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Abstract: Background: Road network data are crucial in various applications, such as emergency
response, urban planning, and transportation management. The recent application of deep neural
networks has significantly boosted the efficiency and accuracy of road network extraction based on
remote sensing data. However, most existing methods for road extraction were designed at local
or regional scales. Automatic extraction of large-scale road datasets from satellite images remains
challenging due to the complex background around the roads, especially the complicated land cover
types. To tackle this issue, this paper proposes a land cover background-adaptive framework for large-
scale road extraction. Method: A large number of sample image blocks (6820) are selected from six
different countries of a wide region as the dataset. OpenStreetMap (OSM) is automatically converted
to the ground truth of networks, and Esri 2020 Land Cover Dataset is taken as the background land
cover information. A fuzzy C-means clustering algorithm is first applied to cluster the sample images
according to the proportion of certain land use types that obviously negatively affect road extraction
performance. Then, the specific model is trained on the images clustered as abundant with that
certain land use type, while a general model is trained based on the rest of the images. Finally, the
road extraction results obtained by those general and specific modes are combined. Results: The
dataset selection and algorithm implementation were conducted on the cloud-based geoinformation
platform Google Earth Engine (GEE) and Google Colaboratory. Experimental results showed that the
proposed framework achieved stronger adaptivity on large-scale road extraction in both visual and
statistical analysis. The C-means clustering algorithm applied in this study outperformed other hard
clustering algorithms. Significance: The promising potential of the proposed background-adaptive
network was demonstrated in the automatic extraction of large-scale road networks from satellite
images as well as other object detection tasks. This search demonstrated a new paradigm for the
study of large-scale remote sensing applications based on deep neural networks.

Keywords: road extraction; land cover; deep learning models; unsupervised clustering

1. Introduction

Road carriage accounts for a large proportion of the modern transportation industry.
According to the Intergovernmental Panel on Climate Change (IPCC) report, total freight
transport emissions will triple by 2050 compared to 2010 levels, and freight demand is
closely related to GDP [1]. In order to analyze social, economic, and geographical conditions,
high-quality road network data are required; these are widely used in urban planning,
transportation navigation, risk management, etc. [2,3].

Remote sensing is a timely and cost-effective way to map the earth’s surface [4–9].
With the developments of image processing and machine learning approaches [10,11],
many studies have been conducted to reduce labor costs and improve the stability of road
extraction from RSI. In 1976, Bajcsy and Tavakoli firstly proposed an ad-hoc approach to
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automatically recognize roads from satellite images [12]. Pioneering road extraction models
based on RSI utilized image processing techniques such as edge extraction, segmentation,
pruning, and skeleton extraction [13]. More recent road extraction models were based on
machine learning algorithms, where texture and spectral features were used as the input. A
back propagation (BP) neural network was proposed for road detection in [14], where the
gray-scale co-occurrence (GLCM) was adopted to compute pixel-wise texture parameters
and generate a pre-classified road grid map. The texture parameters and spectral features
were combined to effectively detect the road regions. In [15], the multi-class support vector
machine was used for building and road detection. The integrated framework for urban
road centerline extraction was proposed, which consists of spectral–spatial classification,
local statistical analysis, linear kernel smoothing regression, and tensor voting [16]. Yin et al.
proposed a direction-guided Ant Colony optimization method to intergrade both object
and edge properties of the very high-resolution images for higher performance of road ex-
traction [17]. These traditional methods based on hand-crafted feature extraction, machine
learning, and statistical analysis are relatively easy to implement and computationally
efficient. However, their performance has been limited due to the variety of road and
non-road objects, complexity of backgrounds, occlusions, and shadows [18–20].

Deep learning models, including deep convolutional neural networks (DCNNs), have
recently proved their promising potential in road detection based on RSI with their repre-
sentation capability for complex feature relationships. Mnih and Hinton adopted a neural
network model based on Restricted Boltzmann Machines (RBMs), where unsupervised
pretraining and post-processing were used for road extraction [20]. The U-Net [21] is an
end-to-end full convolutional network, consisting of encoder and decoder sub-networks.
The encoder extracts the features using convolution and pooling layers, while the decoder
achieves precise positioning using de-convolution layers. In Zhang et al. [22], the deep
residual U-Net was proposed for road detection, where the U-Net and residual networks
were combined. The LinkNet [23] introduces a direct connection between the encoder
and decoder to recover lost information by pooling layers. The spatial information is
directly connected to the decoder on top of the encoder-decoder pyramid structure. This
increases segmentation accuracy without increasing computational complexity. The ad-
vanced variant of the LinkNet, D-LinkNet, was proposed based on high-resolution RSI
in Zhou et al. [24]. D-LinkNet retained the encoder of the LinkNet as the backbone. The
stacked dilated convolution layers in cascade and parallel are used to replace the pooling
layers, maximizing the receptive field while retaining the central information.

Sentinel-2 remote sensing image dataset was used to extract large and medium-sized
roads in [25]. A split depth-wise separable graph convolutional network was proposed for
vegetation cover and road extraction [26]. A cascaded attention-enhanced architecture was
proposed to extract boundary-refined roads from remote sensing images and obtained state-
of-the-art results on the high-resolution Massachusetts dataset [27]. The performance of
deep learning models highly depends on the quantity and quality of the dataset. However,
the datasets used in the previous studies were mostly at local or regional scales. Even
though transfer learning and weakly supervised learning techniques can be used to alleviate
this requirement [28], accurate extraction of large-scale road data remains challenging [29].

The main challenges in large-scale road detection include the variety of road and
background appearance, limited road network labels, and expensive parallel computing
power. As demonstrated in [30,31], the type of land cover influences the road extraction
performance of the DCNNs. According to the No Free Lunch Theorem (NFLT) in machine
learning, adapting to all kinds of research regions is commonly difficult for a deep learning-
based model. Therefore, it is theoretically reasonable to establish a classification model
that is specifically applied to a particular problem. Inspired by this, this paper proposes
a background-adaptive road extraction framework, where the DCNN is trained for the
specific regions with certain land use types. In our previous work [31], the OpenStreetMap
(OSM) was used to automatically generate reliable ground truth of networks, and Esri
2020 Land Cover Dataset was taken as the background land cover information. The recent
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development of cloud-based computing platforms provides a flexible and economical
option for establishing deep learning projects. In this study, the Google Earth Engine
(GEE) and the machine learning platform Google Colaboratory were used to implement
the proposed model.

The key scientific questions to be solved in this study are: (1) whether it is beneficial
to train the deep learning-based road extraction models adaptively; (2) how to cluster the
sample images according to their land cover types to achieve the best adaptive training
performance; (3) what is the relationship between the performance of the deep learning-
based road extraction algorithm and land cover type over the study area.

In order to answer the above problems, the remainder of this paper is structured as
follows: First, we introduce the study area and dataset used in the experiment. Secondly, we
describe our methods and experimental design in detail. Then, we present the experimental
results, evaluation, and discussions. Finally, a conclusion is drawn, in which the above key
scientific questions are answered.

2. Study Area and Dataset
2.1. Study Area

The study area in this paper is selected within the “One Belt and One Road” initiative
region, which covers countries in Asia and Eastern Europe. Accurately obtaining changes in
road networks contributes to the cooperation and development of countries in this region,
aiding integration into a cohesive economic zone via infrastructure, cultural exchanges,
and trade.

As shown in Figure 1, the data samples with various land cover types were collected from
randomly selected countries, including Mongolia, Russia, Cambodia, Armenia, and China.
The statistics of the proportions of all land cover types in the study area are shown in Figure 2,
showing that trees, crops, scrub/shrub, and built area account for a majority of the proportion.
Bare ground, snow/ice, and clouds accounted for a relatively very little proportion.
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2.2. Dataset

All the images in the datasets were clipped with a grid of 1024× 1024 pixels, obtaining
6820 sample images in total. The datasets used in this study include Sentinel-2 image, Esri
2020 Land Cover, and OSM data, as shown in Table 1.

Table 1. Details of the datasets used in this study.

Dataset Data Time Data Type Spatial Resolution (m)

Sentinel-2 1 January 2019–
31 December 2019

Multispectral bands:
Blue (496.6 nm (S2A)/492.1 nm (S2B)),
Green (560 nm (S2A)/559 nm (S2B)),
Red (664.5 nm (S2A)/665 nm (S2B)),
NIR (835.1nm (S2A)/833 nm (S2B))

10

Esri 2020
Land Cover Dataset 2020

Land use type classification map:
water, trees, grass, flooded vegetation, crops,

scrub/shrub, built area, bare ground,
snow/ice, and clouds

10

OSM 2019 Road data in vector format -

In this study, Sentinel-2 level-1C products provided by the European Space Agency
were used to train the DCNN model. The (mostly) cloudless Sentinel-2 images of the study
area were preprocessed using the Google Earth Engine (GEE) [32], where the visible bands
(B2, B3, B4) with 10m resolution were used. Multiple images collected at different times for
one year (1 January–1 December 2019) were median-filtered to obtain reliable images [33],
under the assumption that the road regions are not changed. The mean filter allows for
avoiding the over-saturation and underestimation of the vegetation due to phenological
changes [34].

The OpenStreetMap (OSM) [35] is an open dataset collected by non-expert users who
have a certain understanding of the region using various devices, such as satellite images,
hand-held GPS devices, aerial photos, and satellite images. Although the OSM dataset is
a large-scale dataset, it has inconsistent conditions for road data. According to [26], the
OSM data is inconsistent, but this is, however, an acceptable amount for road extraction
tasks. The original OSM data (vector form) is rasterized to be suitable for pixel-wise road
extraction tasks. A buffer with a diameter of 10m was used considering the pixel resolution
and sub-pixel extraction accuracy of Sentinel-2 data [35].

The global land cover dataset, Esri 2020 land cover dataset, was used as the prior
knowledge of land cover types, which was derived from 10m Sentinel-2 data by using deep
learning methods [35]. The dataset consists of ten land cover types (clouds, trees, water,
built area, flooded vegetation, grass, snow/ice, crops, bare ground, and scrub/shrub) with
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an overall accuracy of 85%. We assumed that the land cover type in 2020 had not changed
much from 2019 when the Sentinel-2 images were acquired from a large-scale perspective.

3. Methods
3.1. The Land Cover Background-Adaptive Framework

It has been proved that the proportion of certain background land use types in RSI
affects road extraction performance [30]. Therefore, training a universal deep learning
network is always difficult to obtain satisfactory road extraction performance in regions
with a large variety of land cover backgrounds, especially for large-scale study sites. To
tackle this, in this study, we propose a background-adaptive framework. A clustering
algorithm based on Fuzzy C-means is proposed to cluster the image sample according
to their main land cover type. Then, the proposed framework trains the deep learning
models specifically for certain land use type that has a relatively large negative effect on
road extraction performance. Finally, the specifically trained modes are used to process
those image samples that are dominated by this land use type for better adaptivity.

As depicted in Figure 3, the proposed road extraction framework consists of three
steps: preprocessing, land cover background clustering, model training, and model testing
and evaluation. The following are the implementation details of the proposed study:

(a) Preprocessing:

The preprocessing includes data sample selection, registration, and clipping. The
remote sensing images are mosaiced and clipped to a fixed size, and then the OSM data are
rasterized and registered with the remote sensing images.

(b) Land cover background clustering:

The sample images are clustered by the proportion of certain land use types that
obviously negatively affect road extraction performance. In this study, for instance, images
mainly covered by Scrub/shrubs and Built areas are clustered out for training the special-
ized deep learning network. The clustering methods used in this study are detailed in the
following Section 3.2.

(c) Model training:

Specific models are trained based on the images clustered as the certain land cover
type, while a general model is trained based on the rest of the images. For this study,
images that are mainly covered by Scrub/shrubs and Built areas are clustered to train the
specific model-1 and specific model-2, respectively.

In this study, three typical deep learning-based semantic segmentation models are
employed for road extraction, including U-Net, LinkNet, and D-LinkNet.

Adam optimizer [36] and the binary cross-entropy dice loss were used to train the road
extract models. The cross-entropy dice loss is a combination of the binary cross-entropy
loss LBCE and dice loss LDice, as follows:

L = L(y, yi)BCE + LDice (1)

L(y, yi)BCE = − 1
N

N

∑
i=1

yi· log(p(yi)) + (1− yi)· log(1− p(yi)) (2)

LDice = 1− 2TP
2TP + FP + FN

(3)

where N represents the number of samples. The dice loss measures the imbalance between the
road and background, using true positives (TP), false positives (FP), and false negatives (FN).
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extraction.

(d) Model testing and evaluation:

In the road extraction process, the remote sensing images are preprocessed and clus-
tered similarly. Then, the specific models and the general model are implemented on them,
respectively. Finally, the road extraction results are obtained by combining the output
of different models. In this study, the road extraction results are evaluated by indexes
introduced in the upcoming Section 3.3.

3.2. Land Cover Background Clustering

One of the keys of the proposed land cover background-adaptive framework is to
identify the sample images that need to be trained and classified with the specific models.
Fuzzy C-means (FCM) soft clustering is used to cluster image samples according to the
main land cover types of their background [37,38]. Unlike hard clustering algorithms such
as K-means [39], FCM generates flexible clusters suitable for cases where the objects are
difficult to classify into distinct clusters.

FCM clustering assigns membership to each datum with respect to clusters according
to the distance between the datum and the centers. The closer the datum is to a particular
cluster center, the higher the membership it has to the cluster center. The objective is to
minimize the following objective function:

Jm =
N

∑
i=1

C

∑
j=1

um
ij ‖xi − cj‖2 , 1 ≤ m < ∞ (4)

where m ≥ 1 is a real number named fuzzifier (in this paper, m = 2.5). For the ith data
xi ∈ Rd, uij indicates the degree of membership of xi in cluster j, of which the center is
cj ∈ Rd. ‖*‖ indicates any distance metric.

The Euclidean distance is used here to calculate the similarity between the center and
the data:

D(x, y) =
(
∑n

v=1|xv − yv|p
) 1

p , 1 ≤ p < ∞ (5)

where p is the order parameter which is set as 2 in this experiment.
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The objective function (1) is iteratively optimized to conduct the fuzzy partitioning,
where uij and cj are iteratively updated as follows:

uij =
1

∑C
k=1

( ‖xi−cj‖
‖xi−ck‖

) 2
m−1

(6)

cj =
∑N

i=1 um
ij ·xi

∑N
i=1 um

ij
(7)

In this study, the input feature xi for clustering is the proportion of certain land cover
types. Two widely used unsupervised clustering algorithms, K-means and DBSCAN, are
also considered in this study to evaluate the advantage of the proposed FCM clustering
method. K-means clustering is one of the most classic algorithms. It is efficient and easy to
interpret, while it tends to reach local optimum and is sensitive to the outlier value [36].
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a representative
density-based clustering algorithm. Compared with the K-means algorithm, it can better
cope with noise and detect clusters with a variety of shapes. However, it is not suitable for
the cases when the density distribution of the dataset is uneven and the difference between
clusters is large [40].

3.3. Validation and Accuracy Assessment

Four commonly used evaluation indexes for semantic segmentation [41], mIoU, Precision,
Recall, and F1 score were selected to evaluate the performance of the proposed method.

Intersection over Union (IoU) is defined as the ratio between the intersection and the
union of the predicted results and ground truth. The mIoU indicates the average of the IoU
values for different classes, defined as follows:

mIoU =
1
k

k

∑
j=1

pjj

pij + pji + pjj
, i 6= j (8)

where k indicates the number of classes. The classes j, pij, pji, and pjj, represent FP, FN, and
TP, respectively.

Precision is defined as the ratio of TP over the positive prediction results (TP + FP),
while Recall is defined as the ratio of TP over the truly predicted results (TP + TN), which
are formulated for the class j as follows:

Precision =
pjj

pij + pjj
, i 6= j (9)

Recall =
pjj

pji + pjj
, i 6= j (10)

F1 score measures the reduction of the class imbalance between road and background,
which is the harmonic mean of Precision and Recall defined as follows:

F1 = 2× Precision× Recall
Precision + Recall

(11)

F1 score ranges between 0 and 1.

4. Results
4.1. Land Cover Background Clustering

The experiments were conducted on Google Colaboratory with the Google Earth
Engine platform on a Linux system. An Nvidia Tesla T4 GPU was assigned, which has a
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graphic memory of 16GB and 320 Turing Tensor Core and 2560 CUDA core and can achieve
a floating-point computing power of approximately 65T.

Figure 4 shows examples of data samples from the study area, showing that denser
roads are distributed in Built Area and are prone to be confused with other kinds of
impervious surfaces. Moreover, the regions covered by Scrub/shrubs usually have less
dense road distribution, which is likely to be confused with bare soil. In other words, those
types of land cover significantly affect road extraction performance. Thus, in this study, the
image samples with Scrub/shrubs and Built areas are clustered and used for training the
specific model-1 and specific model-2, respectively.
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Figure 4. Examples of regions covered by Scrub/shrubs (a,b) and Built Area (c,d).

Figure 5 shows the clustering results of FCM and the distribution of Scrub/shrubs and
Built Area in the samples. The two circles on each scatter plot represent the two clustering
centers derived by FCM. The clustering centers of Built Area were 56.519% and 6.126%,
and the clustering centers of Scrub/shrubs were 74.629% and 4.333%. Therefore, the
1232 sample images of the high Scrub/shrubs proportion and 1027 samples of the high
Built Area proportion were obtained.
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In this study, the proposed background-adaptive framework was applied based on
three clustering algorithms: K-means, DBSCAN, and FCM. D-LinkNet, which achieved the
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best road extraction performance, was used to train the road extraction models. As summa-
rized in Table 2, the FCM obtained the best road extraction results, proving the advantage
of the proposed clustering algorithm. Moreover, the processing time for clustering for the
FCM was 1.607 s, which is negligible compared with the time consumed in training the
deep learning-based algorithms.

Table 2. Road extraction results obtained by different clustering methods.

K-Means DBSCAN FCM

mIoU 0.5533 0.5547 0.5694
Precision 0.2945 0.3287 0.3467

Recall 0.1867 0.3456 0.4646
F1 Score 0.2285 0.3369 0.3601

Processing Time(s) 0.0364 3.5536 1.6075

Figure 6 shows qualitative results obtained by different sub-models, showing that
the Specific model-2 contributes the most to road extraction on sample images with high
shrub proportion, while the Specific model-1 is optimal on samples with high Built Area
proportion, which have a much lower missing rate and false alarm rate. These results show
that the proposed framework works well for challenging samples.
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4.2. Large-Scale Road Extraction Results

Figure 7 presents road extraction results for large-scale road datasets. The proposed
method provides a better segmentation result than D-LinkNet. Specifically, for regions
covered by Built Area (colored red in Figure 7b), the proposed method has a much lower
false alarm rate, while for regions covered by Scrub/Shrub (colored beige in Figure 7d), the
lower missing rate is obtained.
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Figure 7. An example of the Road extraction results derived from different road extraction methods.
(a,b) are two cases where Built Area is dominant; (c) is a case with very complicated land cover
background, while (d) is a case where Scrub/Shrub is dominant.

Table 3 summarizes the road extraction performance in terms of objective evaluation
indexes, where the proposed method obtained the highest mIOU, Precision, and F1 score.
The statistical analysis of the box diagram (Figure 8) further confirmed the overall im-
provement of the proposed method towards the D-LinkNet. As can be seen in Table 3, the
proposed background-adaptive road extraction framework has comparable inferring time
with D-linkNet and LinkNet, with an average 1.3160 s per image of 1024 × 1024 pixels.

Table 3. Comparisons of the road extraction performance derived by each method.

U-Net LinkNet D-LinkNet Background-Adaptive

mIoU 0.5103 0.3098 0.5520 0.5694
Precision 0.3098 0.2927 0.2850 0.3467

Recall 0.3054 0.3776 0.5076 0.4646
F1 Score 0.2194 0.3008 0.3357 0.3601
Time (s) 0.5695 1.0893 1.1352 1.3160
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5. Discussion
5.1. Effects of Land Cover Types on Road Extraction Performance

It has been proved by previous experiments that land cover types have a significant
effect on deep learning-based road extraction algorithms. To better verify the basis of the
proposed method, this section conducts statistical analysis to evaluate the influence of the
land cover types on road extraction performance. The proportion of each land type ρX is
computed as follows:

ρX =
NX
Nall

(12)

where, NX and Nall are the number of pixels for the type X and the total number of
pixels, respectively.

The Pearson Correlation Coefficient (PCC) [42] is used to analyze the relationship
between ρX and the road extraction results, which is defined as follows:

r =
∑
(
X− X

)(
Y−Y

)√
∑
(
X− X

)2
√

∑
(
Y−Y

)2
(13)

where X and Y represent the means of X and Y, respectively. The value of PCC close to +1
or −1 indicates a higher positive or negative correlation between the two variables.

The analysis of PCCs between the land type and road extraction is given in Figure 9,
where three models provide a similar trend. The proportions of Scrub/shrubs and Built
Areas have a significantly larger negative correlation with the road extraction performance,
while the proportion of Trees in the samples is more positively correlated with the road
extraction performance. For the other land use types, the correlation is not obvious or
inconsistent for different models. The results prove the advantage of the proposed method
that adopts specifically trained models for challenging types.
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5.2. Advantages and Limitations of the Proposed Framework

The key to the proposed framework is the appropriate clustering of images according
to their land use background. The selection of specific land use types may differ in other
research areas. The FCM used in the proposed method improves road extraction due to
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its soft clustering characteristics. Another advantage of FCM is that it is an unsupervised
method that does not need any predefined thresholds. The proposed background-adaptive
framework outperforms the baseline network, D-LinkNet, in terms of all evaluation indexes
except for Recall. This is because the D-LinkNet is trained to be more sensitive and tends to
have a much higher false alarm. The OSM data was mainly derived by voluntary labeling,
which mainly includes main roads. Nevertheless, the sensitivity of the proposed model can
also be adjusted to meet the requirements of different applications. The proposed model
will be fine-tuned and verified on more datasets in the future. It is worth noting that the
influence of the land type on road extraction accuracy is related to sample size and the
distribution of land cover type in the study area. In this experiment, samples were cropped
by a grid of 1024 × 1024 pixels. Theoretically, the denser the grid cutting, the purer the
proportion of different land cover types in the samples. In future studies, we will explore
the influence of different sample sizes on road extraction accuracy to determine the optimal
sample size for large-scale road network extraction. Recently, there have also been several
public road datasets with very high resolutions, such as the Massachusetts dataset and
DeepGlobe dataset [25]. We will also verify the proposed method on more datasets in
the future.

6. Conclusions

This paper proposes a novel framework for large-scale road extraction. With the
help of increasing parallel computing capacities and the improvement of model efficiency
provided by the cloud-based geospatial data processing platform Google Earth Engine
and the machine learning platform Google Colaboratory, the application of deep learning-
based methods has become more practical than ever before. The key innovations and
contributions of this study are summarized as follows:

1. An obvious negative correlation between the proportion of Scrub/shrubs and Built
Area and the road extraction accuracy is quantitively discovered for the one belt and
road region.

2. The Fuzzy C-means clustering algorithm is proven to achieve better land cover
background clustering results than other hard clustering algorithms.

3. The proposed land cover background adaptive model achieves better road extraction
results than compared models on large-scale road extraction tasks, obtaining improve-
ments in the mIoU index by 0.0174, precision by 0.0617, and F1 score by 0.0244.

4. The efficiency of the proposed framework in the training and inferring process is
comparable to those of deep learning-based road extraction algorithms.

5. The GEE and Google Colaboratory are proved to be ideal cloud-based platforms for
large-scale remote sensing studies using deep learning algorithms.

The presented study well demonstrates the advantage of training deep neural net-
works on image samples with various land cover backgrounds adaptively for large-scale
road extraction. The proposed framework can be also applied to other classification and
object detection remote sensing tasks.
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