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Abstract: Nowadays, the huge production of Municipal Solid Waste (MSW) is one of the most strongly
felt environmental issues. Consequently, the European Union (EU) delivers laws and regulations
for better waste management, identifying the essential requirements for waste disposal operations
and the characteristics that make waste hazardous to human health and the environment. In Italy,
environmental regulations define, among other things, the characteristics of sites to be classified
as “potentially contaminated”. From this perspective, the Basilicata region is currently one of the
Italian regions with the highest number of potentially polluted sites in proportion to the number of
inhabitants. This research aimed to identify the possible effects of potentially toxic element (PTE)
pollution due to waste disposal activities in three “potentially contaminated” sites in southern Italy.
The area was affected by a release of inorganic pollutants with values over the thresholds ruled
by national/European legislation. Potential physiological efficiency variations of vegetation were
analyzed through the multitemporal processing of satellite images. Landsat 5 Thematic Mapper
(TM) and Landsat 8 Operational Land Imager (OLI) images were used to calculate the trend in the
Normalized Difference Vegetation Index (NDVI) over the years. The multitemporal trends were
analyzed using the median of the non-parametric Theil–Sen estimator. Finally, the Mann–Kendall test
was applied to evaluate trend significance featuring areas according to the contamination effects on
investigated vegetation. The applied procedure led to the exclusion of significant effects on vegetation
due to PTEs. Thus, waste disposal activities during previous years do not seem to have significantly
affected vegetation around targeted sites.

Keywords: multitemporal satellite; time series; remote sensing; Landsat; Theil–Sen estimator; Mann–
Kendall test; potential toxic elements; NDVI trend

1. Introduction

As early as the 1970s, a “new type of forest decline” [1] was observed almost simulta-
neously in various countries and in very different climatic and geo-pedological conditions
and affecting different species of conifers and broad-leaved trees. The symptoms shown
were not simply attributed to the classic biotic and abiotic stresses that cause a reduction
in growth, a reduction in the leaf surface, the discoloration of the leaves, an arrest of or
reduction in diameter increment, or a reduction in root phytomass and crown transparency.
The phenomenon, whose causes have not yet been fully established, is still the subject of
scientific research, but the contribution of Potential Toxic Elements (PTEs) in the decline
of vegetation functionality is now well known and established. Among the PTEs, heavy
metals (HMs) play a fundamental role, so much so that the European Environment Agency
(EEA) has highlighted the importance [2] of the continuous monitoring of HM emissions
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in the environment at the European level. Such monitoring is a priority of international
programs, such as the International Cooperative Program on Assessment and Monitoring
of Air Pollution Effects on Forests (ICP Forests) and the International Cooperative Program
on Integrated Monitoring of Air Pollution Effects on Ecosystems (ICP IM) of the United
Nations Economic Commission for Europe (UNECE), and at national level in various parts
of the world [3,4].

Although HM pollution began with the industrial revolution [5], in recent decades
there has been an increase in HM concentrations in the soil, which is causing serious
environmental damage as a result of the problems of contamination. In fact, the quality
of the environment and the activities of living organisms are influenced by contamination
from HMs [6–8]. Where the excessive concentration of these metals concerns environments
accessible to animals or plant species of food interest, animal and human health can also be
compromised [9–11].

HMs can be released into the environment both for natural drivers and as a result of
anthropogenic activities. The main causes of emissions are man-made sources, in particular,
mining activities [12–14], industry and energy production [15,16], agriculture (fertilizers,
pesticides, etc.), use of fossil fuels [17], waste disposal [18–20] and population growth and
concentration in large urban areas [21,22]. The demographic and industrial increase has led
to a huge production of waste that is treated, stored, collected and disposed of, involving
risks for the environment in various phases [23,24]. The controlled or uncontrolled disposal
of waste can accidentally cause the leakage and migration of contaminants, including
inorganic ones, such as HMs, with a significant impact on the environment [25]. In some
cases, the metals emitted continue to persist in the environment for many years, even after
the decommissioning of anthropogenic activities.

Together with essential elements, HMs are absorbed by plants from the soil, giving
rise to potentially risky bioaccumulation phenomena not only for flora and fauna but also
for human health. The toxicity of HMs in plants depends on the plant species, the chemical
element, its concentration and the soil’s chemical–physical characteristics. The elements
that can be significantly accumulated in plants are Cr, Mn, Fe, Ni, Cu, Zn, Cd, Pb and Hg.
The problems caused by HMs are well known for plants [26–30]: growth reduction [31–34]
until reaching high levels of toxicity capable of causing death [35]. In fact, high concen-
trations of HMs damage plant structures, such as through the replacement of essential
ions with free radicals that affect the protein and enzymatic structure [36]. Furthermore,
high concentrations of HMs in the soil negatively interfere with the radical absorption of
essential nutrients, affecting physiological processes such as respiration and photosynthesis.
HMs also favor the production of Reactive Oxygen Species (ROS) by self-oxidation [37],
which, in turn, results in negative effects on lipids and proteins of the cell membrane, on
permeability, on Deoxyribo-Nucleic Acid (DNA) and on photosynthetic properties, ulti-
mately causing physiological stress, alterations in phenology and growth reduction [38–40].
Further negative effects are attributable to physiological processes such as germination,
accumulation and remobilization of reserve substances during germination [41].

The functional alterations of plants due to HM pollution result in morphological
modifications concerning the pigment content [42], the mesophyll structure, the leaf sur-
face characteristics [43,44] and the canopy architecture [45]. With regard to physiology,
variations concern the transpiration rate and photosynthesis [46,47], the stomatal conduc-
tance [48,49] and, consequently, the leaf temperature [50,51]. Other known effects range
from the reduction in the number of leaves to the reduction in leaf surface and green
pigments, and therefore to chlorosis [52], necrosis, leaf epynasty and red-brown discol-
oration [3,4,53]. Among the latter, chlorosis is probably the most common phenomenon
in response to HM pollution stresses [33], causing a reduction in chlorophyll absorption
around the spectral ranges of 680 nm and 550 nm [54].

Such a plant response affects the spectral reflectance of foliage and canopy under
an increasing geochemical stress [55,56]. Moreover, reflectance changes can be species-
dependent [57] and influenced by environmental variables that affect the HM concentra-
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tions in plants [58]. Many studies have highlighted the ability of satellite remote sensing
(RS) to identify geochemical stresses on plants induced by high HM concentrations through
changes in the spectral responses in various ranges, in particular, visible and infrared
(IR) [59–61]. In more detail, an increase in spectral reflectance in the red region and a
significant reduction in the near infrared (NIR) was observed [62,63]. Thus, the use of
Vegetation Indices (VI), based on the spectral transformation of two or more bands, tends
to minimize the disturbances due to the reflectance contribution of soil, atmosphere and
other external factors [64,65], highlighting the spectral aliquot of vegetation [66–68].

The NDVI Vegetation Index, based on the normalized difference of the red and NIR
bands, which are more sensitive to the variations induced by contamination, is particularly
suitable for the multitemporal identification of the physiological efficiency of vegetation [69]
and for the space-time comparison of photosynthetic activity [51,70]. In fact, NDVI is widely
used for the evaluation of plant biomass, the leaf area index (LAI), photosynthetic activity
and chlorophyll content; namely, all factors more or less strongly influenced by the presence
of HMs.

Traditional methods for monitoring HM contamination involve soil and plant tissue
analysis, providing very accurate data yet very onerous and expensive to sample; therefore,
they are not applicable on a large scale [71,72]. On the other side, RS represents a valid
alternative method for monitoring HM contamination [73–75]. It has been shown that
HM contamination causes a reduction in the dry mass of plants even before alterations
of the photosynthetic mechanisms occur [47]. Thus, RS techniques are potentially able
to identify any contamination before clear evidence on vegetation [54]. Some RS studies
are based on the implementation of models correlating the satellite spectral response with
the variation of physiological and morphological parameters of vegetation as a result
of different levels of contamination [76–78]. The main advantages of RS are to provide
information in near real-time with high efficiency in identifying vegetation state changes
and to be a non-destructive, low-cost methodology that provides large-scale data [79]. The
negative consequences of high concentrations of HMs accumulated in plants can clearly
manifest their effects over time [80]. Therefore, long-term observations of vegetation are of
considerable importance [81]. In this perspective, a multitemporal analysis of RS data can
be used to identify HM contamination in a wide area, further because the stresses induced
by HM contamination have the characteristic of being stable in space and time [50]. In
addition, the continuous, multitemporal and large-scale monitoring by RS allows policy-
makers to implement decision support systems for land management aimed at restoring
ecosystem functionality and resilience capacity [4]. It should be noted that the effects
induced by HM pollution could be confused with other factors (water stress, nutrient
deficiency, diseases and infestations, climatic anomalies, mismanagement, etc.) affecting
vegetation functionality and causing the same macroscopic effects [51,82,83] and, therefore,
very similar spectral variations. However, the latter stressors have a limited effect over
time, while the toxicity due to HM bioaccumulation persists over years [50]. Starting from
these assumptions, this work led to:

(a) Multitemporal analysis of vegetation change in areas surrounding potentially polluted
sites, through the study of NDVI trends.

(b) Identification of a statistical procedure for analyzing the physiological trends of
vegetation that did not take into account variations due to external factors with
respect to PTE pollution.

(c) Analysis of the statistical significance of the multitemporal trends of NDVI for the possi-
ble identification of areas of environmental criticality due to the effect of contamination.

2. Materials and Methods
2.1. Study Sites

The pilot sites for the multitemporal monitoring of vegetation consisted of territorial
areas affected by pollution issues, both in terms of overt contamination of environmental
matrices as well as potential threats to the environment and public health.
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In particular, the following three sites (Figure 1) located in the north-western part of
the Basilicata region (Italy) were analyzed:

• The landfill of Aia dei Monaci, located in the municipality of Tito;
• The landfill complex in the Montegrosso-Pallareta area of Potenza;
• The former incinerator, later a waste transfer center, in Vallone Calabrese, Potenza.
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Figure 1. Overview of the study areas on “Sentinel-2 cloudless—https://s2maps.eu (accessed on
14 November 2021) by EOX IT Services GmbH (Contains modified Copernicus Sentinel data 2017 &
2018)”.

The complex located in Aia dei Monaci was first used as a landfill for municipal solid
waste (MSW) from 1994 to 2004, when the authorized volumes were exhausted, and then as
a waste transfer station for MSW, serving the municipalities of the Bacino “Potenza Centro”
from 2007 to 2014. At present, the transfer station is inactive, and no waste treatment
or storage activities are carried out on the site. Its Site Characterization Plan is being
implemented.

In the site of Montegrosso-Pallareta (Potenza), there is a complex of landfills whose
work began in 1986 and that was responsible for waste disposal in May 1989. Since February
2009, it has housed an MSW transfer station inside of it, serving 18 municipalities in the
hinterland of Potenza. Nowadays, the activities of the waste transfer station are suspended.
The various basins are not in operation; therefore, they have been closed according to the
procedures established by the regulations in force at the time of filling the basins.

The former incinerator in Vallone Calabrese (Potenza), built between 1988 and 2003,
only came into partial operation at the end of 2005 with the start of the testing proce-
dures, the “hot tests” of the industrial plants, pending the completion of the authorization
process for the exercise. The activity, up to that moment being provisional and never
fully operational, ended in 2007. Today, the structures that house the industrial plants

https://s2maps.eu
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are not operational and there is no waste management and/or handling. The area is
used as a depot for snow vehicles and other equipment for the ordinary operation of the
“Azienda Comunale per la Tutela Ambientale” (ACTA), the local Municipal Environmental
Protection Agency.

The above-mentioned study areas are reported as “potentially polluted sites” in the
“Registry of the sites subject to the remediation procedure” of the Basilicata region as
analyses carried out over the years on various environmental matrices (groundwater,
surface water, soil) have shown the following analytes to be out of range:

• At Aia dei Monaci, 299 µg/L of iron, 2697 µg/L of manganese and 22 µg/L of nickel
(threshold values are 200, 50 and 20 µg/L, respectively).

• At Montegrosso-Pallareta, off-threshold values sampled in groundwater relate to
nickel (88 µg/L), lead (193 µg/L), sulphates (6400 µg/L) and manganese (2000 µg/L),
where thresholds are 20, 10, 250 and 50 µg/L, respectively.

• At Vallone Calabrese, threshold values have been exceeded both for groundwater (sul-
phates, aluminum, manganese and lead) and soil matrices, where the measured copper
concentration was 1500 mg/kg dry matter (DM) against a threshold of 600 mg/kg DM.

The excerpts of the orthophoto AGEA 2017 and the land use map of the Basilicata
region for each study area are depicted in Figure 2. The land use classes falling within the
sites of interest are shown in Table 1.
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Table 1. Land use class distribution in the three study sites.

Code Description
Aia dei Monaci Montegrosso-Pallareta Vallone Calabrese

Count % Count % Count %

1 Artificial surfaces 136 3.9 88 2.5 64 1.8
122 Road and rail networks 40 1.1 55 1.6 97 2.8
211 Non-irrigated arable land 818 23.5 1006 28.8 1505 43.1
212 Permanently irrigated land 1 0.0 0 0.0 0 0.0
22 Permanent crops 0 0.0 17 0.5 49 1.4

311 Broad-leaved forest 2224 63.8 378 10.8 318 9.1
312 Coniferous forest 0 0.0 818 23.5 0 0.0
321 Natural grasslands 97 2.8 376 10.8 739 21.2
324 Transitional woodland-shrub 168 4.8 740 21.2 676 19.4
332 Bare rocks 0 0.0 9 0.3 21 0.6
51 Inland waters 4 0.1 1 0.0 19 0.5

Total 3488 100.0 3488 100.0 3488 100.0

2.2. Satellite Data

The constellation of existing satellites and the characteristics of onboard sensors were
analyzed to reconstruct the vegetation trends. The choice fell on the Landsat constellation
as it is the longest earth observation (EO) program, providing data for the past 50 years,
and the satellites of its missions have almost comparable sensors onboard, if applying
appropriate intercalibration procedures. The good geometric resolution of Landsat images
is able to identify with sufficient accuracy the changes occurring on the Earth’s surface.
Landsat 7 Enhanced Thematic Mapper Plus (ETM+) images were discarded from the
analyses due to Scan Line Corrector (SLC)-Off causing data gaps since June 2003 that affect
two of the three study areas almost entirely. Therefore, only Landsat 5 TM and Landsat
8 OLI images were considered (Table 2), acquired in the time span between 1990 and 2018
and referred to the summer months (generally July and August) when the percentage of
cloud cover is near to zero on survey sites.

Table 2. Landsat 5 TM and Landsat 8 OLI images used in the time series analysis (Worldwide
Reference System—WRS—Path/Row 188/32).

Satellite Sensor Date of Acquisition

Landsat 5 TM 23 July 1990
Landsat 5 TM 31 July 1993
Landsat 5 TM 5 July 1993
Landsat 5 TM 17 August 1999
Landsat 5 TM 22 June 2002
Landsat 5 TM 19 July 2006
Landsat 5 TM 22 June 2008
Landsat 5 TM 18 August 2011
Landsat 8 OLI 7 August 2013
Landsat 8 OLI 10 August 2014
Landsat 8 OLI 13 August 2015
Landsat 8 OLI 15 August 2016
Landsat 8 OLI 2 August 2017
Landsat 8 OLI 4 July 2018

The atmospheric correction of the images, absolutely necessary when dealing with
satellite image time series, was carried out using the 6SV algorithm [84–86]. This algorithm,
extensively tested to ensure its accuracy [87], has undergone several evolutions and in the
current version includes the effects of polarization, which has a substantial role on method
accuracy [88]. 6SV currently represents one of the most efficient algorithms for various
multispectral sensors [89,90]. The subsequent cloud masking operation was necessary
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in order to detect the presence of cloud cover and related shadows in order to identify
the images to be excluded from the analysis in the study areas. The algorithm used was
Fmask [91,92], which is particularly suitable for the correct identification of clouds and
shadows in Landsat images [93,94]. Finally, the time series images were cropped on the
whole study area, including all three sites of interest.

2.3. Analysis of the Vegetation Evolution

Starting from the Landsat data, a methodology for analyzing NDVI temporal trends
was developed to obtain respective maps of the vegetation evolution/involution and maps
of the environmental criticalities, both over the 1990–2018 timeframe (Figure 3).
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The procedure adopted for the multitemporal analysis of processed Landsat data
in the period 1990–2018 was the Theil–Sen median trend [95,96]. The non-parametric
Theil–Sen estimator tends to produce accurate confidence intervals even when data are
not normally distributed [97,98] and in the presence of heteroskedasticity [99,100]. The
method is robust with regard to outliers [101,102], which are always present in a time series
of RS data and represent a “disturbance” with respect to the analysis of vegetation trends.
Furthermore, in RS, this non-parametric procedure is considered robust with respect to
the seasonality, non-normality and frequently present autocorrelation both at intra and
interannual scale [103–105].

The procedure allows computing the slope of the line joining the medians of the trends
calculated for each pair of points belonging to the dataset. Such a slope is calculated as
follows [95,96]:

β = median
( xi − xj

i− j

)
, ∀j < i (1)

where β is the slope between the data of two points in the time series, and xi and xj are
the corresponding values between the two points i and j (for j < i). The procedure is
applied independently to each pixel and calculates the median of the slopes between all
the n (n − 1)/2 pair combinations of pixels over time. The final result provides the rate of
change for the considered time step, e.g., year, month, week, etc. [106].
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The Theil–Sen method tends to provide similar results to the Ordinary Least Squares
(OLS) regression [107–109] for identifying the line slope when there are many observa-
tions (e.g., very long historical series and/or annual data on a daily, weekly basis, etc.)
that exclude the effect of outliers [110–112]. For small observations, the median trend
provides more robust results and is particularly suitable for the treatment of RS data, es-
pecially at medium and high spatial resolution and, therefore, with reduced observation
frequency [113,114].

The main advantage of Theil–Sen is its “breakdown bound”; for a robust estimator, the
number of outliers that can be present in the dataset before the trend is affected by them is
approximately 29% [106]. In such a case, the important implication is that the observations
affected by strong inter-annual climatic oscillations or significant variations due to external
factors are not taken into consideration compared to those to be observed.

2.4. Analysis of Environmental Criticalities

Once vegetation trends were identified, their significance was analyzed, identifying
the areas that had undergone environmental stress over the years such as to induce a
significant reduction in physiological efficiency.

To carry out this verification, the Mann–Kendall test was used, starting from the Theil–
Sen slope trends. In fact, the Z Mann–Kendall test [115–117] is not only able to verify the
existence of a trend but also to estimate its statistical significance (separating the hypothesis
H0 = absence of trend from H1 = presence of monotonous trend). On the other hand, Z
Mann–Kendall is not able to identify the trend monotonicity, unlike the Theil–Sen slope
estimator. Instead, because the Theil–Sen estimator does not provide any information
regarding trend significance, it is very often used in combination with the Mann–Kendall
test [79,118–121].

The Mann–Kendall Z test estimates the trend significance by measuring the magnitude
of the relationship between two successive points. Assuming a time series t1, t2, . . . , tn,
corresponding to a data series x1, x2, . . . , xn, the value S of the Mann–Kendall test [115,116] is:

S =
n−1

∑
i=1

n

∑
j=i+1

sign
(
xi − xj

)
(2)

sign
(
xi − xj

)
=


1 i f xi − xj < 0
0 i f xi − xj = 0
−1 i f xi − xj > 0

(3)

where n is the length of the time series, and xi and xj are the observations, respectively, at
time i and j. When n ≥ 10, the Mann–Kendall test’s statistical value S is similar to a normal
distribution with a mean equal to 0. The variance of S is:

Var(S) =
n(n− 1)(2n + 5)

18
= σ2 (4)

The Mann–Kendall Z value is used to identify where the trend is significant:

Z =


S−1√
Var(S)

i f S > 0

0 i f S = 0
S+1√
Var(S)

i f S < 0
(5)

|Z| > Z(α/2), where α is the level of significance, means that the time series shows
a significant trend, increasing for S > 0 and decreasing for S < 0. The significance level
considered for remotely sensed data is usually 0.05 [106,122,123]. For α = 0.05, Z(α/2) = 1.96.
This means that for |Z| > 1.96, there is a significant trend of increase or decrease. The level
of significance is particularly suitable for the analysis of a time series of RS data in order to
verify the significance of NDVI trends [106,124,125].
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3. Results

The analyses for the identification of the multitemporal trends of the vegetation were
conducted on a circular area with a radius of 1 km starting from each site’s centroid. The
consideration underlying this assumption was that any possible variation in the vegetation
functional efficiency induced by the anthropogenic stresses was evident in an area not far
from potentially polluting sources [126–129]. For a unit area of 900 m2 (pixel size), the
obtained maps identify the multitemporal variation of the vegetation efficiency at different
levels of intensity and, thus, the environmental criticalities.

3.1. Maps of the Vegetation Evolution

The Theil–Sen slope map (Figure 4) was calculated for the NDVI, a vegetation index
that is able to express any eco-physiological stresses on vegetation [42,130]. Therefore,
starting from the NDVI Theil–Sen slope, a map of the vegetation evolution (Figure 5) was
created for each study area to identify any stresses and trace them to the factors that they
induced. In more detail, this map on vegetation growth/degrowth rates in the period
1990–2018 identifies the following classes:

• Three classes of vegetation involution (slight, moderate and strong decrease);
• An intermediate class containing the invariant areas, defined as “constant”;
• Three classes of vegetation evolution (slight, moderate and strong increase).
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Figure 5. Map of the vegetation evolution of the whole study area and related detail maps of the
three sites of interest: (a) Aia dei Monaci, (b) Montegrosso-Pallareta, (c) Vallone Calabrese.

For the survey sites, consisting of circular areas with a radius of 1 km, the distribution
percentages of the vegetation evolution classes are shown in Table 3.

For Aia dei Monaci, the areas showing a decrease in vegetation were very small
(about 2.5%), with consistent decreases affecting only six pixels (0.2%). Even the invariant
areas were very limited in extent, while those that showed increases exceeded 96% in the
timeframe considered, with very sustained increases reaching approximately 54%.

For the Montegrosso-Pallareta site, the total areas of decrease were approximately 15%
and, therefore, they were certainly more consistent than in Aia dei Monaci, although the
areas with a significant decrease were around 2%. Unlike how the Aia dei Monaci site falls
within a distinct agro-forestry area characterized by clearly reduced land use changes, the
Montegrosso-Pallareta site falls in a peri-urban area with a high complexity of landscape
dynamics. In fact, since the 1990s, urbanization processes and land use changes have been
faster and have involved larger surfaces. Thus, the agro-forestry land use dynamics were
more sudden with an alternation of crop abandonment, cultivation of uncultivated areas,
afforestation, etc.
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Table 3. Percentage distribution of the vegetation evolution classes in the survey sites.

Vegetation
Evolution Classes

Aia dei Monaci Montegrosso-Pallareta Vallone Calabrese

Count % Count % Count %

Strong decrease 6 0.2 74 2.1 45 1.3
Moderate decrease 17 0.5 192 5.5 133 3.9

Slight decrease 63 1.8 249 7.1 201 5.8
Constant 37 1.1 209 6.0 92 2.7

Slight increase 416 11.9 710 20.4 317 9.2
Moderate increase 1074 30.8 938 26.9 817 23.8

Strong increase 1875 53.8 1111 31.9 1833 53.3

As expected, Vallone Calabrese acted similar to Montegrosso-Pallareta because the two
sites are geographically very close and, therefore, are in similar microstational and territorial
structure conditions. The vegetation decline affected just over 10% of the investigated land,
while more than 86% of the surfaces showed a trend in positive evolution, of which over
53% were with very sustained growth rates.

3.2. Maps of Environmental Criticalities

The maps of environmental criticalities showing statistically significant decreases in
the vegetation were elaborated through the Z Mann–Kendall methodology.

First of all, a regression analysis between the Z Mann–Kendall values and the Theil–
Sen slope values [131] was performed in order to verify the validity of the procedure. The
analysis was conducted on each site, considering a circular area with a radius of 1 km.
Figure 6 shows a significant correlation between the variables under consideration for
each site, with a determination index (R2) always greater than 0.8, and even greater than
0.9 in the case of Montegrosso-Pallareta. In more detail, the functional model, R2, and the
Standard Error of Estimate (SEE) of the linear regression between Z Mann–Kendall and
Theil–Sen slope values for the three sites of interest are reported in Table 4.
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Figure 6. Regression analysis between the Z Mann–Kendall test and Theil–Sen slope values for the
three survey sites: (a) Aia dei Monaci, (b) Montegrosso-Pallareta, (c) Vallone Calabrese.

Table 4. Statistical parameters of the regression between Z Mann–Kendall (X) and Theil–Sen slope
(Y) for the three sites.

Aia dei Monaci Montegrosso-Pallareta Vallone Calabrese

Functional Model Y = 0.000001 + 0.004313 ∗ X Y = 0.000001 + 0.005762 ∗ X Y = 0.000001 + 0.005951 ∗ X
R2 0.82 0.87 0.94

SEE 0.00050 0.000318 0.000268

The detailed maps of environmental criticalities, evaluated through the Z Mann–
Kendall test applied on the Theil–Sen median trend of NDVI in the time span considered
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(1990–2018) are depicted for each study area in Figure 7. Further, some sampled points are
also represented in these maps, and they are analyzed and discussed below.
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Figure 7. Maps of environmental criticalities and sampled points at the three targeted areas: (a) Aia
dei Monaci, (b) Montegrosso-Pallareta, (c) Vallone Calabrese.

Such maps identify the “non-sensitive areas”, including portions of land that did
not show any significant changes or showed a significant positive trend in the considered
period, and “sensitive areas” in which, on the other hand, there was a statistically significant
reduction in NDVI. For the three sites, the distribution of the areas of environmental
criticality is shown in Table 5.

Table 5. Percentage distribution of the environmental criticality classes for the survey sites.

Environmental
Criticality Classes

Aia dei Monaci Montegrosso-Pallareta Vallone Calabrese

Count % Count % Count %

Significantly positive 2693 77.2 785 22.5 1274 37.0
Constant 791 22.7 2678 76.8 2159 62.7

Significantly negative 4 0.1 23 0.7 12 0.3

For Aia dei Monaci, the negative variations, and therefore the areas of environmental
criticality, were extremely low, being equal to 0.1% (only four pixels), while the areas
without significant variations were approximately 23%. There were considerable areas
(over 77%) with statistically significant positive variations. Analyzing the map (Figure 7a),
it is possible to notice that the areas of environmental criticality were located in the northern
part of the circular area of interest and were related to a quarry area already present at
the beginning of the time series (1990) that has undergone a progressive expansion over
the years.

In the case of the Montegrosso-Pallareta site, the largest surface (approximately 77%)
fell into the “constant” class; unlike Aia dei Monaci, where the largest surfaces in the study
area were affected by forest stands, in the site in question, the largest areas were occupied
by herbaceous crops (in particular, arable land), which are renewed annually and, therefore,
do not show significant variations in terms of quantity of biomass over the years.

For Vallone Calabrese, the percentage distribution of surfaces into criticality classes
highlighted a situation that is sufficiently similar to the Montegrosso-Pallareta site as
the structure of the landscape is similar in terms of anthropogenic, cultural and natural
components. The larger areas (over 60%) did not show a significant trend, while the critical
areas (significant negative trend) were below 1%.
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4. Discussion

In order to identify where the evolutionary trends of vegetation and, therefore, the
environmental criticalities have occurred, both maps of the vegetation evolution and related
environmental criticalities were intersected with the land use map of the Basilicata region
(Figure 2). The intersection of land use with the vegetation evolution classes for each study
area is depicted in Figure 8.
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Figure 8. Percentage distribution of vegetation evolution classes vs. land use class code: (a) Aia
dei Monaci, (b) Montegrosso-Pallareta, (c) Vallone Calabrese. Land use class codes are described in
Table 1.

For Aia dei Monaci (Figure 8a), especially moderate and strong vegetation decreases
occurred very often in areas classified as “Non-irrigated arable land” (code 211). The cause
was the decrease in NDVI due to a land use change from uncultivated lands (pasture and
wooded pasture) to a resumption of cereal cultivation, which has notoriously lower NDVI
average values. However, these areas represent only 0.7% of the entire area of Aia dei
Monaci and, as will be seen below, show decreases that the statistical analysis considered
insignificant. Further decreases were related to the expansion of urbanized areas, due
in particular to the cultivation of a stone quarry located in the north of the study area.
The most sustained increases, as expected, concerned areas with forest cover (stands of
oak species). The land use class relating to “Transitional woodland-shrub” also showed
markedly positive trends. These are areas in which the abandonment of crops or the
reduction in livestock pressure has led to the expansion of forest areas. These are the typical
areas of forest recolonization.

For Montegrosso-Pallareta (Figure 8b), the vegetation decreases basically affected two
land use classes: “Non-irrigated arable land” (code 211) and “Coniferous forest” (code 312).
In the first case, the decreases, which are not statistically significant, were due to the
resumption of arable farming in previously uncultivated areas (pasture areas) and the
crop rotations between cereals and legumes. In the latter, the decrease was sometimes
statistically significant.

Instead, forests (both broad-leaved trees and a part of conifer reforestation) and the
“transitional woodland/shrub” were characterized by sustained increases. These are areas
of forest recolonization, where the abandonment of cultivation has allowed the expansion
of shrub and tree vegetation.

For Vallone Calabrese (Figure 8c), the decreases mainly affected arable land, for a
similar reason as the Montegrosso-Pallareta site. The NDVI reduction in the “Broad-leaved
forest” class (code 311), which was not statistically significant, is due to the management of
some areas where this class is present. In particular, the riparian vegetation is subjected to
thinning in order to maintain the efficiency of ditches and drains. The increases obviously
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affected the tree vegetation and also the recolonization stage and the “Natural grasslands”
(code 321), i.e., the grazing areas where the reduction in anthropogenic pressure (crop
abandonment, reduction in grazing pressure) has led to the increase in herbaceous biomass
over the years. The intersection between land use classes and maps of environmental
criticalities (Figure 9) allows identifying clearly whether vegetation perturbations have
occurred over the years due to potentially polluting anthropic activities.
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For Aia dei Monaci (Figure 9a), a statistically significant decrease occur in “Artificial
surfaces”, that is, as already discussed above, the areas located in the north of the site
that are characterized by the expansion of a quarry cultivation. The positive changes
(significantly increasing trend) are instead related to forest stands, in particular to broad-
leaved forests (in detail, oak trees) and to areas of forest recolonization (“Transitional
woodland-shrub”). The invariant areas fundamentally belong to the “Non-irrigated arable
land” class, where there is an annual cycle of cultivation on the same surfaces.

For the Montegrosso-Pallareta site (Figure 9b), the positive trends occur mainly in
correspondence with natural surfaces: from forest stands (both broad-leaved and part of the
reforested areas with conifers) to the areas of forest recolonization following the reduction
in anthropogenic pressure (crop abandonment) and natural herbaceous vegetation areas
(pastures). The invariant areas involve both the surfaces with crops (non-irrigated arable
land) and the small areas without any vegetation cover. Some conifers’ reforestations
show an arrest in growth, which had already begun to decline since 1995. A more careful
examination of these reforestations allows identifying that the constant decline in terms of
biomass is not related to the possible effect due to waste disposal activity, but to the partial
failure of these stands due to local conditions, in particular pedological characteristics,
and to the inadequate choice of plant species. This is, in fact, a common situation in the
reforestation of Basilicata, where the choice of alien species that are not very suitable for
extreme climate and above all soil features has led to the constant deterioration of reforested
areas over the years, up to the partial or total failure of the plantation.

In the Vallone Calabrese site (Figure 9c), the invariant areas, similarly to the Montegrosso-
Pallareta site, consist of arable land and pasture areas, while the positive trends basically
occur both in forest areas and forest recolonization areas. Instead, the critical areas, statisti-
cally significant negative trends, are the “Artificial surfaces”.

The analysis of NDVI Theil–Sen multitemporal trends of some points of interest
(Figures 6 and 10) clarifies the vegetation dynamics in each investigated area.
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In Aia dei Monaci, the points P9 and P10 fall into critical areas and show decreasing
trends. The initial NDVI values in 1990 are already very low (about 0.1) and typical of
rocky areas with sparse herbaceous vegetation. These values tend to constantly decrease
due to the expansion of quarry cultivation over the years. No other areas of environmental
criticality can be identified on this site. Then, there are areas (P5) characterized by a constant
trend over the years and points that, although showing a slightly increasing (P4 and P7) or
decreasing trend (P8), do not appear to have a statistical significance with regard to the Z
Mann–Kendall test. As mentioned above, most areas have a statistically significant positive
variation in the NDVI (P2 and P6) and are attributable to forest stands.

In Montegrosso-Pallareta, the positive trends are related to forests (P12) also in the
recolonization stage (P14) or areas, such as the landfill body itself (P11), characterized by
the presence of herbaceous and shrub artificial species, as a result of restoration operations
(capping and greening). Points between P18 and P20 correspond to the reforestation stands
affected by a forest fire in 2015, as evidenced by a significant decrease in NDVI. However,
the growth decline started in 1995 because these plants, as already clarified above, are
located in very difficult local conditions, characterized by heavily clayey asphyxiated soils
on very high slopes.

For Vallone Calabrese, the invariant points (P22 and P24) consist of arable land and
pasture areas, while the positive trends are mainly related to forests, forest recolonization
areas (P26 and P25) and pastures (P21) where the reduction in anthropogenic pressure
(grazing) has led to a biomass increase. The critical areas (significantly negative trends) are
attributable to urbanization and infrastructural works (P28) and, partially, to arable land as
a consequence of the restarting of the cultivation of pasture or wooded pastures on small
surfaces with consequent biomass reduction (P29).

In summary, the analysis carried out on the three sites in order to identify the presence
of the effects on the vegetation of any pollution leads to the conclusion that a significant
alteration of plant systems’ functionality with a consequent decline in the vegetation were
not found in the areas of interest during the period under examination. The significant veg-
etation decline observable in limited areas of each site was due to landscapes dynamics and
the consequent land use changes, or external disturbances with respect to the phenomenon
under investigation.

The proposed methodology, which involves the application of the Theil–Sen slope
and Z Mann–Kendall test to verify the statistical significance of trends, has proven to be
particularly suitable in the processing of collected satellite data and taking into account
the perturbations induced on vegetation by different drivers than those to be analyzed.
In fact, over a long period of time and with few observations, NDVI variations may be
due to external causes (disturbances) able to significantly affect its trends. For instance, a
forest fire occurring near Montegrosso-Pallareta in 2015 (Figure 11a) or forest exploitation
at Aia dei Monaci (Figure 11b), due to the usual forest management, represent outliers
with respect to vegetation trends. In such cases, the Theil–Sen median trend is not affected,
unlike OLS regression, by these extreme events, which represent aberrant values compared
to the targeted phenomenon.
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5. Conclusions

The aim of this work was to verify the possibility of analyzing the effects induced on
plant systems in areas surrounding sites where potentially polluting activities take place or
have been carried out. The analyses concerned sites located in southern Italy (Basilicata
region) intended for the disposal of municipal solid waste and where PTE concentrations
above the threshold values permitted by current national legislation were recorded at some
stage of their management.

The proposed analyses identified the multitemporal NDVI trends and their significance
factually and efficiently, thus allowing the elaboration of maps of the vegetation evolution
and related environmental criticalities. The methodology made it possible to evaluate the
vegetation evolution per unit area from 1990 to 2018. Ultimately, the adopted workflow
was able to discover the presence or absence over time of stressors related to anthropogenic
waste disposal activities that could have influenced the significant alteration of plant
systems’ functionality. The applied methodology was able to exclude negative effects on
the vegetation due to potentially polluting activities. In fact, the environmental criticalities
were not very spatially large near the three sites of interest. In more detail, in Aia dei
Monaci, the critical areas were almost absent, representing about 0.1% (0.36 ha) of the entire
study area (ab. 314 ha), while in Montegrosso-Pallareta and Vallone Calabrese, the areas
with a significant decrease in vegetation were 0.7% (2.0 ha) and 0.3% (1.0 ha), respectively.
As widely discussed, such critical areas can be traced back to external factors (disturbances)
rather than to pollution due to waste disposal activities.

In conclusion, it should be emphasized that the methodological approach adopted
in this work has a general validity; it is not site-specific, thus it is exportable in other
territorial contexts. It can be suitably applied to other activities with a high impact on
the environment (e.g., mining, oil extraction, exploitation of groundwater, etc.) or natural
phenomena that may induce eco-physiological stress on vegetation, affecting its functional
efficiency and dynamics. Namely, the impacts that can be induced on ecological systems by
global change in relation to phenology or productivity, such as forest fires and subsequent
vegetation recovery, the risk of desertification, urbanization processes and all kinds of
man-made pollution that can affect ecosystem functionalities.
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