105 kg/hm2, 3.0, 0.2 and
113 kg/hm2, 2.0, 0.1, respectively. The tuber-formation period based on CRS and FDS is
240 kg/hm2, 1.8, 0.1 and 225 kg/hm2, 2.0, 0.1, respectively. The tuber-growth period based
on CRS and FDS is 250 kg/hm2, 1.0, 0.1 and 250 kg/hm2, 1.8, 0.1, respectively. Finally, the
starch-accumulation period based on CRS and FDS gives 320 kg/hm2, 1.0, 0.1.
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According to the threshold results set in Figure 4, the characteristic wavelengths
extracted by MWPLS, MC-UVE, and RF methods based on CRS and FDS at each potato-
growth period are shown in Figure 6. From the results of the distribution map, the specific
number of characteristic wavelengths obtained by different methods based on the two
spectral variables in each growth period is different, but the overall position is roughly
the same, mainly located in “four sides, one valley and one peak”, which confirms the
importance of the special spectral position to the estimation of potato AGB.

To evaluate the performance of estimating AGB based on spectral-reflectance charac-
teristics, PLSR and GPR were used to build AGB estimation models for potatoes at each
growth period based on the characteristic spectra of CRS and FDS (Figure 6), and R2, RMSE,
and NRMSE were used to evaluate the fitting and stability of the models. The estimations
obtained for each growth period are evaluated in Figures 7 and 8. The results show that
AGB estimates based on the two types of canopy spectral information of crops are not good,
but, under the same conditions, the effect of estimating AGB directly using CRS features
(Figure 7) is significantly weaker than when using FDS features (Figure 8). Based on a com-
prehensive analysis of the quality indicators (R2, RMSE, and NRMSE) in Figures 7 and 8,
the same modeling method was used to estimate AGB with the characteristic wavelengths
selected by MWPLS, MC-UVE, and RF over the whole growth period, and they all showed
that the AGB estimates gradually improved from the budding period to the tuber-growth
period, and then deteriorated. The model variables selected by RF produce the best results,
followed by MC-UVE, and the variables selected by MWPLS produce the worst results.
Comparing the AGB estimation ability of PLSR and GPR shows that the former produces
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a greater R2 and lower RMSE and NRMSE for four growth periods, indicating that PLSR
significantly improves the accuracy of potato AGB estimates.
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on the CRS and FDS at the bud period, tuber-formation period, tuber-growth period, starch-storage
period. (a,d) Cross-validation RMSEcv statistics using MWPLS based on CRS and FDS, respectively.
(b,e) Reliability index statistics using MC-UVE based on CRS and FDS, respectively. (c,f) Selection
probability statistics using RF based on CRS and FDS, respectively.
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Figure 6. Distribution of wavelengths based on CRS and FDS using three wavelength-screening
methods for potatoes for each growth period. (a,d) Characteristic wavelength distribution using
MWPLS based on CRS and FDS, respectively. (b,e) Characteristic wavelength distribution using
MC-UVE based on CRS and FDS, respectively. (c,f) Characteristic wavelength distribution using RF
based on CRS and FDS, respectively.
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MC-UVE and RF. (a–c) The R2, RMSE (kg/hm2) and NRMSE (%) of AGB was estimated using the
PLSR method. (d–f) The R2, RMSE (kg/hm2) and NRMSE (%) of AGB was estimated using the
GPR method.
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The AGB estimation model was established by RF-PLSR in each growth period, with the
highest fitting accuracy and the strongest model stability. From the budding period to the tuber-
formation period, based on CRS and FDS modeling, R2 varies over the range 0.45–0.55 and
0.49–0.57, RMSE varies over the range 257.50–243.41 and 252.06–231.75 kg/hm2, and NRMSE
varies over the range 30.33–22.77% and 29.69–21.68%, respectively. These results are consis-
tent with the validation results, which show that R2 gradually increases, whereas RMSE and
NRMSE gradually decrease. From the tuber-formation period to the starch-accumulation
period, based on CRS and FDS modeling, R2 varies over the range 0.55–0.48 and 0.57–0.50,
RMSE varies over the range 243.41–256.87 kg/hm2 and 231.75–243.11 kg/hm2, and NRMSE
varies over the range 22.77–25.56% and 21.68–24.19%, respectively. It is verified that R2

gradually decreases, whereas RMSE and NRMSE gradually increase.

3.2. Estimation of AGB Using Spectral-Position Features

The twenty-eight spectral position characteristic parameters extracted at each growth
period were correlated with the measured potato AGB, and the results are shown in
Figure 9. A correlation analysis reveals that the responses of the various parameters differ
significantly from that of the AGB, and the correlation between the de-envelope absorption
valley parameters and AGB over the whole growth period is stronger than that of the “four
sides, one valley, and one peak”. Comparing the correlation of different parameters in each
growth period shows that twelve parameters (DP1, DP2, A1, A2, W2, SL1, SR2, SDy, Dre,
SDre, λre, and λrv) are significantly correlated with AGB over the four growth periods, and
the correlation remains excellent. Compared with the correlations between the remaining
parameters and AGB in each growth period, the number of positional parameters that
correlate significantly with AGB differs greatly. Only the parameters Dy and SL2 correlate
significantly with AGB at the budding period and tuber-formation period, respectively. The
number of parameters (W1, Db, Dg, Dy, Dgp, Drv, and SDrv) that correlate significantly
with AGB in the tuber-growth stage increases, as does the correlation, whereas the number
of parameters significantly correlated with AGB in the starch-accumulation stage also
increased (SL2, Db, Dg, SDg, Dy, Dgp, Drv, SDrv), but the correlation started to decrease. A
comprehensive analysis of the correlation of location parameters over the whole growth
period shows that the correlation from the budding period to the starch-accumulation
period generally increases first and then decreases.
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The MWPLS, MC-UVE, and RF methods were also used to optimize and screen the
location parameters that correlate significantly in each potato-growth period. According
to the three selected indexes (RMSEcv, RI, and SP) in Figure 5 and based on the analysis
of the test results, the thresholds for selecting model parameters for each growth period
under each method are finally determined to be 120, 260, 275, and 360 kg/hm2 (based
on MWPLS), 1.0, 2.0, 1.0, and 1.5 (based on MC-UVE), 0.1, 0.2, 0.2, and 0.4 (based on RF).
According to the selected threshold results, the model parameters used to estimate AGB
in each potato-growth period were selected (Table 3). The model parameters listed in
Table 3 show that the number and category of location parameters selected for each growth
period vary greatly. Overall, the importance of the absorption valley parameters for AGB
estimation is greater than that of the “four sides, one valley, and one peak”.

Table 3. Location parameters of AGB estimation model selected by MWPLS, MC-UVE, and RF
methods for each potato growth period.

Growth Stage Variable Selection Method

MWPLS MC-UVE RF

Bud period DP2, A1, A2, W2, SL1 A1, SR2, Dre, SDre, λrv DP1, SR2, SDy, Dre, SDre

Tuber formation period W2, SL1, SL2, SR2, SDy, Dre,
SDre, λre

DP2, A2, W2, SL2, SR2, SDy,
Dre, SDre W1, DP2, SL1, SR2, SDy, Dre, SDre

Tuber growth period DP2, A1, A2, SL1, SR2, Db W1, W2, λre, λrv DP1, DP2, A1, W1, W2, SL1,
SR2, SDy

Starch store period SR2, Db, Dg DP2, A1, A2, SDg Drv, SDrv SL1, SL2, SR2, SDy, Drv, SDrv

Using the PLSR and GPR methods based on the model parameters listed in Table 3 as
independent variables, we obtain the relationship between the spectral location characteris-
tic parameters and AGB in the four potato-growth periods. The indicators (R2, RMSE, and
NRMSE) used to evaluate the model accuracy in each growth stage are shown in Figure 10.
Based on the evaluation index of the AGB estimation model, the estimation obtained by
using the model parameters selected by different methods as variables is consistent with
the spectral reflection characteristics, which shows that the variables selected by the RF
method produce the best estimates, followed by MC-UVE, whereas the worst estimates
are produced by the MWPLS method. Compared with the GPR regression technique, the
model constructed by PLSR using the same variables in each growth period produces
a larger R2 and smaller RMSE and NRMSE, indicating that the PLSR method improves
the accuracy of the AGB estimation model, which is consistent with the results given in
Figures 7 and 8.

Comparing the results in Figures 7 and 8 with those in Figure 10 shows that the AGB
estimate based on the spectral-location features is more accurate than the AGB estimate
based on the corresponding spectral reflectance features. Similarly, the estimation quality
first improves and then decreases from the budding period to the starch-accumulation
period. In each growth period, the estimation model obtained by the RF-PLSR method
is also more accurate and more reliable. From the budding period to the tuber-growth
period, R2 increases from 0.52 to 0.63, and RMSE and NRMSE decrease from 220.06 to
201.72 kg/hm2 and from 25.92% to 18.87%, respectively. Validation R2 also increases
gradually and RMSE and NRMSE decrease gradually so that the estimate gets better and
better. From the tuber-growth period to the starch-accumulation period, R2 varies over the
range 0.63–0.53, RMSE varies over the range 201.72–214.36 kg/hm2, and NRMSE varies
over the range 18.87–21.33%. The validation results are like the modeling results, and the
estimation gradually deteriorates.
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Figure 10. Accuracy of estimating AGB based on the feature variables screened from spectral-position
parameters by MWPLS, MC-UVE and RF. (a–c) The R2, RMSE (kg/hm2) and NRMSE (%) of AGB
were estimated using the PLSR method. (d–f) The R2, RMSE (kg/hm2) and NRMSE (%) of AGB were
estimated using the GPR method.

3.3. Estimation of AGB Using Vegetation Indexes

The twenty selected vegetation indexes and the measured potato AGB in each growth
period were used for a Pearson correlation analysis. The specific correlation size is shown
in Figure 11, where the selected vegetation index and the measured AGB in each growth
period correlate very strongly. Comparing the results in Figures 4, 9 and 11 shows that the
correlations between the three types of model parameters and AGB differ significantly. In
general, the vegetation index produces the best results, followed by the spectral-location
feature parameter, and the spectral-reflectance feature parameter produces the worst results.
Similarly, the variation of the correlation between vegetation indexes and AGB in the four
growth periods is consistent with the characteristics of spectral position and spectral
reflectance, which gradually improve from the budding period to the tuber-growth period
and then decrease.

The vegetation indexes that do not correlate significantly in the four growth periods
are MCARI and TCARI for the budding period, TCARI for the tuber-formation period,
MSR and CRI for the tuber-growth period, and CRI for the starch-accumulation period.
This indicates that the correlation between vegetation index and AGB depends on the
growth period.

To reduce information redundancy, the MWPLS, MC-UVE, and RF methods were
also used to optimize and screen the vegetation indexes that reached extremely significant
correlation levels in each potato-growth period. Using the quantitative indicators RMSEcv,
RI, and SP as criteria, the thresholds for selecting model parameters for each growth
period under each method are determined. Based on MWPLS, they are 125, 260, 275, and
360 kg/hm2, respectively. Based on MC-UVE, they are 1.0, 1.0, 1.0, and 1.5, respectively.
Based on RF, they are 0.3, 0.2, 0.3, and 0.4, respectively. According to the threshold results,
the vegetation index used to estimate AGB in each potato-growth period was selected
(Table 4). From the results in Table 4, the vegetation indexes obtained in each growth period
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also differ, with NDVI, SIPI, NDRE, and WDRVI most likely to be selected by the three
methods, indicating that these vegetation indexes are important for estimating potato AGB.
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Figure 11. Correlation coefficients of vegetation indexes with measured potato AGB at bud period,
tuber-formation period, tuber-growth period, and starch-storage period.

Table 4. Vegetation indexes of AGB estimation model were selected by the MWPLS, MC-UVE, and
RF methods for each growth period.

Growth Stage Variable Selection Method

MWPLS MC-UVE RF

Bud period NDVI, SIPI, GNDVI, NDRE,
EVI, PSND SIPI, PSND, NDI, WDRVI, LCI SIPI, RDVI, NDRE, EVI,

SAVI, NDI

Tuber formation period
NDVI, SIPI, GNDVI, RDVI,
OSAVI, MSR, NDRE, EVI,
PSND, SPVI

TVI, SIPI, EVI, SPVI, PSRI,
NRI, CRI, WDRVI NDVI, SIPI, MSR, PSRI

Tuber growth period TVI, NDVI, SIPI, GNDVI,
RDVI, OSAVI

MCARI, TCARI, NDVI,
NDRE, PSRI

MCARI, NDVI, SIPI, GNDVI,
NDRE, PSRI

Starch store period TVI, NDVI, SIPI, SAVI,
NRI, NDI

NDVI, SIPI, SPVI, NRI, NDI,
WDRVI

TCARI, EVI, SPVI, NDI,
WDRVI, LCI

Based on the screening results in Table 4, the potato AGB estimate for each growth
period is constructed by combining the PLSR and GPR methods, respectively. The modeling
and validation indicators (R2, RMSE, and NRSE) of each model are listed in Figure 12. From
the perspective of the size of the model evaluation indicators, under the same method, the
vegetation index selected by RF in each growth period has the best effect for estimating
AGB, followed by MC-UVE, whereas the vegetation index selected by MWPLS produces
the worst modeling and verification results. These results are consistent with those listed
in Figures 7, 8 and 10. For a given variable, R2 of the AGB estimation model constructed
by PLSR for each growth period is greater than the R2 of the AGB estimation model
constructed by the GPR method, and the RMSE and NRMSE are smaller, indicating that
the PLSR method is more conducive to AGB estimation, which is also consistent with the
results in Figures 7, 8 and 10.
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Comparing the results listed in Figures 7, 8, 10 and 12 shows that, under the same
conditions, the estimates of AGB based on vegetation indexes are more accurate, followed
by spectral position features, whereas estimating AGB based on spectral-reflection features
is the least accurate. However, the accuracy of the AGB estimates based on three categories
goes from high to low from the budding period to the starch-accumulation period. In each
growth period, the AGB estimation model established by the RF-PLSR method is also more
accurate and more stable. From the budding period to the tuber-formation period, the
modeling R2 increases from 0.54 to 0.67, the RMSE decreases from 200.27 to 186.21 kg/hm2,
and the NRMSE decreases from 23.59% to 17.42%. The verification results are consistent
with the modeling results: R2 continues to increase, RMSE and NRMSE gradually decrease,
and the estimation improves. From the tuber-formation period to the starch-accumulation
period, R2 decreases from 0.67 to 0.60, and the RMSE and NRMSE increase from 186.21 to
197.28 kg/hm2 and from 17.42% to 19.63%, respectively. The verification R2 also gradually
decreases, and the RMSE and NRMSE gradually increase, so the estimation deteriorates.

3.4. Estimation of AGB Using Composite Variables

The model variables (Tables 3 and 4 and Figure 6) extracted by the MWPLS, MC-
UVE, and RF screening methods based on three types of spectral features were formed
into a new data set, and the PLSR and GPR methods were used to estimate the potato
AGB in each growth period. The R2, RMSE, and NRMSE of the regression results appear
in Figure 13, and the fitted scatterplots are shown in Figures 14 and 15. These results
show that, under the same conditions, the comprehensive variables serve as model input
parameters in each growth period, R2 is maximal for modeling and verification, and the
RMSE and NRMSE are minimal, so the estimation is the best (Figures 7, 8, 10, 12 and 13).
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Comparing the influence of the three variable-screening methods on AGB estimation
through a comparative analysis of the evaluation indicators shows that the variables se-
lected by the RF method are the best in each growth period, followed by MC-UVE, and
those selected by MWPLS are the worst, which is consistent with the results listed in
Figures 7, 8, 10 and 12. For the same variables, the AGB estimation model constructed by
the PLSR method in each growth period fits slightly more accurately (Figures 14 and 15)
and is more stable than the GPR method (Figure 13). The estimations from the budding
period to starch-accumulation period first improve and then decrease in accuracy, which
is consistent with the estimation of AGB based on three types of spectral characteristics.
In each growth period, the RF-PLSR method produces the best AGB estimates, and the
model is the most stable. R2 continues to increase (0.65–0.72) from the budding period
to the tuber-growth period, and the corresponding RMSE (167.76–160.77 kg/hm2) and
NRMSE (19.76–15.04%) continue to decrease, so the estimates gradually improve. The
verification results (Figures 13 and 14) are similar to the modeling results. R2 (0.68–0.74)
increases, RMSE (136.57–125.48 kg/hm2) and NRMSE (19.68–13.82%) decrease, and the
model gradually improves. From the tuber-growth period to the starch-accumulation pe-
riod, R2 decreases from 0.72 to 0.67, RMSE increases from 160.77 kg/hm2 to 169.24 kg/hm2,
NRMSE increases from 15.04% to 16.84%, so the estimation deteriorates. We verified that
the trends of R2 (0.74–0.70), RMSE (125.48–135.16 kg/hm2), and NRMSE (13.82–15.68%)
are consistent with the modeling set, where R2 decreases, RMSE and NRMSE increase, and
the estimation deteriorates.
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Figure 13. Accuracy of estimating AGB based on the feature variables screened from composite
variables by MWPLS, MC-UVE and RF. (a–c) The R2, RMSE (kg/hm2) and NRMSE (%) of AGB was
estimated using the PLSR method. (d–f) The R2, RMSE (kg/hm2) and NRMSE (%) of AGB was
estimated using the GPR method.
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Figure 14. Scatter plots between measured and predicted values of potato AGB (kg/hm2) for
modeling and verification data sets using PLSR-based composite variables screened by MWPLS, MC-
UVE, and RF at different growth periods. (a–d) Relationship between measured and predicted values
of potato AGB based on MWPLS-PLSR for bud period, tuber-formation period, tuber-growth period,
and starch-storage period, respectively. (e–h) Same as panels (a–d) but based on MC-UVE-PLSR.
(i–l) show the same as panels (a–d) but based on RF-PLSR.
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information is not contaminated by the ground soil. The extracted spectral characteristic 
parameters fully reflect the AGB. At the later stage of growth, due to the continuous ex-
pansion of underground tubers, nutrients accumulated in the early stage of aboveground 
stems and leaves need to be transferred underground. At the same time, due to the rainy 
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Figure 15. Scatter plots between measured and predicted values of potato AGB (kg/hm2) for
modeling and verification data sets using GPR-based composite variables by MWPLS, MC-UVE,
and RF at different growth periods. (a–d) Relationship between measured and predicted values of
potato AGB based on MWPLS-GPR for bud period, tuber-formation period, tuber-growth period,
and starch-storage period, respectively. (e–h) Same as panels (a–d) but based on MC-UVE-PLSR.
(i–l) show the same as panels (a–d) but based on RF-GPR.
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4. Discussion
4.1. Correlation between Three Types of Spectral Features and AGB

The analysis of the correlation between spectral variables and physicochemical param-
eters (such as AGB and LAI) is the premise of building the estimation model. Therefore, this
study first applies a Pearson correlation analysis between (i) spectral-reflectance features,
spectral-location features, and vegetation indexes and (ii) AGB in each potato-growth
period. The results show that differences exist in the correlation between various types
of parameters and AGB (Figures 4, 9 and 11), and the number of parameters reaching
the extremely significant correlation level is also different, which shows that AGB can
be estimated by using different types of spectral variables in each growth period, which
is necessary for growth monitoring [34,37]. Overall, the correlation between the three
types of spectral variables and AGB first increases and then decreases upon progressing
from the budding period to the starch-accumulation period, which may be related to the
potato-growth cycle. In the early stage, it is manifested by vegetative and reproductive
growth, which is reflected in the elongation of stem nodes and the expansion of leaves. In
the tuber-growth period, the fresh weight of stems and leaves reaches a maximum. At this
time, the vegetation coverage reaches a maximum, and the acquisition of canopy spectral
information is not contaminated by the ground soil. The extracted spectral characteristic
parameters fully reflect the AGB. At the later stage of growth, due to the continuous expan-
sion of underground tubers, nutrients accumulated in the early stage of aboveground stems
and leaves need to be transferred underground. At the same time, due to the rainy weather,
aboveground leaves wither and rapidly fall off, and the growth of potato crops becomes
worse, so that the reflected energy of soil pixels contributes greatly to the spectrum of the
potato canopy, making it difficult for spectral characteristic parameters to characterize the
true AGB situation, thereby reducing the correlation between the two [39].

From the correlation of Figure 4, it is found that the correlation between FDS and AGB
in each growth period is greater than that of CRS, which is consistent with the research
results of Wang et al. [31], Fan et al. [41], and Chen et al. [52], and also shows that the
correlation between FDS and AGB is higher, mainly because the interference of a part of
the soil background can be eliminated through spectral differential transformation, the
signal-to-noise ratio of canopy spectral information is improved, and the correlation with
AGB is enhanced [32]. The correlation of Figure 9 shows that the correlation between the
absorption valley parameter and AGB is greater than that of “four sides, one valley and
one peak,” which is consistent with the research results of Fu et al. [34] and Han et al. [45].
This result is mainly attributed to the spectrum reflected from the potato canopy being
unified into the same background through de-envelope line processing, which highlights
the absorption and reflection characteristics of the crop canopy from the visible to the
near-infrared and increases the difference in canopy spectrum in each plot, making it
closely related to AGB. An analysis of the correlation results in Figure 11 shows that most
vegetation indexes correlate very significantly with AGB, with TVI, RDVI, SAVI, and NDI
having a higher correlation with AGB in each growth period than the other vegetation
indexes, mainly because these four vegetation indexes are related to the radiation absorbed
by crops, and solar radiation provides input energy for crop photosynthesis. Therefore, the
photosynthetic radiation intercepted by crops is closely related to the production of crop
dry weight (AGB), which increases the correlation between the four vegetation indexes and
AGB [52].

Comparing the correlation analysis results of Figures 4, 9 and 11 shows that the
vegetation index and AGB are most strongly correlated, followed by the spectral-location
feature, and the spectral-reflectance feature is the most poorly correlated, which is consistent
with the research results of Tao et al. [33] and Gong et al. [53]. This is because most of the
vegetation indexes selected in this study combine the red and near-infrared bands, and
previous studies show that the red–near-infrared band vegetation indexes are most effective
for estimating AGB, so these vegetation indexes are more closely related to AGB [54,55].
Due to the unique absorption valley and reflection peak of vegetation, the characteristic
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parameters of spectral positions are closely related to the growth of potato crops. Therefore,
these positions contain significant spectral information, which can also reflect the AGB [44].
When the spectral information is collected, the jitter of the sensor and interference due to
the external reflected signal may cause the potato-canopy spectrum to deviate from the
actual spectrum, in which case the analysis of correlations with AGB is insufficient to reflect
the real situation of the AGB, which may reduce the correlation between (i) FDS and CRS
and (ii) AGB [52].

4.2. Estimation of AGB Effect Based on Three Spectral Features

Ultralow-altitude UAV remote-sensing platforms have become the most frequently
used technical tool for quantitative monitoring of AGB in precision agriculture due to their
high mobility, affordable price, and simple operation [12,28,56]. At present, the sensors on
the UAV remote sensing platform are mainly digital cameras, multispectral, hyperspectral,
and lidar. Although the price of digital cameras and multispectral sensors is relatively low,
they accept only a small number of bands, which limits the spectral information of the crop
canopy that can be obtained, making it difficult to interpret the subtle differences between
optical spectra. Data obtained by lidar are of high precision but too expensive, which
limits its promotion and application for monitoring AGB of crops [40]. Hyperspectral
sensors have a significant application potential for making rapid, nondestructive, and
accurate estimates of crop AGB because of their high spectral resolution and their ability
to obtain images and spectra simultaneously [57]. The estimation of AGB based on UAV
hyperspectral image data takes three main forms: spectral-reflectance features [30], spectral-
location features [34], and vegetation indexes [36]. Numerous research results only use one
type of spectral variable as model-input parameters but fail to fully consider the continuity
and diversity of canopy spectral information obtained by hyperspectral sensors, which may
prevent the full use of hyperspectral data, thereby restricting the accuracy of the estimation
model [50]. Therefore, in this study, the spectral-reflectance feature, spectral-position
feature, vegetation index, and their combinations are used as model-input parameters and
combined with different modeling methods. This approach allows the potato AGB to be
estimated at each growth period (Figures 7, 8, 10, 12 and 13).

From the evaluation indicators of the estimation model in Figures 7, 8, 10, 12 and 13,
the estimations based on the four variables in each growth period differ significantly, but
the common point is that the estimations based on the four variables gradually improve
from the budding period to the tuber-growth period before deteriorating. This trend is the
same as that of the correlation between the model variables and AGB. When estimating
potato AGB based on a single type of spectral parameters, the R2 of the model constructed
with vegetation indexes as the variable are larger, and the RMSE and NRMSE are smaller
(Figure 12), indicative of an improved estimate. The next-best estimates are based on
spectral-location characteristic parameters (Figure 10), and the worst estimates are based
on spectral-reflection characteristic parameters (Figures 7 and 8), which is related to the
correlation between the three spectral parameters and AGB (Figures 4, 9 and 11). When
estimating AGB based on spectral-reflection characteristics, the estimation based on FDS is
significantly more accurate than that based on CRS, which is consistent with the results of
Acquach et al. [57]. This result is mainly because processing hyperspectral data through
first-order differentiation refines the spectral information and deeply mines the information
hidden in the spectrum, in addition to expanding the selection space of the characteristic
wavelength [19]. When estimating AGB based on spectral position features, R2 of the
estimation model in each growth period increases significantly, and the RMSE and NRMSE
decrease, which is consistent with the research results of Sun et al. [58]. However, the
accuracy of the estimation model constructed in this study for each growth period is
slightly low, which is mainly because the estimated physical and chemical parameters
differ. The goal of this study is estimating potato AGB, while the goal of Sun et al. was the
total nitrogen content of cotton leaves. The second reason is that different types of sensors
are used. In this study, the UAV was equipped with a UHD 185 sensor that was used to
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obtain the spectral data of the field canopy, whereas Sun et al. obtained their spectrum
by using an ASD spectrometer in an artificial backpack. The range of field angle and the
interference of the environment are easy to control when collecting the data, and the final
measurement result is the weighted mean of the many collected spectra. When estimating
AGB based on a vegetation index, the estimation model for each growth period is more
accurate than the model based on spectral reflection characteristics and spectral position
characteristics, which is consistent with the results of Yang et al. [46] and Kang et al. [50],
mainly because the vegetation index combines two or more narrow bands in a certain
mathematical way, eliminating or reducing the impact of the background and enhancing
the vegetation information [11,12]. At the same time, it is the most effective factor for
estimating AGB [52]. In this study, taking full account of the diversity of spectral data,
three spectral features are combined into a new data set, and the same method is used to
estimate the potato AGB for each growth period (Figure 13). Given the same conditions,
the R2 constructed for each growth period is maximal, the RMSE and NRMSE are minimal,
and the estimation is the most accurate, which confirms that the accuracy of AGB estimates
can be improved by using multiple types of variables from hyperspectral images, thereby
compensating for a lack of single-variable estimation accuracy.

4.3. Estimation of AGB Based on Different Variable-Screening Methods

Significant progress has been made in estimating the AGB of winter wheat [33],
cotton [58], corn [59], rice [60], soybean [61], and other crops based on UAV hyperspectral
image data. However, few reports are available for estimating potato AGB over multiple
growth periods. At the same time, most of these studies seek an appropriate vegetation
index as the model-input parameter but do not explore how the introduction of new
variables affects AGB estimates. Due to the wide spectral range and high spectral resolution
of hyperspectral data, rich crop canopy spectral information is obtained. If only vegetation
indexes are used to estimate AGB, more sensitive spectral variables may be missed, thereby
limiting the accuracy of the estimation model [50]. At the same time, most studies choose
the model parameters according to the correlation between the spectral variables and AGB,
which leads to the subjective determination of the number of parameters input into the
model, thereby preventing an optimal estimation model. Therefore, to better estimate
the potato AGB for each growth period, we select three characteristic spectral parameters
as the model-input parameters, and the MWPLS, MC-UVE, and RF methods are used to
optimize and screen the model parameters of each growth period. Finally, taking the value
of RMSECV, RI, and SP as the standard, we determine the optimized model variables for
each growth period and estimate the potato AGB (Figures 7, 8, 10, 11 and 13–15).

Based on different spectral characteristics in each growth period, MWPLS, MC-UVE,
and RF methods are used to screen variables, and the final models constructed differ
significantly in accuracy. However, under the same conditions, the variables obtained by the
RF method prove to be the best to estimate AGB, followed by the MC-UVE method, whereas
the variables obtained by the MWPLS method are the worst for estimating AGB. This is
because the variables screened by the RF method have a wide span, weak autocorrelation
between variables, and rich information, Therefore, the accuracy of the model is high,
which is consistent with the results of Sun et al. [58]. The performance of the MWPLS
method is the worst, mainly because the variables selected by this method are related to the
size of the moving window, and the selected variables have strong autocorrelation, which
reduces the accuracy of the estimation model, making it consistent with the results of Yang
et al. [62]. According to the results in Figure 6 and Tables 3 and 4, the number of variables
screened by the RF method and based on the three spectral characteristics is less than the
number produced by MWPLS and MC-UVE, but the model constructed in the former case
remains the most accurate, indicating that this method may serve to eliminate the “while
removing uncorrelated variables”, and it can significantly improve the predictive ability
and robustness of the AGB estimation model [49]. When using the three variable-screening
methods to optimize the spectral-reflectance features, it was found that the final model



Remote Sens. 2022, 14, 5121 23 of 27

parameters were mainly located in the position of “four sides, one valley, and one peak”
(Figure 6), indicating that these spectral positions contain more information related to
potato AGB, which allows for better AGB estimates [32]. When using the same method to
screen sensitive model parameters for spectral-location features, the probability of selecting
absorption valley parameters to estimate AGB in each growth period is greater than that
of the location parameters in “four sides, one valley, and one peak” (Table 3), mainly
because the difference in potato-canopy absorption characteristics is more prominent and
more potential information may be mined after the continuum-removing transformation,
which enhances the differential characteristics of spectral curves of different AGB contents,
thereby improving the correlation with AGB [46]. When the MWPLS, MC-UVE, and RF
methods are used to screen the vegetation index, NDVI, SIPI, NDRE, and WDRVI have
a high probability of being selected by the three methods (Table 4), indicating that these
vegetation indexes play an important role in the estimation of potato AGB. This is consistent
with the conclusions of Tao et al. [33] and Liu et al. [63], who report that these vegetation
indexes are important parameters for estimating AGB.

4.4. Estimation of AGB Based on Different Modeling Methods

In this study, MWPLS, MC-UVE, and RF methods are used to optimize and screen the
spectral-reflectance features, spectral-location features, and vegetation indexes of potatoes
for each growth stage and then combine with PLSR and GPR methods to construct potato
AGB estimation models and finally obtain the R2, RMSE, and NRMSE of each model
(Figures 7, 8, 10 and 12). The results show that, given the same variable, although the
estimation models constructed by PLSR and GPR methods for each growth period differ
significantly, they trend from good to bad upon going from the budding period to the
starch-accumulation period, which is the same trend seen in the correlation between the
model parameters and AGB (Figures 4, 9 and 11). Comparing and analyzing how the
PLSR and GPR methods affect AGB estimates based on three spectral variables show
that the modeling and verification results obtained by the two methods are similar. If
R2 is large, the RMSE and NRMSE are smaller, indicating that the two methods used
to build AGB estimation models are reliable and stable [50,64]. Based on three spectral
variables, we find that the PLSR method is better than the GPR method for estimating the
AGB, which indicates that the PLSR method can effectively improve the AGB estimation
accuracy. This is because the PLSR method reduces the dimensions and decomposes the
data according to the number of input samples. The estimation model is established after
the optimal principal component, which effectively solves the problem of collinearity
between variables [37]; the problem of collinearity between variables in the GPR model
reduces the prediction accuracy and stability of the model [64].

Analyzing the accuracy indicators of each model (Figures 7, 8, 10 and 12) shows that
the model constructed by RF-PLSR method in each growth period is the most accurate.
The best R2 based on spectral-reflection characteristics is 0.49, 0.53, 0.57, and 0.50, and the
NRMSE is 29.69%, 23.88%, 21.68%, and 24.19%, which is lower than the accuracy obtained
by Sun et al. [65] using this method to estimate the chlorophyll content in potato leaves. The
main reasons for this discrepancy are that the physical and chemical parameters estimated
by the two approaches differ, and the types of sensors used to collect spectral information
differ. In this study, the data were obtained in the field by the UAV platform equipped
with a UHD 185 imaging spectrometer, whereas Sun et al. studied data obtained by a Gaia
hyperspectral imaging system on a closed laboratory platform. In addition, to monitor the
AGB potato canopy plants, Sun et al. used only single leaves as targets to estimate crop
parameters. The best R2 values obtained based on the spectral-location features are 0.52,
0.54, 0.63, and 0.53, and the NRMSE values are 25.92%, 20.77%, 18.87%, and 21.33%, which
is more accurate than the results of Tao et al. [33] for estimating the AGB of winter wheat
over multiple growth periods with red-edge parameters, mainly because this study extracts
all the location parameters related to crop growth in the region “four sides, one valley, and
one peak” (Table 1). At the same time, the continuum division method serves to analyze
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the band depth of the two absorption valleys (Figure 3), which increases the diversity of
spectral parameters. The best R2 values for models based on vegetation indexes are 0.54,
0.64, 0.67, and 0.60 and the corresponding NRMSE values are 23.59%, 18.83%, 17.42%, and
19.63%, which is consistent with the accuracy of crop AGB estimated by Hansen et al. [20]
and Liu et al. [63], mainly because the vegetation index selected in this study also includes
important model parameters such as NDVI, SIPI, NDRE, and WDRVI.

In this study, by fully considering the diversity of hyperspectral data, three spectral
characteristic variables are formed into a new data set to estimate the potato AGB for each
growth period. The results show that the accuracy of the models established by PLSR and
GPR methods increase significantly (Figure 13), and the model constructed by the PLSR
method is more accurate and stable (Figures 13–15). R2 values for the estimation models
for each growth period are 0.65, 0.68, 0.72, and 0.67, and NRMSE values are 19.76%, 16.01%,
15.04%, and 16.84%, respectively, which is consistent with the results of Fan et al. [42], who
used a variety of hyperspectral data variables to improve the nitrogen content of summer
maize. Future studies should focus on considering the fusion of image features and spectral
features for AGB estimation, and test the accuracy of models for each reproductive period
at different locations and times.

5. Conclusions

The use of imaging hyperspectral sensors on the UAV platform has great potential
for crop AGB monitoring because it allows convenient and fast data acquisition and high
spectral and spatial resolution, all at a reasonable price. In view of the continuity and
diversity of hyperspectral data, this study extracts spectral-reflectance feature parameters,
spectral-location feature parameters, and vegetation indexes. Based on an analysis of
the correlation between these parameters and AGB, and to reduce data redundancy and
improve the stability of the model, the MWPLS, MC-UVE, and RF methods are used to
optimize and screen the spectral parameters to ensure a significant correlation. Finally,
these are combined with PLSR and GPR methods to estimate the potato AGB at the budding
period, tuber-formation period, tuber-growth period, and starch-accumulation period.

The results show that the vegetation index has the strongest correlation during each
growth period and AGB, followed by the spectral-position feature parameter, and then by
the spectral-reflectance feature parameter. The change trend of correlation first increases
and then deteriorates from the budding stage to starch-accumulation period. When esti-
mating AGB based on different spectral characteristics in each growth period, the variables
screened by the RF method are the best, followed by those screened by the MC-UVE
method, whereas those screened by the MWPLS method are the worst. When estimating
AGB based on a given variable for each growth period, the estimation model obtained by
using the PLSR method is more accurate than that obtained by using the GPR method.
However, the models constructed by the two methods and the correlations between the
model parameters and AGB remain the same: both go from good to bad as the budding
stage progresses to the starch-storage period. The model constructed from the comprehen-
sive variables is the most accurate, followed by the model constructed from the vegetation
indexes, the spectral-position feature parameters, and the spectral-reflection feature param-
eters. The RF-PLSR method is optimal for estimating AGB in each growth period based on
comprehensive variables, with R2 = 0.65, 0.68, 0.72, and 0.67, and NRMSE = 19.76%, 16.01%,
15.04%, and 16.84%, respectively.
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