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Abstract: Labeled as a fast-growing tree species, eucalyptus has outstanding carbon sequestration
capacity. Forest stock volume (FSV) is regarded as an important parameter for evaluating the quality
of planted eucalyptus forests. However, it is an intractable problem to map FSV of planted eucalyptus
forests using optical images because of growth characteristics of the crown and low saturation levels.
To improve the accuracy of FSV in planted eucalyptus forests, time series Landsat 8 OLI (LC8) images
and ZY-3 stereo images were acquired in the study area. Additionally, then, three composite images
were proposed using acquired Landsat 8 OLI images based on the size and shape of eucalyptus
crowns, and several spectra variables were extracted from these composite images. Furthermore,
corrected canopy height model (CCHM) was also extracted from ZY-3 stereo images. Meanwhile,
four models (random forest (RF), support vector machine (SVM), K-nearest neighbor (KNN), and
multiple linear regression (MLR)) were used to estimate the FSV with various variable sets using the
importance of the alternative variables ranked by RF. The results show that the sensitivity between
proposed spectral variables and FSV is significantly improved using proposed composed images
based on the growth characteristics of the crown, especially for young eucalyptus forests. After
adding CCHM and stand age to the optimal variable set, the average relative root mean square error
(rRMSE) of estimated FSV decreased from 41.01% to 29.94% for single LC8 images and from 32.64% to
26.47% for proposed composite LC8 images, respectively. After using the variable set extracted from
composite LC8 images, the number of samples with overestimated FSV was significantly decreased
for the young forest. Furthermore, forest height plays an important role in improving the accuracy
of mapping FSV, whether young or mature eucalyptus forest. It was also proved that composite
images related to crown close and CCHM have great potential to delay the saturation phenomenon
for mapping FSV in planted eucalyptus forest.

Keywords: planted eucalyptus; forest stock volume; crown; CHM; Landsat 8 OLI; ZY-3 stereo images

1. Introduction

Eucalyptus forests, regarded as one of the fastest-growing tree species, have an out-
standing ability to sequester carbon [1,2]. More than one-third of the wood is provided by
planted eucalyptus forests in China, which cover 2% of the total planted area [3]. Forest
stock volume (FSV) is one of the key parameters for evaluating the ability of sequester
carbon [4,5]. In the past, the FSV was mainly obtained by ground measurements, such as
the diameter at breast height (DBH) and the average height of forest (AHF) [6–8]. However,
these methods are time-consuming, laborious, and expensive. Remote sensing images,
which provide long-term, large-scale spatial information, have great potential to improve
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the efficiency of mapping FSV [9–13]. Up to now, several forest parameters have been
widely mapped using various optical remote sensing images with different sensors and
bands [14–16].

Generally, the spectral variables extracted from optical images, including Landsat,
Sentinel-2, GF-1, and GF-2, are used to construct models for the estimation of FSV or above-
ground biomass (AGB) [17–19]. However, it is still difficult to obtain reliable FSV using
optical images because of the saturation problems, and spectral variables are insensitive
to changes in FSV, especially for forests with large FSV [20–22]. Previous studies have
explored various methods to solve the saturation phenomenon, such as multi-source optical
image fusion and stratified estimation of samples [20]. It has also been reported that once
the forest reaches a certain age, normal vegetation indices did not increase with age in
planted eucalyptus forests [23–26]. So, it is difficult to identify the difference of spectral
reflectance between difference ages eucalyptus forests using single Landsat 8 images.

For young eucalyptus forest, the crown diameter (CD) changes with FSV during the
growth, and the spectral reflectance can capture the difference in FSV before the crown is
closed. When the crown is closed, the spectral characteristics do not reflect the increase
in FSV, and the forest height becomes the key factor in reflecting the difference in FSV.
Previous studies have also proven that multi-temporal optical data show greater potential
than single-temporal images [24–27]. Theoretically, the optical data before and after the
crown closes is more advantageous for estimating the FSV of eucalyptus than a single
image. Therefore, the response between FSV and spectral variables related to the growth
characteristics of the crown should be further studied to improve the accuracy of FSV in
planted eucalyptus forests.

Furthermore, vertical features of forests, such as the canopy height model (CHM), are
also regarded as an effective means to solve the saturation problem of eucalyptus forest with
closed crown [28–30]. Generally, light detection and ranging (LiDAR) has been widely used
to quickly obtain accurate CHM of forests [31,32]. However, due to the cost of acquiring
data, LiDAR is not suitable for obtaining forest height over large areas [17,33]. On the other
hand, satellite-borne synthetic aperture radar (SAR) has been proven to have the potential
to extract vertical parameters of forests [34–38]. However, the interferometric quality is
severely affected by temporal decoherence in forest areas [38,39]. In addition, satellite stereo
images are also a good source of data that can be used to generate the spatially continuous
digital surface model (DSM) related to forest height [40–42]. Obviously, extracting reliable
CHM in forest depends on obtaining accurate understory elevations and DSM extracted
from satellite stereo images. Therefore, whether the open-source digital elevation model
(DEM) with low accuracy and low spatial resolution can meet the requirements of the
reliability of CHM extraction is a problem worth exploring.

Currently, parametric and non-parametric models have been widely used for map-
ping forest structure parameters [17,18]. Among them, parametric models are easy to
establish regression equations between remote sensing variables and forest structure
parameters [17,43]. However, in complex forest environments, the relationship between
remote sensing variables and forest structure parameters can be nonlinear; in contrast,
nonparametric models (e.g., random forest algorithm) can identify the nonlinear relation-
ship between remote sensing variables and forest structure parameters and can ignore the
covariance between remote sensing variables [17]. Therefore, nonparametric models are
considered to have greater potential in forest parameter quantification [5,18].

To improve the accuracy of FSV in planted eucalyptus forests, four Landsat 8 OLI and
one pair of Ziyuan-3 (ZY-3) stereo images of planted eucalyptus forest were acquired before
and after the crown closed, and the composite LC8 images were proposed to extract several
new variables for reflecting the growth characteristics of the crown. Then, the CHM was
obtained by subtracting the open-source DEM from the DSM extracted from the ZY-3 stereo
images by the correction approach. Subsequently, four models (support vector machine
(SVM), random forest (RF), k-nearest neighbors (KNN), and multiple linear regression
(MLR)) were employed to estimate the FSV of the eucalyptus forest. The sensitivity and
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capability of stand age, CHM, and vegetation indices related to the growth characteristics
of the crown were analyzed, and an optimal variable set related to crown characteristics
was obtained to delay the saturation levels and to improve the accuracy of mapping FSV in
the planted eucalyptus forest.

2. Materials and Methods
2.1. Study Area

The Gaofeng Forest Farm (Lat. 22◦57′N, Lon. 108◦19′E) is in the north of Nanning
city, Guangxi Province, China (Figure 1). The landforms of the study area are mainly
characterized by mountainous regions, with elevations up to 457 m in the northeast. The
area has a subtropical monsoon climate, with an average annual temperature of 21 ◦C and
an average annual rainfall of approximately 1200–1600 mm. The forest coverage rate in this
region is greater than 80%, and the forest stock volume reached 6.63 million m3/ha in 2020
(https://www.gfslgy.com/, accessed on 8 May 2021). More than 90% of the study area is
covered by planted forests, and the main tree species is eucalyptus.
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Figure 1. The location of the study area, and the distribution of the ground samples in planted
eucalyptus forest.

2.2. Ground Data

Based on the stand age and spatial distribution in the study area, 87 samples (Figure 1)
were randomly categorized into four forest ages (young forest (1-year-old), middle-age
forest (2-year-old and 3-year-old), near-mature (4-year-old and 5-year-old) forest, and
mature (older than 5 years) forest) in the planted eucalyptus forest. The corner and center
positions of the ground samples were measured using global positioning system (GPS)
device. In January 2018, these plots with a size of 20 m × 20 m were established, and the
forest parameters (such as DBH, AFH, CD, density) were measured for each tree whose
DBH was greater than 5 cm.

The volume of each tree was calculated using the binary volume table of the Gaofeng
Forest Farm, and the FSV of each plot was obtained as the sum of the volume of all trees
in the plots. The wood volume equation for Eucalyptus is derived from the technical
regulations on construction of two-variable tree volume table of the People’s Republic of
China (http://www.forestry.gov.cn, accessed on 8 May 2021). AHF was also obtained from
the average height of all trees, and the stand age was obtained from the database of forest
management investigation. The FSV of the ground-measured samples ranged from 22.6 to
239.5 m3/ha, with an average value of 118.1 m3/ha. The AHF ranged from 7.4 to 22.3 m,
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with an average value of 14.29 m. The relationships between FSV, age, and AHF are shown
in Figure 2.
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2.3. Processing the Remote Sensing Images
2.3.1. Extracting Variables from Landsat 8 OLI Data

To retrieve the FSV of the eucalyptus forest, fourteen Landsat 8 OLI (LC8) remote
sensing images with less than 5% cloud cover were downloaded from the US Geological
Survey Earth Explorer website (http://earthexplorer.usgs.gov/, accessed on 10 June 2021).
The acquisition dates of these images are shown in Figure 3 (ranged from 2015 to 2019).
Based on the date of measurement of ground samples and crown characteristics, two
images were acquired before the crown close (28 December 2016, and 2 March 2017), and
two images were acquired after the crown close (28 October 2017, and 1 February 2018)
were selected to form several new composite images in the next processing. Simultaneously,
one of the images (acquired on 1 February 2018) was selected as the reference image to
match the date of ground measurement. Atmospheric correction and relative radiometric
calibration were performed using the regression equation to reduce errors due to differences
in the acquired data. In each image, six multispectral bands with a spatial resolution of
30 m (three bands of visible light, one band of near-infrared, and two bands of shortwave
infrared) were selected to extract the variables in the next process. Subsequently, an open-
source DEM with a spatial resolution of 12.5 m was downloaded from NASA-EARTHDATA
(https://search.asf.alaska.edu/, accessed on 11 June 2021).

To reduce the error of images, three composite images were proposed using algebraic
operations of bands. Firstly, the average images before the crown close (BCC) were obtained
from the images acquired on 28 December 2016, and 2 March 2017, and then the average
images after the crown close (ACC) were obtained from the images acquired on 28 October
2017, and 1 February 2018. Furthermore, six bands (Band2_Blue, Band3_Green Band4_Red,
Band5_NIR, Band6_SWIR1 and Band7_SWIR2) and six common vegetation indices, such
as normalized difference vegetation index (NDVI), red–green vegetation index (RGVI),
enhanced vegetation index (EVI), difference vegetation index (DVI), ratio vegetation index
(RVI), and atmospherically resistant vegetation index (ARVI), were extracted from the two
average images. Additionally, to improve the sensitivity between the vegetation indices
and FSV, difference images were formed by subtracting images acquired before the crown
close from the image acquired after the crown close (Figure 3). Therefore, variables derived
from difference images are used to explore the sensitivity of FSV related to the growth
characteristics of the crown. The standardized band difference was constructed as follows:

BDCC =
(BBCC − BACC)

(BBCC + BACC)
(1)

http://earthexplorer.usgs.gov/
https://search.asf.alaska.edu/
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where BBCC is the band from the average images before the crown close, BACC is the band
from the average images after the crown close, and BDCC is the band from the difference
images before and after the crown close. After algebraic operations, variables (bands and
vegetation indices) were extracted from the four LC8 images (three composite images and
one reference image). Then, the importance of the alternative variables ranked by RF was
employed to select the optimal variable set.
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2.3.2. Extracting the CHM from ZY-3 Stereo Images

ZY-3 satellite data have been widely used to invert the DSM on a large scale [43–45].
Three images (forward image, orthorectified image and backward image) obtained from
three high-resolution panchromatic cameras were used to provide the in-orbit stereo image
pair. For this study, one pair of stereo images with a spatial resolution of 2.1 m was ac-
quired in March 2018 (downloaded from Geospatial Data Cloud http://www.gscloud.cn/,
accessed on 11 June 2021). Additionally, an open-source DEM with a spatial resolution of
12.5 m, downloaded from NASA-EARTHDATA (https://search.asf.alaska.edu/, accessed
on 11 June 2021), was also used to extract the CHM. To accurately retrieve the DSM from
ZY-3 stereo images, the steps of calculating connection points and regional network adjust-
ment were initially employed to reconstruct the model of the point clouds, and the DSM
was successfully derived from the model of point clouds after matching and interpolation.
To match the resolution of the DSM, the DEM images were oversampled to a resolution of

http://www.gscloud.cn/
https://search.asf.alaska.edu/
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2.1 m. Finally, the CHM was directly obtained by subtracting the open-source DEM from
the extracted DSM. The above operation is performed in ENVI5.3 software.

In addition, height metrics were extracted as variables for correction CHM, includ-
ing maximum height, minimum height, mean height, median height, and height profile
quantiles (5 percent height (5 ph), 10 percent height (10 ph) . . . 95 percent height (95 ph)).
Additionally, then, to match the LC8 images, the spatial resolution of height variables
were resampled to 30 m × 30 m. The corrected CHM (CCHM) was estimated using four
algorithms (SVM, RF, KNN, and MLR) with the following variable sets, including the CHM
data, spectral variables and stand age.

2.3.3. Variable Set

In this study, the bands and vegetation indices were derived from single (acquired on
1 February 2018) and composite images, respectively. Additionally, the stand age derived
from a database of forest management investigation and CCHM derived from ZY-3 stereo
images were employed to estimate the FSV. To explore the capability of mapping FSV,
four types of alternative variables were divided into two groups: single and composite
LC8 images, and four variable sets of each group were obtained from alternative variables
selected by random forest (Table 1). The first set (variable set 1) included bands and
vegetation indices extracted from single and composite LC8 images, the second variable set
(variable set 2) included variable set 1 and the stand age, the third variable set (variable
set 3) included the variable set 1 and CCHM, and the last set (variable set 4) included the
variable set 1, stand age, and CCHM.

Table 1. The groups of variable set.

Variable Set Single LC8 Images Composite LC8 Images

Variable set 1 Bands and vegetation indices Bands and vegetation indices
Variable set 2 Variable set 1 and Age Variable set 1 and Age
Variable set 3 Variable set 1 and CCHM Variable set 1 and CCHM
Variable set 4 Variable set 1, Age and CCHM Variable set 1, Age and CCHM

2.4. Model and Assessment

Recently, machine learning approaches have been widely used in the mapping of FSV.
In this study, three machine learning models—SVM, RF, and KNN—and the multiple linear
regression model (MLR) were employed to estimate the FSV in planted eucalyptus forest.
Furthermore, leave-one-out cross-validation (LOOCV) was employed to assess the accuracy
of the estimated FSV, and the root mean square error (RMSE), relative RMSE (RRMSE), and
coefficient of determination (R2) were used as indicators to evaluate the accuracy of the
model. The formulae are as follows:

R2 = 1− ∑ (yi − ŷi)
2

∑ (yi − ŷi)
2 (2)

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (3)

RRMSE =
RMSE

y
× 100% (4)

where N is the number of samples, y is the observed value of FSV, ŷ is the estimated value
of FSV, and y is the average of the observed values of FSV for all samples.
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3. Results
3.1. The Growth Characteristics of Crown in Planted Eucalyptus Forest

In planted eucalyptus forest, the FSV can be successfully detected by optical remote
sensing images. The main reason is that the crown width changes with FSV during the
growth before the crown close. After the crown closed, the saturation phenomenon occurred
for optical remote sensing images. In our study, the parameters of near to 3000 trees were
measured in all samples and scatterplots between the crown width, height and volume
were shown in Figure 4.
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scatterplot between volume and tree height.

It was found that the volume of tree varied significantly with increasing crown width
at the very young stage (nearly to 2 years) and the sensitivity between the FSV and spectral
variables was obviously high (Figure 4a). However, the sensitivity gradually decreased
with the increasing volume of tree, because of unchanged crown width after a certain age.
Finally, the saturation phenomenon occurred for mapping FSV using spectral variables
in the planted eucalyptus forest. At this moment, the increased volume was mainly
reflected by tree height (Figure 4b). Therefore, the growth characteristics of the crown and
height of trees should be considered to improve the accuracy of mapping FSV at different
growth stages.

Furthermore, four regions of planted eucalyptus forest were also selected to analyze
the relationship between growth characteristics of the crown and NDVI extracted from
fourteen images in five years (Figure 5). It is inferred that these regions were cut down
and planted again between April 2015 and June 2016, and the results were also proved
by time series NDVI. Meanwhile, the values of NDVI increased for about 2 years (from
October 2015 to July 2017). After that, the NDVI values did not increase with the growth of
eucalyptus forest, and the spectral characteristics of the crown did not reflect the increase
in FSV. Therefore, variables extracted from single optical images have great potential for
young eucalyptus forest (less than 2 years). However, for the middle-age, near-mature,
and mature eucalyptus forest, the saturation phenomenon related to the crown will induce
unacceptable errors for mapping FSV.
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Figure 5. The images of four regions with different stages and time series average NDVI of selected
regions from April 2015 to December 2019, the red dashed box is used to highlight the change in NDVI
of eucalyptus over time, which gradually increases inside the red dashed box and stops changing
outside the red dashed box.

3.2. The Sensitivity of Variables Related to Width

It has been reported that the width and depth of the eucalyptus crown are not sensitive
to the FSV once the stand age reaches a certain age. To further explore the sensitivity
between the FSV and spectral variables, three composite images, including two average
images (BCC and ACC) and one difference image (DCC), were proposed to extract the
variable set. Meanwhile, one single image (acquired on 1 February 2018) was also employed.
Additionally, then, six bands and six indices were extracted from single and composite
images, respectively. Additionally, all ground samples were divided into two groups:
the first group was the samples with ages less than 2 years and the rest were the second
group. The Pearson correlation coefficients between spectral variables and FSV were used
to analyze the sensitivity of spectral variables related to growth characteristics of the crown
in eucalyptus forest (Figure 6).
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For all samples (Figure 6a), the Pearson correlation coefficient of each spectral variable
extracted from single images (ranging from −0.4 to 0.4) was lower than that extracted
from the composite images. Additionally, the spectral variable set extracted from DCC
had the highest values of correlation. It was also observed that the sensitivities between
FSV and spectral variables extracted from average (BCC) and composite (DCC) images
were significantly higher than that extracted from single and average (ACC) images. It
was proved that the sensitivity of spectral variables was severely affected by the growth
characteristics of the crown. For the young eucalyptus forest (Figure 6b), variables extracted
from average (BCC) and composite (DCC) images can capture the difference of FSV before
the crown is closed. After the crown is closed, the results are contrary, such as the variables
extracted from single and average (ACC) images.

Furthermore, for the first group, the spectral variables extracted from BCC and DCC
had higher absolute value of correlation with FSV than those extracted from ACC and
single images (Figure 6b). Additionally, the results show a small difference in the Pearson
correlation coefficient from various images for the second group (Figure 6c). It was con-
firmed that the saturation of the spectral variable occurred at the stage of the closed crown.
After that, the crown of eucalyptus did not grow with FSV because of the automatic prun-
ing of eucalyptus. Therefore, the growth characteristics of the crown are helpful to select
appropriate images and features (BCC and DCC images), and composite images have great
potential to improve the accuracy of mapping FSV, especially for young eucalyptus forests.

Additionally, to map the FSV of the eucalyptus forest, an importance assessment
method based on random forest was employed to select the optimal variable set. The rank-
ing of the importance of the spectral variables is shown in Figure 7. For the reference LC8
images, RGVI was the most important and SWIR2 was the least important (Figure 7a). For
the composite LC8 images, RGVI (derived from BCC) was the most important variable and
DVI (derived from BCC) was the least important variable among all alternative variables
(Figure 7b).
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3.3. The Results of Extracted CHM

Using the ZY-3 stereo images, the CHM was directly extracted from the DSM by
subtracting the open-sourced DEM, and a height variable with a size of 30 m × 30 m was
extracted from the extracted CHM. Because of the errors from DEM, the gaps between
the extracted CHM and ground-measured average height were so large that the height
variable was difficult to apply directly in mapping FSV (Figure 8(a1)). To correct the CHM,
vegetation indices, stand age, and height variable were employed to update the CHM using
four models (MLR, KNN, SVM, and RF). The results of the CCHM are listed in Table 2.
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Table 2. The results of corrected CHM.

Data Combination Model R2 RMSE (m) RRMSE (%)

Height variable, stand age, and vegetation
indices extracted from Single LC8 images

MLR 0.38 2.16 15.10
KNN 0.43 2.06 14.44
SVM 0.35 2.52 17.60
RF 0.38 2.16 15.09

Height variable, stand age, and vegetation
indices extracted from composite LC8 images

MLR 0.34 2.19 15.31
KNN 0.52 1.89 13.22
SVM 0.41 2.16 15.10
RF 0.56 1.82 12.77

For the single LC8 images, the RMSE of the estimated CCHM ranged from 2.06 to
2.52 m, respectively. Additionally, the optimal results were obtained using the KNN
model. For the composite LC8 images, the RMSE of estimated CCHM ranged from 1.82 to
2.16 m, respectively. The accuracy of the estimated CCHM using variables extracted from
composite LC8 images was slightly higher than that extracted from single LC8 images, and
the optimal results were obtained from the RF model (R2 = 0.56, RMSE = 1.82 m). To further
analyze the results of CCHM, scatterplots between CCHM and AHF were illustrated in
Figure 8(b1,c1). After correcting the CHM, the Pearson correlation coefficient (r) between
the CCHM and AHF increased significantly (from 0.48 to 0.75) using variable set extracted
from composite LC8 images. Meanwhile, the values of the Pearson correlation coefficient
between CCHM and FSV were up to 0.7 for single LC8 images and 0.76 for composite LC8
images, respectively.

To map the results of CHM, vegetation indices extracted from the single and composite
LC8 images were employed to retrieve CCHM using optimal models and other variable
sets (stand age 5ph), respectively. Additionally, Figure 9 illustrates the results of mapped
CCHM ranging from 10 to 20 m. Additionally, the CCHM extracted from various images
was used for their respective FSV estimations in the next process.
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Figure 9. The mapped CCHM of the study area: (a) is from single LC8 images and (b) is from
composite LC8 images.

3.4. The Results of Mapped FSV

To accurately map the FSV of planted eucalyptus forest, four models (SVM, RF, KNN,
and MLR) were employed to construct the relationship between the FSV and various
optimal variable sets. In this study, four types of optimal variable sets were extracted
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from single and composite LC8 images, and the results of the estimated FSV are listed in
Table 3. In each variable set, the best results were obtained using different models, and the
differences between the models were within 5%. The results indicate that the models were
not the main factors affecting the accuracy of the mapping FSV.

Table 3. The results of estimated FSV with different variable set in eucalyptus forest.

Variable
Set Model

Single LC8 Images Composite LC8 Images

R2 RMSE
(m3/ha)

RRMSE
(%)

Average
RRMSE (%) R2 RMSE

(m3/ha)
RRMSE

(%)
Average

RRMSE (%)

Variable
set 1

MLR 0.03 49.78 41.82

41.01

0.37 39.98 33.59

32.64
KNN 0.15 46.65 39.19 0.41 38.89 32.67
SVM 0.15 52.36 44.00 0.38 39.90 33.52
RF 0.14 46.76 39.29 0.47 36.63 30.77

Variable
set 2

MLR 0.27 43.13 36.23

33.79

0.50 35.67 29.97

29.20
KNN 0.37 40.22 33.79 0.56 33.71 28.32
SVM 0.35 40.63 34.13 0.5 35.72 30.01
RF 0.47 36.90 31.00 0.55 33.91 28.49

Variable
set 3

MLR 0.39 39.36 33.07

31.80

0.44 37.93 31.86

29.13
KNN 0.51 35.45 29.78 0.54 34.40 28.90
SVM 0.40 39.03 32.79 0.48 34.35 28.86
RF 0.45 37.58 31.57 0.60 32.00 26.88

Variable
set 4

MLR 0.39 39.64 33.30

29.94

0.57 33.17 27.87

26.47
KNN 0.59 32.21 27.06 0.61 31.71 26.64
SVM 0.54 34.32 28.83 0.68 28.61 24.04
RF 0.48 36.40 30.58 0.59 32.54 27.33

Table 3 also illustrates that the variable set extracted from various images, stand age,
and CCHM played different roles in improving the accuracy of mapping FSV. For each
variable set, the RRMSEs of estimated FSV with the vegetation indices extracted from
composite LC8 images were significantly smaller than those extracted from single LC8
images, and the differences gradually narrowed as the stand age and CCHM were added
to the variable set. It was confirmed that the variables extracted from the composite LC8
images were more sensitive than those extracted from the single LC8 images. Furthermore,
after adding CCHM to variable set 1, the average RRMSEs of the four employed models
decreased from 41.01% to 31.08% for single LC8 images and from 32.64% to 29.13% for
composite LC8 images, respectively. The highest accuracy of the estimated FSV was
obtained in the case of variable set 4. It was concluded that the parameters of stand age
and CCHM have great potential in improving the accuracy of estimated FSV in planted
eucalyptus forests.

To further analyze the contribution of various variables, Figure 10(a1–h1) illustrates
the scatterplots between the ground measured and predicted FSV using the models with
the highest accuracy of results in each variable set (Table 3). The residuals of each selected
model are also plotted in Figure 10(a2–h2). For young samples (stand age: less than 2 years),
overestimated results frequently occurred using the variable set extracted from single LC8
images (Figure 10(a1,a2)). The results were significantly improved using the variable set
extracted from composite LC8 images (Figure 10(e1,e2). Therefore, it was inferred that
composite LC8 images could improve the accuracy of FSV for young eucalyptus forests.
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Moreover, without the stand age and CCHM, the saturation levels occurred at a
low FSV (approximately 100–150 m3/ha), and the accuracy of the results was severely
influenced by FSV underestimated samples (Figure 10(e1,e2)). After adding the CCHM
and stand age, the accuracy of the estimated FSV improved significantly as the number
of underestimated samples decreased. The residuals of variable set 2 (Figure 10(f2)) and
variable set 3 (Figure 10(g2)) were close to zero after adding the CCHM and stand age, and
the highest accuracy of estimated FSV (R2 = 0.68, RMSE = 24.04%) was obtained in the case
of variable set 4 (Figure 10(h1)). Therefore, the CCHM and stand age are useful to improve
the accuracy of mapping FSV by delaying saturation levels. Finally, the FSV of the study
area was mapped using four models and variable set 4 extracted from the composite LC8
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images (Figure 11). There was no obvious difference between each employed model in
the spatial distribution of the FSV. Furthermore, it was also observed that the FSVs ranged
from 50 to 200 m3/ha in most of the eucalyptus forest.
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4. Discussion
4.1. Challenges in Mapping FSV of Eucalyptus Using Optical Images

In previous studies, it has been proven that optical and microwave images can be
successfully applied to map FSV or AGB, owing to the high correlation between the
spectral features [11,16,29]. However, it was difficult to obtain a high correlation between
the spectral variables extracted from the single LC8 images and the FSV in our study, and
the accuracy of the estimated FSV (R2 less than 0.2) was rather low using single LC8 images
in the planted eucalyptus forest. Additionally, it was observed that the characteristics
of SAR images also made it difficult to estimate the FSV of eucalyptus [23]. Due to the
growth characteristics of the crown in planted eucalyptus forests, it has been observed that
mapping the FSV of eucalyptus forests is more challenging than other tree species (such
as coniferous forests). It has been reported that the crown of young eucalyptus changes
with FSV before the crown close, and the sensitivity between spectral variables and FSV
decreases with age once the stand reaches a certain age (occurred saturation) [24].

Naturally, the saturation levels can be delayed by combining auxiliary data, such as
stand age and forest height. Similarly, the importance of age in estimating FSV in eucalyptus
plantations has been highlighted in a previous study [22,45]. To improve the accuracy of
FSV in the planted eucalyptus forest, composite Landsat 8 images and ZY-3 stereo images
were proposed to obtain vegetation indices and forest height, respectively. Table 3 and
Figure 9 illustrate that the accuracy of mapped FSV of eucalyptus forest was successfully
improved using CCHM and spectral variables extracted from composite images, and the
numbers of overestimated and underestimated samples obviously decreased. Therefore, it
was inferred that spectral variables from composite images have the capability to estimate
the FSV of eucalyptus forests based on the growth characteristics of the crown.
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In addition, three non-parametric models (RF, KNN and SVM) and one parametric
model (MLR) were widely employed for mapping FSV. MLR was found to have weaker
estimation power than the nonparametric models (e.g., variable set 1 and variable set 2)
when the correlation between remote sensing variables and FSV was not high. This result
can be attributed to the fact that parametric models can only represent linear relationships
between variables and FSV [18,19,46,47], while the relationships between remote sensing
variables and FSV may be nonlinear due to the complex forest environment. When remote
sensing variables with higher correlation with FSV (e.g., CCHM) were entered into the
model, approximate results were obtained when FSV was estimated using the four models
(variable set 3). In conclusion, compared to parametric models, nonparametric models can
identify potential relationships between remote sensing variables and FSV and have higher
flexibility in that it does not need to consider covariance between variables with specific
sample distributions (e.g., normal distribution) and has greater potential for quantification
and mapping species of forest parameters.

4.2. The Effect of Crown, Forest Height and Stand Age on Mapping FSV

In the previous study, the spectral variables extracted from the optical images have
been proved to be insensitive to changes in FSV in planted eucalyptus forests [23]. In this
study, it was also observed that the width and depth of the eucalyptus crown were not
sensitive to the FSV once the stand reached a certain age (Figure 6). Furthermore, to use
phenological information on vegetation growth, multi-temporal remote sensing images
have been regarded as a significant advantage in obtaining forest parameters, especially for
vegetation with significant seasonal changes [25,27,28]. In a previous study, multi-temporal
optical images were successfully used to estimate the forest structure parameters [18,36,43].
In our study, three composite images were proposed from acquired fourteen LC8 images
using algebraic operations of bands. The results indicate that the Pearson correlation
coefficient of each spectral variable extracted from single LC8 images (ranging from −0.4
to 0.4) was lower than that extracted from composite images (BCC and DCC). Additionally,
the variables extracted from composite images (BCC and DCC) were more sensitive than
those extracted from single and ACC images for young eucalyptus forests. The main
reason is that the increased FSV can be reflected by changes in the forest crown for young
eucalyptus forests before the crown close.

Without penetrating the dense crown, optical remote sensing data will inevitably
exhibit spectral saturation for estimating FSV or AGB [5,17,48]. Recently, CHM has been
closely related to FSV without the data saturation problem; it is regarded as an effective
approach to overcome the problem of spectral saturation [13,43,49–51]. At present, stereo
images have great potential for extracting forest height with an accurate DEM or digital
terrain module (DTM). Several studies have successfully extracted forest height using
DSM during the peak and deciduous seasons; however, this approach is only applicable
to deciduous tree species such as larch [44]. In this study, the CHM of eucalyptus stands
was directly extracted by open-sourced DEM, and the RMSEs ranged from 2.06 to 1.82 m
after correction. After adding the CCHM for estimating FSV, the average errors decreased
from −46.7 to −27.89 m3/ha for single LC8 images and from −30.60 to −20.82 m3/ha for
multitemporal LC8 images (Table 3). Although the accuracy of CCHM is certainly lower
than that of LiDAR, it was confirmed that CCHM, which is regarded as an indirect variable,
can significantly improve the estimated FSV in eucalyptus forests.

To further analyze the contributions of the crown width, forest height and stand age to
map FSV, all samples were divided into two groups based on stand age: the first group is
stand age younger than two years old and the rest is the second group (stand age > 2 years).
Using the proposed composite images, the overestimated FSV was significantly decreased
because of the contribution of the crown width, and Figure 12 illustrates that the contribu-
tions of the crown in young samples (RMSE reduced by 15%) is obviously larger than that
in near-mature or mature samples (RMSE reduced by 5%). Moreover, the contributions of
the crown width gradually faded into insignificance for near-mature or mature eucalyptus
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forest. These results also indicated that composite LC8 images were more capable of im-
proving the accuracy of FSV in young eucalyptus forests. The main reason is the growth
characteristics of the crown; the crown of young eucalyptus grows with an increase in FSV.
In contrast, it is rather difficult to obtain a reliable FSV using single LC8 images after crown
closure because of saturation problems.
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On the contrary, the forest height made a great contribution for mapping FSV, whether
young or mature eucalyptus forest. For young forest, the contributions of forest height
(CHM) and stand age using single LC8 images are larger than those using composite images
(Figure 12a). Therefore, it was confirmed that the CCHM improved the accuracy of the
estimated FSV for high FSV forests (near mature and mature eucalyptus). Additionally,
upon using the stand age and CCHM, the accuracy of the estimated FSV was also improved
for the low and high FSV forests.

5. Conclusions

To overcome the limitations of small canopies in eucalyptus forests, time series Landsat
8 OLI images were acquired before and after the crown close, and one pair of stereo images
was employed to derive the CHM. After forming the composite images, various vegetation
indices and bands were extracted to analyze the response of the FSV to the crown close
and other forest parameters. The results show that the FSV of eucalyptus forest could
be successfully obtained by combining multi-temporal LC8 with stand age and CCHM.
The number of samples with overestimated and underestimated FSV was reduced. In
addition, the results also show that the corrected CHM, which is regarded as an indirect
variable, can significantly improve the accuracy of estimated FSV in eucalyptus forests,
especially for near-mature and mature forests. It was also confirmed that variables extracted
from seasonal LC8 images were more sensitive to the FSV in young eucalyptus forests. In
contrast, it is rather difficult to obtain a reliable FSV using single LC8 images after crown
closure. In the future, seasonal variables associated with the crown close will be extracted
from other optical remote sensing images, and the precise response will be analyzed to
describe the relationship between the various variables and FSV for determining the specific
saturation levels in planted eucalyptus forests.
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