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Abstract: Polarimetric synthetic aperture radar (PolSAR) systems are an important remote sensing
tool. Such systems can provide high spacial resolution images, but they are contaminated by an
interference pattern called multidimensional speckle. This fact requires that PolSAR images receive
specialised treatment; particularly, tailored models which are close to PolSAR physical formation are
sought. In this paper, we propose two new matrix models which arise from applying the stochastic
summation approach to PolSAR, called compound truncated Poisson complex Wishart (CTPCW)
and compound geometric complex Wishart (CGCW) distributions. These models offer the unique
ability to express multimodal data. Some of their mathematical properties are derived and discussed—
characteristic function and Mellin-kind log-cumulants (MLCs). Moreover, maximum likelihood (ML)
estimation procedures via expectation maximisation algorithm for CTPCW and CGCW parameters
are furnished as well as MLC-based goodness-of-fit graphical tools. Monte Carlo experiment results
indicate ML estimates perform at what is asymptotically expected (small bias and mean square error)
even for small sample sizes. Finally, our proposals are employed to describe actual PolSAR images,
presenting evidence that they can outperform other well-known distributions, such as WCm , G0

m,
and Km.

Keywords: matrix model; stochastic summation; Mellin; EM

1. Introduction

Polarimetric synthetic aperture radar (PolSAR) systems are an efficient remote sens-
ing tool. Electing two among its many benefits, the use of these systems is justified by
their capability to operate under various weather conditions and of producing relevant
amounts of information about the target. However, PolSAR images are contaminated by a
multidimensional interference called speckle, which manifests as a multiplicative behavior
and a significant degree of interference on the generated data. These issues preclude both
the direct use of classical image processing techniques (which often assume additivity
and Gaussianity) and the visual interpretation of textures and targets. As a consequence,
defining adequate PolSAR models is a crucial step for several applications in polarimetry,
such as classification [1,2], segmentation [3], speckle filtering [4,5], and boundary and
change detection [6,7].

This paper is focused on distributions for multilook PolSAR data, which belong to
the set of positive definite hermitian matrices, say Ω+, and are sometimes referred to as
sample covariance matrices (SCM) [8]. There are several multilook PolSAR models in the
literature. They are often derived either from the multiplicative modeling (MM) or from
the inverse Fourier transform of its probability density function.

The goal of this paper is three-fold. Firstly, we aim to derive analytically two new
three-parameter probabilistic models referred to as compound truncated Poisson complex
Wishart (CTPCW) and compound geometric complex Wishart (CGCW) distributions, and
some of their marginal intensity laws. These marginal probability density functions are
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able to express multimodal data; this unique feature had only been previously obtained by
the use of mixture models. The relation of CTPCW and CGCW models to the multilook
PolSAR imagery physical formation is examined as well. Then, two of their properties
are derived and discussed: their characteristic functions (cf) and their Mellin-kind log-
cumulants (MLCs). Secondly, we provide maximum likelihood estimators (MLEs) via
the Expectation Maximisation (EM) algorithm for the CTPCW and CGCW parameters.
Further, we furnish CTPCW and CGCW goodness-of-fit (GoF) graphical tools. A Monte
Carlo study was conducted to quantify the performance of MLEs in terms of some figures
of merit. Third, two applications to actual PolSAR data were performed. Our proposals
are compared with three well-known PolSAR distributions: sWCm , G0

m, and Km. Results
illustrate the importance of introduced models when analysing PolSAR imagery.

This paper is organised as follows. In Section 2, we review the literature about
modeling PolSAR data, and introduce two new distributions and some of their properties.
Estimation methods and GoF tools for both distributions are provided in Section 3. In
Section 4, the numerical results are displayed. The main conclusions are drawn in Section 5.

2. PolSAR Models and Some of Their Properties
2.1. Literature Models and Physical Insight of Our Proposal

Taking the MM as a generator mechanism of PolSAR distributions, each returned
matrix associated to an image entry is the product of two independent random variables,
which describe terrain and speckle influences. For instance, assuming the m-dimensional
scaled complex Wishart model (say Y ∼ sWCm ) discussed by Nascimento et al. [9] for
describing the multilook multidimensional speckle noise for m polarisation channels with
density fY and X ∈ R+ as a random variable for the terrain with density fX, the return
models Z = YX holds from the general expression [10]

fZ(z) =
∫ ∞

0
x−m2

fY (z | x)︸ ︷︷ ︸
Speckle

fX(x)︸ ︷︷ ︸
Backscatter

dx,

where z ∈ Ω+ := {Z ∈ Cm ×Cm : Z = Z∗} is an outcome of Z and (·)∗ is the transpose
conjugate operator. The subsequent framework mentions the SCM models, when X follows
G0, N−1 (inverse normal), Γ−1 (reciprocal Gamma), Γ (Gamma), beta, beta−1 (reciprocal
Beta), and δ (Dirac) distributions.

Further, we used the Laguerre expansion to extend the Γ model for the backscatter,
resulting in the generalised form of Km [8]. In practice, the sWCm , Km, and G0

m laws are com-
monly used for understanding ocean, forest, and urban areas, respectively. Figure 1 shows
the connections among the most used PolSAR distributions. The survey by Deng et al. [11]
discusses these and other SCM models. Further, Yue et al. [12] have recently presented
a survey about how different assumptions for both scatter number and scattered field
generate all known SAR return models and new descriptors for correlated SAR textures.

Our paper addresses two new SCM three-parameter distributions based on an exten-
sion of Ref. [12] to PolSAR returns, whose marginal laws of their main diagonals are able to
describe both uni- and multi-modal events.

It is worth noting that there is a well-defined tradition of using mixtures in the
processing of SAR imagery. Mentioning that the SAR return has a multiplicative nature
and the gamma distribution a physical-based law for describing the speckle noise, Nicolas
and Tupin [13] addressed the problem of fitting finite mixtures of gamma by means of
log-cumulant theory. Krylov et al. [14] proposed a supervised classifier by combining finite
mixture modelling with copulas. Solarna et al. [15] provided unsupervised change detector
for multimodality SAR data assuming, as one of the pre-assumptions, the use of mixtures.
Figure 1 illustrates how our proposal relates to other distributions, in particular to the sWCm
law. Table 1 summarises these distributions and provides references.
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Figure 1. Diagram of limit relationships among PolSAR distributions. Here, the parameters α and β

represent shape, Σ denotes a kind of location, and L is the equivalent number of looks (ENL).

Table 1. Summary of SCM distributions.

SCM (Z) Terrain (X)× Speckle (Y) Reference

Four-parameter models

Um G0 × sWCm Bombrun and Beaulieu [16]
Gm N−1 × sWCm Freitas et al. [17]

Three-parameter models

G0
m Γ−1 × sWCm Freitas et al. [17]
Km Γ × sWCm Lee et al. [18]
Wm beta × sWCm Deng et al. [11]
Mm beta−1 × sWCm Deng et al. [11]

Two-parameter (baseline) models

sWCm δ × sWCm Anfinsen et al. [19]

Consider the physical explanation behind the MM approach [12]. Initially, taking
only one polarisation channel, it is known that if the number of scatterers, say N, in one
resolution cell is large enough and approximately constant, then the returned electromag-
netic signal,

F =
N

∑
k=1

Fk, (1)

follows the complex Gaussian law [20], where Fk is the complex-valued quantity represent-
ing the individual scatter. As a consequence, the amplitude, i.e., norm ‖F‖ =

√
F2, and

intensity I = ‖F‖2 of this signal are Rayleigh and exponential distributed, respectively.
If the number of elementary backscatterers N changes among resolution cells, it must

be described as a random variable. With this, the return is no longer Gaussian. According
to Delignon and Pieczynski [20], if:

(i) the random number of scatters N in each elementary cell follows a Poisson distribution;
(ii) its expected value E(N) = λ0 is itself a random variable Λ with density f (λ0); and
(iii) the density of the intensity I is g(x), then, adapting the original result from single-look

to the L-look case;
(iv) for λ0 large enough, the conditional model I | Λ = λ0 follows a Gamma distribu-

tion with shape L and scale (λ0σ2)−1L such that σ2 is the common variance of the
amplitude of the individual scatters; and, therefore,
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(v) the density of the unconditional intensity I is

g(x) =
∫ ∞

0
f[I|Λ=λ0]

(x) f (λ0)dλ0

=
∫ ∞

0

[L/(λ0σ2)]LxL−1

Γ(L)
exp

{
− Lx

λ0σ2

}
f (λ0)dλ0,

=
∫ ∞

0

1
λ0

fΓ(L,L/σ2)(x/λ0)︸ ︷︷ ︸
unidimensional speckle

fX(λ0)︸ ︷︷ ︸
backscatter

dλ0,

which is a model for each element in the main diagonal of SCM distributions.

In practice, hypothesis (iii) may not be realistic: high-resolution SAR sensors acquire a
few backscatterers per resolution cell. Yue et al. [12,21] discussed the physical implications
of assuming the number of scatterers as a random variable, and they derived a new model
for correlated SAR textures.

In this paper, we adopt the summation model (1) to describe multilook PolSAR returns.
PolSAR systems register the amplitude and phase of backscattered signals of reception

and transmission linear combinations, yielding four polarisation channels: FHH, FHV, FVH,
and FVV (H for horizontal and V for vertical polarisation). If the reciprocity theorem
conditions [22] are satisfied, then FHV = FVH. Thus, multilook PolSAR returns have
the form:

F =
N

∑
i=1

1
L

L

∑
`=1


F(`)

HH,i

F(`)
HV,i

F(`)
VV,i

[F∗(`)HH,i F∗(`)HV,i F∗(`)VV,i

]
,

where F(`)
A,i ∈ C is the scattering in channel A ∈ {H, V} at the ith individual scatterer and

`-th look. Based on the results by Goodman [23] and Hagedorn et al. [24], we have evidence
that the complex Wishart distribution can meaningfully represent the PolSAR return in
homogeneous scenarios. Moreover, the truncated Poisson and geometric distributions
are suggested to be suitable laws for modelling the returned signals within a resolution
cell. Therefore, combining these two evidences, we propose the sum of a random number
of complex Wishart models, with the number of terms following the truncated Poisson
and geometric laws as two descriptors for the matrix-return F. In what follows, we detail
our contributions.

2.2. New Models

Assume that the random number of scatterers, N ∈ Z+, per individual cell follows
one of two possible distributions: truncated Poisson [25,26], denoted N ∼ TPo(λ) with
probability mass function (pmf) Pr(N = k) = λk/

[
k!
(
eλ − 1

)]
, and Geometric [27,28],

X ∼ Geo(p) having pmf Pr(N = k) = p(1− p)k−1. In these cases, λ > 0 denotes the mean
number of scatterers, while p ∈ (0, 1) is the probability of finding an individual scatterer.
When p ↑ 1 or λ ↓ 0, these models represent the existence of one scatter per cell with
probability 1.

The SAR literature has indicated the Poisson [20] and negative binomial [29] models
for N in the MM context, but we use the TPo and Geo laws for their analytic tractability.

First, set N ∼ TPo(λ) and Zi ∼ WCm (Σ, L) for i = 1, . . . , N with probability density
function (pdf),

f (zi) =
|zi|L−m

|Σ|LΓm(L)
exp

{
− tr

(
Σ−1zi

)}
,
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where Γm(L) = π
m(m−1)

2 ∏m−1
i=0 Γ(L− i) is the multivariate gamma function. Then, Sk =

∑k
i=1 Zi ∼ WCm (Σ, kL) [30], and the coherence matrix per cell follows the CTPCW law,

i.e., S = ∑N
i=1 Zi, has pdf [31],

f (s) =
∞

∑
k=1

Pr(N = k) fSk (s)

=

(
1

eλ − 1

) ∞

∑
i=1

λk

k!
fWCm (Σ,kL)(s)

=

[
e− tr(Σ−1s)

|s|m
(
eλ − 1

)] ∞

∑
i=1

(
λ|Σ−1s|L

)k

k!Γm(kL)
,

where s = {si,j} is an outcome of S = {Si,j}. This situation is denoted by S ∼ CTPWCm (λ, Σ, L).
According to Hagedorn et al. [24], the ith marginal intensity of Sk follows the Γ(kL, (2σ2

i )
−1)

model; the CTPWCm marginal distribution, say Si,i, for the intensity of the ith channel
has density

f (si,i) =
∞

∑
k=1

Pr(N = k) fΓ(kL,2−1σ−2
i )(si,i) =

 e
−

si,i
2σ2

i

si,i(eλ − 1)

 ∞

∑
k=1

[
λ(2−1σ−2

i si,i)
L
]k

k!Γ(kL)
, (2)

where σ2
i is the (i, i)th entry of Σ.

Now assume that N ∼ Geo(p) and Zi ∼ WCm (Σ, L) for i = 1, . . . , N; the coherence
matrix per cell following the CGCW model, S = ∑N

i=1 Zi, has density

f (s) =
∞

∑
k=1

Pr(N = k) fSk (s) =
pe− tr(Σ−1s)

(1− p)|s|m
∞

∑
k=1

[
(1− p)|Σ−1s|L

]k

Γm(kL)
.

We denote this situation as S ∼ CGWCm (p, Σ, L). The marginal model for intensity of
the ith channel is:

f (si,i) =
∞

∑
k=1

Pr(N = k) fΓ(kL,2−1σ−2
i )(si,i) =

pe
−

si,i
2σ2

i

(1− p)si,i

∞

∑
k=1

[
(1− p)(2−1σ−2

i si,i)
L
]k

Γ(kL)
. (3)

Figure 2 displays CTPWCm and CGWCm marginal densities. It is noticeable that they
can be multimodal, an appealing feature of the proposed marginal models for describing
high-resolution data, in contrast with other marginals in PolSAR three-parameter laws,
e.g., the G0 and K laws which are unimodal.

2.3. Mathematical Properties

In this section, we derive the cf of CTPWCm and CGWCm distributions. To that end,
consider the following lemma [31,32].

Lemma 1. Let S =
N
∑

i=1
Zi be such that Z1, . . . , ZN is a random sample drawn from Z with cf

ϕZ(·), and N is a positive integer random variable having cf ϕN(·). The cf of S, when N and Zi
are independent, is given by

ϕS(T) = E(eiTS) = ϕN(−i log ϕZ(T)), where i =
√
−1.

The next corollaries hold from Lemma 1.
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Figure 2. Marginal densities CTPWCm and CGWCm distributions.

Corollary 1. Let Zk ∼ WCm (L, Σ), having cf ϕZk (T) = E(eitr(TZk)) = |Σ|−L|Σ−1 − iT |−L and

N ∼ TPo(λ) with ϕN(t) =
eλeit − 1
eλ − 1

. Thus, the cf of S = ∑N
i=1 Zi ∼ CTPWCm is

ϕS(T) =
exp

{
λ exp

{
i
[
−i log

(
|Σ|−L|Σ−1 − iT |−L)]}}− 1

eλ − 1

=
exp

{
λ|Σ|−L|Σ−1 − iT |−L}− 1

eλ − 1
.

Details about the proof of this corollary (and other theoretical results) are in the
Supplementary Materials.
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Corollary 2. Let Zi ∼ WCm (L, Σ) and N ∼ Geo(p) having cf ϕN(t) =
peit

1− qeit =
p

e−it − q
.

Thus, the cf of S = ∑N
i=1 Zi ∼ CGWCm is expressed by

ϕS(T) =
p(

exp{− log(|Σ|−L|Σ−1 − iT |−L)}
)−1 − q

=
p(

|Σ|L|Σ−1 − iT |L
)−1 − q

.

With the exception of the complex Wishart law, most PolSAR models have a cf depen-
dent of special functions, e.g., the hypergeometric function, that precludes their manip-
ulation. Corollaries 1 and 2 represent a significant improvement because of their expres-
siveness and tractability: various moment-kind properties can be derived, e.g., variance
and cumulants.

3. Maximum Likelihood and Mellin-Based Inference Procedures

This section addresses a two-fold goal: providing an estimation procedure for the
proposed models and developing goodness-of-fit (GoF) tools to quantify their adherence to
PolSAR data. The first goal is attained with likelihood-based inference, while the second is
based on the Mellin transform.

3.1. Maximum Likelihood Estimation via EM

In this section, we develop the MLEs for CTPWCm and CGWCm parameters by means of the
EM algorithm [33]. Let S = ∑N

i=1 Zi be such that N ∼ {TP(λ) or Geo(p)} and Zi ∼ WCm (Σ, L)
for i = 1, . . . , N and both pairs (Zi, Zj) and (N, Zi) are independent ∀i 6= j. Consider that
S1, . . . , ST is a T-points random sample drawn from S ∼ {CTPWCm , CGWCm }. Note that
S = (S1, . . . , ST) is observable, but N = (N1, . . . , NT) is not. Let (S, N) be the complete set of
observations having joint density (for θ = (λ, vec(Σ)>)> or (p, vec(Σ)>)>), then

Lc(θ | n, s) = fS,N(s, n | θ) =
T

∏
i=1

fSi ,Ni (si, ni | θ) =
T

∏
i=1

fSi |Ni=ni
(si | ni, θ)Pr(Ni = ni),

where s = (s1, . . . , sT) and n = (n1, . . . , nT) are outcomes of S and N. Thus, the MLEs via
EM are determined by the next steps:

• Step E: Derive
Q(θ | θ0, s) := Eθ0 [log Lc(θ | N, s)],

where Eθ0 is the expected value with respect to [N | θ0, s] wih pmf f (N | θ, s).
• Step M: In the (t + 1)th iteration, find θ̂(t+1) that maximizes Q(θ | θ(t), s),

θ̂(t+1) = arg max
θ∈Θ

Q(θ | θ
(t)
0 , s),

where Θ is the parametric space.

These steps should be repeated until convergence is achieved. To this aim, we adopt
as a stopping criterion ‖θ(t+1) − θ(t)‖ < ε, where ‖ · ‖ is the Euclidean norm function and
ε is a specified precision level, defined as ε = 1× 10−4 in this study. The next corollary
determines MLE expressions.

Corollary 3. For the CTPWCm distribution, the MLE for θ = (λ, vec(Σ)>)> is θ̂ = (λ̂, vec(Σ̂)>)>

where λ̂ is defined as a root of the nonlinear equation,

λ̂(t+1)

(1− e−λ̂(t+1)
)
=

1
T

T

∑
i=1

E(N | θ(t), S = si) (4)



Remote Sens. 2022, 14, 5083 8 of 24

and

Σ̂(t+1) =
TS

L ∑T
i=1 E(N | θ(t), S = si)

, (5)

where S = T−1 ∑T
i=1 si, and

E(N | θ(t), S = si) =
∞

∑
i=1

kiP(N = ki | θ(t), S = si)

=
∞

∑
i=1

ki
fSki

(si | θ(t)) · P(N = ki | θ(t))

fS(si | θ(t))

=

∑∞
i=1 ki


λ(t)

1
L | si|
|Σ(t)|

L


ki

1
Γm(kiL)

∞
∑

j=1


λ(t)

1
L | si|
|Σ(t)|

L


j

1
Γm(jL)

.

For the CGWCm distribution, the MLE for θ = (p, vec(Σ)>)> is θ̂ = ( p̂, vec(Σ̂)>)>, where

p̂(t+1) =
T

∑T
i=1 E(N | θ(t), S = si)

, (6)

and

Σ̂(t+1) =
TS

L ∑T
i=1 E(N | θ(t), S = si)

, (7)

where

E(N | θ(t), S = si) =
∞

∑
i=1

kiP(N = ki | θ(t), S = s)

=
∞

∑
i=1

ki
fSki

(si | θ(t)) · P(N = ki | θ(t))

fS(si | θ(t))

=

∑∞
i=1 ki

( q
1
L |si|
|Σ(t)|

)L
ki

1
Γm(kiL)

∞
∑

j=1

( q
1
L | si|
|Σ(t)|

)L
j

1
Γm(jL)

,

and q = 1− p0.

3.2. Mellin Diagram

The Mellin-kind transform applied to hermitian random matrices is defined on Ω+ [19]
and, therefore, can be applied to the CTPWCm and CGWCm models. Anfinsen and Eltoft [10]
have shown that this transform may be used as a new statistical inference mechanism by
means of Mellin-kind statistic (MKS). MKSs have been derived for the sWCm [23], Km [18],
G0

m [17], and Um [16] distributions, along with GoF tools having graphical appeal. In what
follows, this paper tackles the derivation of the CTPWCm and CGWCm MKSs in order to
evaluate the fitting quality of proposed models.
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Let C ∈ Ω+, then the complex matrix-variate Mellin-kind transform of a real-valued
function, say g(C) : Ω+ → R, is

φC(s) =M{g(C)}(s) =
∫

Ω+

|C|s−mg(C)dC,

with s ∈ C, whenever the integral exists. Let g(C) =
∞
∑

k=1
P(N = k) fSk (C) such that

fSk (C) =
|C|(kL)−m

|Σ|(kL)Γm(kL)
exp

{
−tr(Σ−1C)

}
.

Thus,

φC(s) =M{g(C)}(s) =
∫

Ω+

∞

∑
k=1

Pr(N = k)
|C|(kL)+s−2m

|Σ|(kL)Γm(kL)
e−tr(Σ−1C)dC.

After some algebraic manipulations,

φC(s) =
∞

∑
k=1

Pr(N = k)
|Σ|(kL+s−m)Γm(kL + s−m)

|Σ|(kL)Γm(kL)∫
Ω+

|C|(kL)+s−2m

|Σ|(kL+s−m)Γm(kL + s−m)
e−tr(Σ−1C)dC

=
∞

∑
k=1

Pr(N = k)|Σ|(s−m) Γm(kL + s−m)

Γm(kL)
. (8)

The Mellin-kind cumulant-generating (MCGF) function is defined as:

ϕC(s) = log φC(s),

and the νth-order MLC is defined as

κνC =
dν

dsν
ϕC(s)

∣∣∣∣
s=m

.

1. Thus, for N ∼ TPo(λ) in (8), MCGF is given by

ϕC(s) = − log(eλ − 1) + (s−m) log|Σ|+ log

[
∞

∑
k=1

λk

k!
Γm(kL + s−m)

Γm(kL)

]
,

and
2. for N ∼ Geo(p) in (8), MCGF has the form

ϕC(s) = − log p + (s−m) log|Σ|+ log

[
∞

∑
k=1

q(k−1) Γm(kL + s−m)

Γm(kL)

]
.

Three νth-order MLCs for CTPWCm and CGWCm laws are given in the next proposition.
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Corollary 4. The first, second, and third MLCs for the CTPWCm and CGWCm models are expressed
by, respectively,

κ1 = log|Σ|+
(

∞

∑
k=1

Pr(N = k)ψ(0)
m (kL)

)
,

κ2 = −
[

∞

∑
k=1

Pr(N = k)ψ(0)
m (kL)

]2

+
∞

∑
k=1

Pr(N = k)
[(

ψ
(0)
m (kL)

)2
+ ψ

(1)
m (kL)

]

and

κ3 = 2

(
∞

∑
k=1

Pr(N = k)ψ(0)
m (kL)

)3

− 3

(
∞

∑
k=1

Pr(N = k)ψ(0)
m (kL)

)

×
{

∞

∑
k=1

Pr(N = k)
[(

ψ
(0)
m (kL)

)2
+ ψ

(1)
m (kL)

]}

+
∞

∑
k=1

Pr(N = k)

[(
ψ
(0)
m (kL)

)3
+ 3ψ

(0)
m (kL)ψ(1)

m (kL) + ψ
(2)
m (kL)

]
.

Based on these results, we can construct GoF tools for assessing our proposals in
practice. To develop the Mellin diagram, one should first estimate the parameters and
determine a quota for summations of proposed models. Next, the parametric cumulants κ2
and κ3 can be obtained and a curve is obtained for each distribution. Thus, from sample
cumulants based on PolSAR data, it is possible to check the adherence of the proposed
model to the data.

4. Results and Discussion
4.1. Analysis of Simulated Data

We devised a Monte Carlo experiment to quantify the asymptotic behavior of MLEs
for parameters [λ, Σ] and [p, Σ]. To this end, CTPWCm and CGWCm samples were generated
having sizes T = 10, 30, 100, 1000. We produced one thousand replicas for each. We
assumed the number of looks L = 4 and, as common matrix,

Σ =

 0.07582 0.00364 + 0.00388i 0.01604 + 0.01125i
0.00364− 0.00388i 0.03737 0.00151 + 0.00202i
0.01604− 0.01125i 0.00151− 0.00202i 0.06308

,

with (|Σ| = 0.00016 and tr(Σ) = 0.17626). This matrix was determined by the average
value of returns at the area AS in Figure 3 (the Foulum image discussed in detail in the
Section 4.2). Notice that this is a heterogeneous area with observations coming from more
than a single distribution.

Figure 3. Selected area of EMISAR image Foullum (channel HH) to determine the average matrix as
a real values form in the data simulation.
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For CTPWCm and CGWCm models, values of λ ∈ {0.1, 0.5, 1.0} and p ∈ {0.99, 0.7, 0.4}
were chosen to represent returned matrices from homogeneous scenes to heterogeneous
ones. We used the mean square error and bias as figures of merit to assess the performance
of the estimates.

Tables 2 and 3 display estimated parameters under the CTPWCm and CGWCm models,
respectively. In general, we observe the smallest bias and MSE with the largest sample
sizes, as expected. More pronounced texture targets (as for λ = 1 and p = 0.4) required
larger sample sizes for achieving better quality measures than in homogeneous situations.

Table 2. Performance of MLEs for CTPWCm data.

n
λ̂ tr(Σ̂) |Σ̂|(

MSEλ̂

) (
MSEtr(Σ̂)

) (
MSE|Σ̂|

)
λ = 0.10

10 0.1288 0.17321 0.00014
(0.04166) (4.00× 10−4) (2.49× 10−9)

30 0.1087 0.17544 0.00015
(0.01073) (1.20× 10−4) (8.25× 10−10)

100 0.1011 0.17608 0.00016
(0.00298) (3.78× 10−5) (2.54× 10−10)

1000 0.0999 0.17627 0.00016
(0.00029) (3.54× 10−6) (2.41× 10−11)

λ = 0.50
10 0.5644 0.17140 0.00014

(0.14842) (5.30× 10−4) (3.52× 10−9)
30 0.5197 0.17553 0.00015

(0.03998) (1.40× 10−4) (1.01× 10−9)
100 0.5017 0.17589 0.00016

(0.01160) (4.06× 10−5) (2.89× 10−10)
1000 0.49931 0.1763 0.00016

(0.00112) (3.95× 10−6) (2.87× 10−11)
λ = 1.00

10 1.0745 0.17088 0.00015
(0.26535) (6.70× 10−4) (4.95× 10−9)

30 1.0115 0.17549 0.00016
(0.06560) (1.80× 10−4) (1.36× 10−9)

100 0.9923 0.17710 0.00016
(0.02004) (5.19× 10−5) (3.94× 10−10)

1000 0.9834 0.17751 0.00016
(0.00228) (7.09× 10−6) (5.42× 10−11)

Table 3. Performance of MLEs for CGWCm data.

n
p̂ tr(Σ̂) |Σ̂|(

MSE p̂

) (
MSEtr(Σ̂)

) (
MSE|Σ̂|

)
p = 0.40

10 0.4903 0.21160 0.00035
(0.02018) (0.00506) (2.47× 10−7)

30 0.5215 0.22931 0.00040
(0.02096) (0.00483) (1.16× 10−7)

100 0.5256 0.23184 0.00038
(0.01760) (0.00366) (6.19× 10−8)

1000 0.5310 0.23397 0.00038
(0.01733) (0.00338) (4.89× 10−8)

p = 0.70
10 0.7183 0.17387 0.00015

(0.02056) (0.00054) (4.23× 10−9)
30 0.7056 0.17607 0.00016

(0.00616) (0.00018) (1.41× 10−9)
100 0.7095 0.17756 0.00017

(0.00176) (7.00× 10−5) (5.53× 10−10)
1000 0.7070 0.17800 0.00017

(0.00022) (8.75× 10−6) (6.62× 10−11)
p = 0.99

10 0.9828 0.17450 0.00015
(0.00235) (0.00033) (2.17× 10−9)

30 0.9878 0.17646 0.00016
(0.00057) (0.00011) (7.55× 10−10)

100 0.9900 0.17570 0.00016
(0.00017) (3.32× 10−5) (2.09× 10−10)

1000 0.9909 0.17640 0.00016
(2.22× 10−5) (3.29× 10−6) (2.27× 10−11)
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4.2. Analysis of Data from Actual Sensors

Firstly, we studied an AIRSAR (Airborne Synthetic Aperture Radar) image of a region
of the San Francisco bay (USA). This image was captured with four nominal looks. Secondly,
we applied our proposals to an EMISAR (SAR image system of the Electromagnetics
Institute) image of the Foullum (DK) region that has eight nominal looks. Thirdly, we
analysed an E-SAR image of the Neubrandenburg (Northeastern Germany) agricultural
areas, obtained at during the AGRISAR flight campaign and with ten nominal looks.

In order to illustrate the effect of the texture over the values of MLEs, Figure 4 displays
the San Francisco image and three of its highlighted areas in the HH channel. Areas
A1, A2, and A3 represent ocean (least textured case), forest (intermediate texture), and
urban (strongly textured) scenarios, respectively. Table 4 presents MLEs for sWCm , CTPWCm
and CGWCm parameters in regions A1, A2, and A3, and in the full image. For MLEs of
Σ, the CTPWCm model presented a performance closer to sWCm than CGWCm , mainly in
ocean scenarios (for which the literature [17,34] suggests using sWCm ). With respect to
additional parameters λ and p, large values of λ̂ or small values of p̂ indicate regions with
more pronounced textures; while (λ, p) −→ (0, 1) indicates that the new models collapse
in sWCm .

Now we estimate the parameters of both distributions for the whole image over non-
overlapping windows of size 7× 7 = 49 pixels. Figures 5–7 show maps of these estimates
for San Francisco, Foulum and Neubrandenburg images, respectively.

Table 4. MLE for the sWC
m (L, Σ), CTPWC

m (λ, L, Σ), and CGWC
m (p, L, Σ) distributions with L = 4.

Model |Σ̂| λ̂ p̂ k

A1
sWC

m 2.39×10−9 • • •
CTPWC

m 2.39×10−9 1.00×10−5 • 4
CGWC

m 1.94×10−9 • 0.93 4

A2
sWC

m 5.38×10−7 • • •
CTPWC

m 5.38×10−7 9.73×10−5 • 6
CGWC

m 3.81×10−7 • 0.89 9

A3
sWC

m 1.90×10−5 • • •
CTPWC

m 1.37×10−5 0.22 • 5
CGWC

m 1.19×10−5 • 0.86 5

full image
sWC

m 1.18×10−5 • • •
CTPWC

m 8.00×10−6 0.26 • 6
CGWC

m 7.29×10−6 • 0.85 6

Figure 4. AIRSAR image of San Francisco (channel HH) with selected regions.
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(a) Pauli representation for San Francisco Image.

(b) λ̂ of CTPWCm estimated. (c) p̂ of CGWCm estimated.

(d) tr(Σ̂) of CTPWCm estimated. (e) tr(Σ̂) of CGWCm estimated.

(f) |Σ̂| of CTPWCm estimated. (g) |Σ̂| of CGWCm estimated.

Figure 5. Maps of estimated parameters of San Francisco for CTPWCm (left) and CGWCm (right)
distributions, respectively.

MLE estimates for λ, tr(Σ), and |Σ| under CTPWCm are exhibited in Figure 5b,d,f, respec-
tively. Figure 5c,e,g display the maps of MLEs of p, tr(Σ), and |Σ|, respectively, under the
CGWCm model.
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The pairs of Figure 5d,e and Figure 5f,g show very similar results. The trace and
the determinant are able to identify three regions: urban areas appear in green, forests in
orange, and ocean in red. In Figure 5b,c, the MLEs for λ and p assumed values in (0, 1) and
(0.5, 1), respectively. It is noticeable that the subsets [p < 0.6] and [λ > 0.3] indicate urban
scenarios, under the hypothesis that AIRSAR return follows CPTWCm and CGWCm models.

Figure 6 shows values of MLEs for the Foulum image. Maps for λ̂ and p̂ are in
Figure 6b,c. Edges and background areas of the image are highlighted. Figure 6d,e presents
the estimates of tr(Σ̂) and |Σ̂|. The largest estimates addressed areas of Conifer, Wheat and
Rapeseed, while the smallest values were associated with other areas.

(a) Pauli representation for Foulum Image.

(b) λ̂ of CTPWCm estimated. (c) p̂ of CGWCm estimated.

(d) tr(Σ̂) of CTPWCm estimated. (e) tr(Σ̂) of CGWCm estimated.

Figure 6. Cont.
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(f) |Σ̂| of CTPWCm estimated. (g) |Σ̂| of CGWCm estimated.

Figure 6. Maps of estimated parameters of Foulum for CTPWCm (left) and CGWCm (right) distribu-
tions, respectively.

Maps of MLEs for the Neubrandenburg image are exhibited in Figure 7. From both
Figure 7b,c and the AgriSAR 2006 report (https://earth.esa.int/eogateway/campaigns/
agrisar-2006, accessed on 5 September 2022), large values of λ̂ identify high levels of
roughness, and built areas from crop ones [35]. In Figure 7b–g, it is possible to identify five
kinds of crops: winter rape (yellow), winter wheat (red), maize (green), winter barley (light
red) and sugar beet (light green).

(a) Pauli representation for Demmin - Görmin Image.

(b) λ̂ of CTPWCm estimated. (c) p̂ of CGWCm estimated.

(d) tr(Σ̂) of CTPWCm estimated. (e) tr(Σ̂) of CGWCm estimated.

(f) |Σ̂| of CTPWCm estimated. (g) |Σ̂| of CGWCm estimated.

Figure 7. Maps of estimated parameters of CTPWCm (left) and CGWCm (right) distributions, respectively.

Now, we are in position to describe actual PolSAR scenarios by means of CTPCWCm
and CGCWCm distributions, comparatively to three well-defined models: sWCm ,Km, and G0

m.
Three scenes of San Francisco and six of Foulum to represent one area type are displayed

https://earth.esa.int/eogateway/campaigns/agrisar-2006
https://earth.esa.int/eogateway/campaigns/agrisar-2006
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in Figures 8a and 9a, respectively. In this case, a windows of 16× 16 = 256 pixels was
considered to represent each region of the image. In these windows, 100 random samples
with replacements were made with a length of 128 pixels and the average was extracted [10].
Figures 8c and 9b exhibit the MLC diagram having: (i) the projection curves due to five
considered matrix models and (ii) pairs of sample MLCs (κ2, κ3) of highlighted regions in
Figures 8a and 9a. The sample MLCs of each image sample have been plotted over the
population MLC manifolds of the sWCm , Km, G0

m, CTPWCm and CGWCm distributions.

(a)

−20 0 20 40 60

0
5

10
15

κ3

κ 2

Wishart
K
G0

CPTW
CGW

(b)

−4 −2 0 2 4 6

1
2

3
4

5
6

7

κ3

κ 2

Wishart
K
G0

CPTW
CGW

(c)

Figure 8. MLC diagram with sample MLCs computed from the samples of San Francisco. (a) Subset
areas of San Francisco. (b) MLC diagram with sample MLCs computed from the samples in (a). (c)
Zoom on the data.

In Figure 8a, we have extracted ocean (cyan square), vegetation (gold square), and
urban (dark red square) samples. According to the MLC maps, the ocean sample had the
best fit at the sWCm distribution, the vegetation one overlapped the Km curve and the urban
sample assumed the best fit on three curves: G0

m, CTPWCm (with larger number of points)
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and CGWCm . It is worth highlighting that there is a continuity break in the CTPWCm (κ2, κ3)
curve for this case.

In Figure 9a, we have extracted the background (green square; representing unknown
areas), Rapeseed (pink square), Wheat (cyan square), Oat (orange square), Rye (gray square),
and Conifer (teal square) samples. The Conifer, Rye, and Wheat samples have overlapped
on the sWCm curve. The Rapeseed sample fitted on the G0

m distribution, the background
sample had the points between the G0

m and CGWCm laws, and the Oat sample had the best
fit on the CTPWCm curve.

(a)

−20 0 20 40 60

0
5

10
15

20

κ3

κ 2

Wishart
K
G0

CPTW
CGW

(b)

Figure 9. MLC diagram with sample MLCs computed from the samples of Foulum. (a) Subset areas
of Foulum [36]. (b) MLC diagram with sample MLCs computed from the samples in (a).

Figure 10c highlights five crop scenes: winter barley (purple), sugar beet (gray), winter
wheat (dark green), winter rape (brown) and maize (light blue). The sWCm distribution
presented the best fit for three last scenes. The two proposed models furnished the best
description for Winter Barley.
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(a)
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(c)

Figure 10. MLC diagram with sample MLCs computed from the samples of AgriSAR. (a) Subset
areas of AgriSAR. (b) MLC diagram with sample MLCs computed from the samples in (a). (c) Zoom
on the data.

Finally, in order to complement the adequacy study of polarimetric distributions, we
compared the fits of their marginal models. The marginal densities of the CTPCWCm and
CGCWCm distributions are given in Equations (2) and (3), while those due to sWCm and
Km, G0

m are the Γ [24], K [37] and G0 [38] laws. These laws were employed to describe the
intensities related to HH, HV and VV channels of the used images, considering ENL fixed.
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We estimated the parameters of the proposed models, i.e., those characterised by den-
sities (2) and (3), by way of the moments method. Let z1, . . . , zN be the observed intensity
returns at a polarisation channel, and denote Z = N−1 ∑N

i=1 zi and Z2 = N−1 ∑N
i=1 z2

i :

• The MoM estimates for (λ, σ2) in (2), (λ̂, σ̂2), are given by:

σ̂2 =
1
2

Z
(
eλ̂ − 1

)
L λ̂ eλ̂

and λ̂ is a solution of the nonlinear equation:

Z2 =
Z2 (eλ̂ − 1

)
L λ̂ eλ̂

[(L + 1) + λ̂ L].

• The MoM estimates for (p, σ2) in (3), ( p̂, σ̂2), are given by:

p̂ =
2 σ̂2

Z
and σ̂2 =

Z2 − 1
2 Z2

Z(L− 1)
,

subjected to the constraint Z−2 Z2 < 2 (condition that was verified for all used data).

Tables 5–7 show values of the Kolmogorov–Smirnov statistic (and its associated p-
value), SKS, and corrected Akaike information criterion (AICc) for San Francisco, Foulum
and Neubrandenburg images. It is known that the first comparison measure assesses the fit
to the empirical cumulative distribution function, while the second defines a comparison
criterion in terms of empirical densities.

Table 5. Results of fitting intensities of San Francisco PolSAR data, for L fixed.

Region
AICc Values KS Statistics (p-Value)

Γ K G0 CTPCW CGCW Γ K G0 CTPCW CGCW
Ocean HH −3336.182 −3353.678 −3350.913 −3349.626 −3349.205 0.0463 (0.3352) 0.0436 (0.4064) 0.0339 (0.7228) 0.0354 (0.6736) 0.0339 (0.7257)
Ocean HV −5370.004 −5367.173 −5370.251 −5371.358 −5371.422 0.0341 (0.7195) 0.0361 (0.6481) 0.0233 (0.9774) 0.0213 (0.9914) 0.0211 (0.9924)
Ocean VV −2449.256 −2460.579 −2459.775 −2457.083 −2456.303 0.0623 (0.0788) 0.0447 (0.3767) 0.0468 (0.3201) 0.0499 (0.2506) 0.0505 (0.2385)
Forest HH −778.383 −1678.613 −1756.631 −1123.571 −1644.802 0.2953 (0.0000) 0.0842 (0.0004) 0.02656 (0.7909) 0.0924 (0.0000) 0.0791 (0.0011)
Forest HV −1920.739 −2657.491 −2704.299 −1987.513 −2616.529 0.2420 (0.0000) 0.0424 (0.2303) 0.0318 (0.5763) 0.0769 (0.0016) 0.0221 (0.9319)
Forest VV −780.561 −1702.588 −1757.682 −1135.981 −1674.072 0.2862 (0.0000) 0.0717 (0.0041) 0.0241 (0.8753) 0.0878 (0.0002) 0.0644 (0.0137)
Urban HH 1109.161 −61.096 −150.191 −613.3867 −604.9043 0.4206 (0.0000) 0.0996 (0.0013) 0.0294 (0.9063) 0.0622 (0.2362) 0.0702 (0.1313)
Urban HV −396.151 −1215.056 −1257.915 −1371.682 −1369.557 0.3222 (0.0000) 0.0728 (0.0405) 0.0371 (0.6894) 0.0898 (0.0232) 0.0918 (0.0189)
Urban VV 549.423 −178.221 −191.749 −587.054 −563.3056 0.3283 (0.000) 0.0641 (0.0976) 0.0555 (0.2057) 0.0572 (0.3256) 0.0767 (0.0775)

From Table 5, the K and CGCW marginals show the best results for ocean regions. The
G0 distribution yields the best fits for forest regions; with the exception of the HV channel
which is best represented by the CGCW distribution. The best characterisations for urban
scenarios are made by the G0 and CPTCW distributions.

From Table 6, the G0, CPTCW and CGCW marginals obtain the best results for Back-
ground, Rape and Wheat regions. The Oat region is best characterised by the proposed
models; with exception of the VV channel, on which the Γ law presents the smallest AICc.
Our models suggest the best fits for Rye and Conifer regions.

From Table 7, the Γ marginal shows the best results for the beet region. The Γ and
CGCW obtain the best performance for the Maize region. The G0 and proposed models
achieve the best fits for the Rape and Barley regions. The K, G0 and CGCW laws provide
the best descriptions of Wheat.

Figure 11 shows three empirical and fitted density plots for the San Francisco urban,
Foulum background and DEMMIN-Gormin winter rape images. We computed the his-
tograms using the Freedman and Diaconis [39] rule. It is noticeable that the proposed
marginal distributions tend to produce more flexible curves than the classical ones. In
San Francisco urban scenarios, the CTPCW and G0

I distributions furnish the best adher-
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ence by the KS statistics. In the Foulum background areas, the CTPCW and CGCW laws
perform better than the others. The best fits to DEMMIN-Gormin rape scenes are pro-
duced by the G0 and CTPCW laws. Additional fits for other scenarios can be found
in https://www.dropbox.com/s/bjpcri9jfgtxglp/Graphs.pdf?dl=0 (accessed on 3 Octo-
ber 2022).
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(a) Urban/VV/San Francisco.
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(c) Winter Rape/HH/DEMMIN-Gormin.

Figure 11. Empirical and fitted densities for San Francisco, Foulum and DEMMIN-Gormin images.

https://www.dropbox.com/s/bjpcri9jfgtxglp/Graphs.pdf?dl=0
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Table 6. Results of fitting intensities of Foulum PolSAR data, for L fixed.

Region
AICc Values KS Statistics (p-Value)

Γ K G0 CPTCW CGCW Γ K G0 CTPCW CGCW
Back. HH 13,644.297 −5662.811 −6727.839 37,551.191 31,703.135 0.7328 (0.0000) 0.3375 (0.0000) 0.2438 (0.0000) 0.2567 (0.0000) 0.2536 (0.0000)
Back. HV 15,795.002 −8111.433 −9317.474 31,848.566 19,651.018 0.7509 (0.0000) 0.3682 (0.0000) 0.2684 (0.0000) 0.2541 (0.0000) 0.2701 (0.0000)
Back. VV −1086.881 −6128.267 −6639.634 −3668.218 −6014.533 0.5713 (0) 0.2425 (0.0000) 0.1813 (0.0000) 0.1758 (0.0000) 0.1557 (0.0000)
Rape HH −15,538.403 −16,372.233 −16,398.015 −16,324.445 −16,311.755 0.1189 (0.0000) 0.0178 (0.2733) 0.0134 (0.6230) 0.0362 (0.0005) 0.0391 (0.0001)
Rape HV −28,160.355 −28,834.923 −28,383.304 −28,872.724 −28,849.118 0.1202 (0.0000) 0.0403 (0.0000) 0.1311 (0.0000) 0.0326 (0.0026) 0.0365 (0.0000)
Rape VV −15,421.004 −15,404.677 −15,462.128 −15,490.977 −15,493.038 0.0369 (0.0004) 0.0409 (0.0000) 0.0292 (0.0099) 0.0217 (0.1052) 0.0210 (0.1276)

Wheat HH −13,267.144 −13,224.354 −13,226.610 −13,323.948 −13,324.126 0.0299 (0.0222) 0.0390 (0.0007) 0.0475 (0.0000) 0.0152 (0.6067) 0.0153 (0.5949)
Wheat HV −24,981.209 −26,733.414 −27,045.345 −26,693.55 −26,979.18 0.1790 (0.0000) 0.1032 (0.0000) 0.1254 (0.0000) 0.0272 (0.0480) 0.0291 (0.0279)
Wheat VV −9490.612 −9360.921 −9420.177 −9383.994 −9490.997 0.0165 (0.4944) 0.0577 (0.0000) 0.0481 (0.0000) 0.0358 (0.0031) 0.0151 (0.6164)

Oat HH −35,266.728 −34,939.282 −35,116.783 −35,324.396 −35,154.303 0.1344 (0.0000) 0.1584 (0.0000) 0.1441 (0.0000) 0.1201 (0.0000) 0.1621 (0.0000)
Oat HV −43,082.474 −42,739.723 −42,570.853 −42,910.284 −43,067.083 0.1138 (0.0000) 0.1493 (0.0000) 0.1873 (0.0000) 0.1048 (0.0000) 0.1209 (0.0000)
Oat VV −32,614.112 −32,726.2166 −32,807.781 −33,303.94 −33,335.41 0.1097 (0.0000) 0.1089 (0.0000) 0.0944 (0.0000) 0.0599 (0.0000) 0.0593 (0.0000)
Rye HH −28,348.174 −28,174.571 −27,917.223 −28,602.34 −28,604.95 0.0871 (0) 0.1158 (0) 0.1631 (0) 0.0647 (0.0000) 0.0648 (0.0000)
Rye HV −32,959.766 −32,823.334 −32,481.953 −33,148.64 −33,149.46 0.0717 (0.0000) 0.0961 (0.0000) 0.1505 (0.0000) 0.0469 (0.0000) 0.0468 (0.0000)
Rye VV −21,953.243 −21,918.265 −21,726.364 −22,325.60 −22,339.67 0.0946 (0.0000) 0.0988 (0.0000) 0.1544 (0.0000) 0.0622 (0.0000) 0.0597 (0.0000)

Conifer HH −3104.633 −2979.998 −2998.099 −3075.352 −3143.367 0.0435 (0.0049) 0.0805 (0.0000) 0.0801 (0.0000) 0.0338 (0.0535) 0.0158 (0.8235)
Conifer HV −6112.789 −5910.137 −5966.941 −6121.835 −6206.274 0.0731 (0.0000) 0.1054 (0.0000) 0.1080 (0.0000) 0.0586 (0.0000) 0.0585 (0.0000)
Conifer VV −6290.114 −6074.269 −5997.672 −6302.553 −6394.536 0.0809 (0.0000) 0.1133 (0.0000) 0.1411 (0.0000) 0.0692 (0.0000) 0.0654 (0.0000)

Table 7. Results of fitting intensities on intensities of AgriSAR PolSAR data for L fixed.

Region
AICc Values KS Statistics (p-Value)

Γ K G0 CTPCW CGCW Γ K G0 CTPCW CGCW
Maize HH −78,397.154 −76,497.874 −76,358.346 −77,111.508 −78,295.695 0.0878 (0.0000) 0.1223 (0.0000) 0.1431 (0.0000) 0.1002 (0.0000) 0.1032 (0.0000)
Maize HV −94,634.188 −93,234.909 −93,275.192 −95,332.257 −95,387.211 0.0891 (0.0000) 0.1264 (0.0000) 0.1459 (0.0000) 0.0972 (0.0000) 0.0972 (0.0000)
Maize VV −85,862.424 −85,117.185 −84,061.901 −86,853.034 −86,969.596 0.0688 (0.0000) 0.1083 (0.0000) 0.1523 (0.0000) 0.0871 (0.0000) 0.0865 (0.0000)
Rape HH −47,307.555 −60,318.864 −60,769.119 −61,066.01 −60,758.62 0.2434 (0.0000) 0.0579 (0.0000) 0.0414 (0.0000) 0.0170 (0.0029) 0.0601 (0.0000)
Rape HV −79,878.920 −99,756.999 −100,348.078 −99,320.55 −100,274 0.2661 (0.0000) 0.0471 (0.0000) 0.0216 (0.0000) 0.0338 (0.0000) 0.0256 (0.0000)
Rape VV −79,273.791 −82,175.302 −81,683.624 −82,827.037 −82,867.0421 0.1199 (0.0000) 0.0449 (0.0000) 0.0884 (0.0000) 0.0171 (0.0027) 0.0222 (0.0000)

Wheat HH −97,953.769 −102,484.074 −104,142.925 −101,075.289 −101,922.446 0.1055 (0.0000) 0.0981 (0.0000) 0.0763 (0.0000) 0.0142 (0.0358) 0.0142 (0.0359)
Wheat HV −106,542.769 −125,850.838 −129,465.447 −122,424.1 −124,596.9 0.2177 (0.0000) 0.1262 (0.0000) 0.0938 (0.0000) 0.0370 (0.000) 0.0367 (0.0000)
Wheat VV −100,755.443 −101,241.792 −100,901.263 −97,871.733 −101,055.643 0.0732 (0.0000) 0.0954 (0.0000) 0.1438 (0.0000) 0.0794 (0.0000) 0.0681 (0.0000)
Beet HH −78,449.372 −76,431.501 −75,912.814 −77,602.605 −78,078.731 0.1107 (0.0000) 0.1455 (0.0000) 0.1651 (0.0000) 0.1253 (0.0000) 0.1294 (0.0000)
Beet HV −98,717.807 −97,296.974 −96,563.392 −97,709.887 −98,179.681 0.1638 (0.0000) 0.1806 (0.0000) 0.2059 (0.0000) 0.1784 (0.0000) 0.1733 (0.0000)
Beet VV −77,030.751 −74,324.474 −74,858.236 −76,188.637 −76,452.111 0.1601 (0.0000) 0.1941 (0.0000) 0.1901 (0.0000) 0.1672 (0.0000) 0.1821 (0.0000)

Barley HH 78,156.057 −40,689.082 −44,221.803 −1,270.399 −33,982.76 0.5524 (0.0000) 0.14509 (0.0000) 0.0518 (0.0000) 0.1587 (0.0000) 0.0771 (0.0000)
Barley HV 59,700.677 −98,734.402 −111,375.215 12,029.802 −26,949.616 0.7236 (0.0000) 0.2588 (0.0000) 0.1231 (0.0000) 0.1031 (0.0000) 0.1043 (0.0000)
Barley VV 86,618.097 −37,226.084 −42,060.558 2,1926.804 −22,934.483 0.5717 (0.0000) 0.1575 (0.0000) 0.0521 (0.0000) 0.1339 (0.0000) 0.1078 (0.0000)

Finally, to illustrate the fitting in a bimodal scenario (beyond regions having only one
texture), we select a region from a Foulum image obtained in VV polarisation. Figure 12a
displays the selected part, while Figure 12b shows the histogram and the fitted (Wishart,
K, G0, CTPCW and CGCW) models. By visual inspection, one can observe that only
our proposals recognise the bimodality present in the data, the CTPCW distribution in
particular is the closest to the empirical density.

(a) Selected image.
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Figure 12. Selected image and empirical and fitted histograms.
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5. Conclusions

In this paper, we have proposed two new PolSAR distributions called compound
truncated Poisson complex Wishart (CTPCWCm ) and compound Geometric complex Wishart
(CGCWCm ). They have been connected with the physical formation of the PolSAR system
by way of the compound matrix summation method. Some of their properties have
been derived: characteristic function and Mellin-kind log-cumulant (MLC). To fit our
PolSAR models in practice, we have proposed maximum likelihood estimators (MLEs)
equipped by the expectation maximisation algorithm. The closed-form expressions for
MLEs have been found (avoiding errors numerical fluctuations) and numerical results
have indicated that such estimates presented low values of bias and mean square errors
for sample sizes which are realistic with the PolSAR data processing practice. Three actual
experiments with PolSAR images have been performed. Adopting the diagrams of MLCs
as a comparison criterion, results pointed out CTPCWCm and CGCWCm models may provide
better descriptions of some PolSAR scenarios than other well-known laws; e.g., sWCm , Km,
and G0

m.
The proposed models open new venues of research, e.g., other estimators and their

properties (including robust techniques), applied studies of a large size and heteroge-
neous samples, test statistics, their relationship with Information Theory and Information
Geometry, noise reduction and clustering, among others.

The main drawback of the new models is that they require defining the weights of
mixtures like a function of their components, thus limiting their flexibility. It is possible
that other discrete variables for N in (1) can solve this problem.

Supplementary Materials: Details of the proof of theoretical results are at https://www.dropbox.
com/s/q5wotc6d5niqgv3/apendix.pdf?dl=0, accessed on 5 September 2022.
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PolSAR Polarimetric synthetic aperture radar
CTPCW compound truncated Poisson complex Wishart
CGCW d compound geometric complex Wishart
MLCs Mellin-kind log-cumulants
SCM sample covariance matrices
MM multiplicative modeling
cf characteristic function
MLEs maximum likelihood estimators
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EM Expectation Maximisation
MoM Moment Method
pmf probability mass function
pdf probability density function
MKS Mellin-kind statistic
MCGF Mellin-kind cumulant-generating
AIRSAR Airborne Synthetic Aperture Radar
EMISAR SAR image system of the Electromagnetics Institute
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