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Abstract: To solve the problem that traditional dark channel is not suitable for a large sky area
and can easyily distort defogged images, we propose a novel fusion-based defogging algorithm.
Firstly, an improved remote sensing image segmentation algorithm is introduced to mix the dark
channel. Secondly, we establish a dark-light channel fusion model to calculate the atmospheric light
map. Furthermore, in order to refine the transmittance image without reducing restoration quality,
the grayscale image corresponding to the original image is selected as a guide image. Meanwhile, we
optimize the set value of the defogging intensity parameter ω in the transmission estimation formula
as the value of atmospheric light. Finally, a brightness/color compensation model based on visual
perception is generated for image correction. Experimental results demonstrate that the proposed
algorithm achieves superior performance on UAV foggy images in both subjective and objective
evaluation, which verifies the effectiveness of the proposed algorithm.

Keywords: image defogging; image segmentation; mixed dark channel; light channel;
image correction

1. Introduction

Absorption, scattering, and reflection on suspended particles seriously reduce visibility
and visible distance in fog weather. Images collected under fog weather usually present
brightness, decreased contrast, blurred details, and color distortion. As a result, they are
difficult to be utilized as the source of effective information. Therefore, defogging has
attracted significant attention to its theoretical challenges and practical applications [1,2].

The current defogging algorithms are roughly categorized into three classes [3]: im-
age enhancement, image restoration, and deep learning. The defogging methods based
on image enhancement lack analysis of the image degradation principle and physical
imaging model. These methods utilize existing image processing technologies to enhance
contrast, highlight detailed information, and improve visibility. These methods mainly
include retinex theory [4], histogram equalization [5], wavelet transform [6], and more.
Retinex transform is a representative algorithm. It indicates that an image is composed
of an incident component representing the image brightness information and a reflection
component representing the internal information of the image [7]. Afterward, a series
of modified Retinex methods are presented. Liu et al. proposed a novel image fidelity
evaluation framework [8] based on a multi-scale retinal enhancement algorithm with color
Restoration (MSRCR). Zhang et al. proposed a multi-channel convolution MSRCR fog
removal algorithm [9]. However, none of the algorithms based on retinex theory completely
solve the halo problem.

The principle of the histogram equalization method is to stretch the contrast of gray
values concentrated in a specific gray range of foggy images so as to obtain more detailed
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information in visual perception [10]. Wong et al. [11] proposed a pipeline method that
combines histogram equalization steps, amplitude compression, and saturation maximiza-
tion stages with the color channel stretching process, aiming to effectively reduce artifacts
while improving image contrast and color details. Afterward, Fei et al. [12] presented a
histogram equalization defogging method based on image retrieval. Firstly, the constraint
function of image enhancement is obtained by the image quality. Then, the distortion
generated by mapping transformation is eliminated by a filter. Finally, adaptive brightness
equalization is carried out, which effectively adjusts the contrast of the image and achieves
better performance. However, when the fog concentration of an image is not uniform or the
scene depth of an image is not continuous, the histogram equalization method shows some
defects of detail loss, contour distortion, and overexposure. Unlike the histogram equaliza-
tion method, the wavelet transform method enhances the image contrast by improving the
high-frequency component and reducing the low-frequency component [13]. Jia et al. [14]
proposed a foggy image visibility enhancement algorithm based on an imaging model and
wavelet transform technology. Here, an optical imaging model under fog conditions is
established, and the degradation factor and compensation strategy are determined. Finally,
the light-scattering component is estimated by Gaussian blur and removed from the image,
which significantly improves the image clarity. In recent years, He et al. [15] proposed a
defogging method based on a wavelet transform in traffic scenes. The innovation of this
method is that foggy images are defogged in both HSV and RGB color space and then
merged. This retains more image information and is more suitable for human eyes to ob-
serve. However, the defogged image recovered by the wavelet transform method manifests
great limitations for large or uneven fog concentrations. To sum up, the defogging methods
based on image enhancement are unable to solve the problems of color distortion, detail
loss, and noise interference in restored images.

The defogging methods based on image restoration mainly include depth informa-
tion of the scene [16], polarization characteristics [17], prior information [18], and more.
The methods based on the depth information of the scene utilize the transmittance in-
formation of the image obtained through the scene depth to carry out fog removal [19].
Gao et al. [20] proposed a method to solve the problem of color distortion in the boundary
area of the sky. It combines the image transmittance obtained from the light field epipolar
plane image with the transmittance obtained from the dark channel prior theory, improving
the color fidelity and inhibiting the halo effect. Wang et al. [21] utilized complex optical
equipment to obtain depth information of images and then estimated the transmittance of
foggy images based on the depth information. This method fully preserves the color infor-
mation of the image, but the process is complicated and limited by professional equipment.
These factors ultimately lead to great limitations in practical application. The methods
based on polarization characteristics extract atmospheric scattered light from the image to
achieve fog removal [22]. In order to overcome the limitation of manually selecting refer-
ence points in the scene to obtain the polarization parameters, Namer et al. [23] propose an
automatical polarization parameters extraction algorithm. Consequently, the polarization
effects generated by the image become more robust and improve the overall quality of
the restored image. Xia et al. [24] produced a quantitative analysis of the original image
using mathematical tools to obtain the regularity of the threshold of air-light intensity
and the range of polarization orientation angle. Thus improving the accuracy of image
restoration. However, the methods based on polarization characteristics heavily rely on
ambient light, and the effect is poor under the condition of high fog concentration. Further-
more, it is difficult to obtain the polarization image in some scenes. The methods based
on prior information obtain the required parameters in the atmospheric scattering model
by counting the rules or specific data of foggy images in advance. Then, using an inverse
process through the atmospheric light model [25] the restored image is achieved. In recent
years, this method has become popular with many researchers because it does not rely
on multiple scene images. Moreover, it has the advantages of a simple and fast operation
process and greatly improves the quality of image recovery. Among them, the most rep-
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resentative method is the dark channel prior defogging algorithm proposed by He et al.,
which has achieved a good defogging effect [26]. On this basis, He et al. put forward the
guided filtering algorithm to solve heavy and complicated computation problems for soft
matting [27]. However, the method based on image restoration still has the limitations of
inaccurate estimation for transmittance and atmospheric light values in bright areas, as well
as fixed parameters in the process of defogging. Afterward, Xu et al. proposed a method
combining dark channel with light channel for image defogging [28]. Li et al. proposed a
two-stage image dehazing algorithm based on homomorphic filtering and dark channel
prior improved by the sphere model [29]. Furthermore, Wang et al. proposed a fog removal
algorithm based on improved neighborhood combined with dark channel prior [30].

With the rapid development of deep learning, defogging methods based on deep learn-
ing have attracted more attention. Engin et al. proposed the cycle-dehaze algorithm, which
has achieved a favourable smog removal effect, but the haze removal effect is lacking [31].
Moreover, Li et al. proposed a defogging algorithm based on residual image learning.
It deforms the atmospheric scattering model and replaces parameters estimated by the
convolutional neural network into the model to obtain defogged images [32]. Zhang et al.
proposed a fusion end-to-end dense connection pyramid defogging network (DCPDN),
which achieves a good image restoration effect [33]. Ren et al. introduced an end-to-end
trainable neural network composed of an encoder and a decoder and trained the network
with a multi-scale method to avoid the halo phenomenon of the defogged image [34].
In addition, Chen et al. utilized an end-to-end context aggregation network for image
defogging. The recovered fog-free image greatly improves relevant objective evaluation
indexes, and the method also has a certain universality [35]. However, defogging methods
based on deep learning usually rely on foggy images and corresponding non-foggy images
in the same scene, which is difficult to obtain in the real situation. Therefore, deep learning-
based defogging methods usually obtain the network structure through learning a large
amount of simulated foggy data. This has a poor effect in the real foggy scene.

At present, the mainstream defogging methods based on the dark channel prior
have some limitations, mainly including its inapplicability to large white areas, higher
estimation of atmospheric light, the simplification of parameters, and more. To overcome
these drawbacks, a far and near scene fusion defogging algorithm based on the prior
of the dark-light channel is proposed, presenting better contrast, brightness, and visual
perception. The main contributions of this paper are summarized as follows:

1. To solve the problem of the inaccurate estimation of atmospheric light value and trans-
mittance, we propose a novel atmospheric light scattering model. The light channel
prior is introduced to obtain a more accurate atmospheric light and transmittance value.

2. Aiming at the shortage that the dark channel prior theory is prone to distort in
some regions of the image, an improved two-dimensional Otsu image segmentation
algorithm is established. It mixes the dark channels in the near and distant areas
and sets adaptive adjustment parameters of the mixed dark channel in the near and
distant areas based on the optimal objective quality evaluation index.

3. In order to overcome the drawback that the defogging parameters are single and fixed
in the process of defogging, an adaptive parameter model is generated to calculate
the defogging degree according to the atmospheric light value.

4. Focusing on reducing the computational complexity of refining transmittance, we
utilize gray images corresponding to foggy images as guiding images for guiding
filtering. Meanwhile, a brightness/color compensation model based on visual percep-
tion is proposed to correct the restored images, which improves the contrast and color
saturation of the restored images.

This article is organized as follows. A background of image defogging and the
contributions of this article are presented in Section 1. The traditional dark channel prior
defogging algorithm is described in Section 2. Section 3 gives a detailed description of
the proposed algorithm. Section 4 verifies the effectiveness of the proposed algorithm by
abundant experiments. The conclusion is drawn in Section 5.
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2. Related Work
2.1. Dark Channel Prior Theory

The atmospheric scattering model is described as follows:

I(x) = J(x)t(x) + A(1− t(x)) (1)

where x is the corresponding position of each pixel in the foggy image, I(x) is the foggy
image, J(x) represents the restored image, and A and t(x) represent the atmospheric light
value and transmittance, respectively.

Assuming the atmosphere follows a uniform distribution, the transmission t(x) is
expressed as follows:

t(x) = e−βd(x) (2)

where β is the scattering coefficient of the atmosphere and d is the scene depth.
In 2009, He et al. proposed dark channel prior: in most non-sky areas of the fog-free

images, at least one channel of RGB has some pixels which are very low or even close to
zero, and these pixels are called dark primary color pixels. The dark channel Jdark(x) is
given by:

Jdark(x) = min
c∈{r,g,b}

(
min

y∈Ω(x)
(Jc(y))

)
(3)

where c represents a channel in RGB color space and Ω(x) represents the filtering region
centered on pixel x. We consider the transmittance t(x) to be a constant value t̃(x) in the
range of each window Ω(x). The following equation is obtained by dividing both sides of
Equation (1) by the value of atmospheric light Ac simultaneously:

Ic(x)
Ac

=
∼
t (x)

Jc(x)
Ac

+ 1−
∼
t (x) (4)

where Ic(x) and Jc(x), respectively, indicate the foggy image and the clear image in a certain
channel. By simultaneously performing the local region minimum value operation and the
color channel minimum value operation on both sides of the equation, Equations (4) and (5)
are obtained:

min
c∈{r,g,b}

(
min

y∈Ω(x)

(
Ic(y)
Ac

))
=
∼
t (x) min

c∈{r,g,b}

(
min

y∈Ω(x)

(
Jc(y)
Ac

))
+ 1−

∼
t (x) (5)

According to the dark channel prior, a rough estimate of the transmittance t(x) is
finally obtained as follows:

∼
t (x) = 1− min

c∈{r,g,b}

(
min

y∈Ω(x)

(
Ic(y)
Ac

))
(6)

Since preserving a certain amount of fog will make the image have a sense of scene
depth, resulting in a more real and natural visual effect, literature [26] introduces empirical
value ω = 0.95 for adjustment to retain a certain amount of fog. The equation of roughly
estimated transmittance is improved as:

∼
t (x) = 1−ω min

c∈{r,g,b}

(
min

y∈Ω(x)

(
Ic(y)
Ac(x)

))
(7)

In Equation (1), too small transmittance t(x) will lead to the direct attenuation
J(x)t(x)→ 0 term, and the restored image J(x) is prone to noise. In literature [26],
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the threshold t0 = 0.1 is set as the lower limit of t(x). At this time, the final defogging
algorithm is reconstructed as:

J(x) =
I(x)− A(x)

max(t(x), t0)
+ A(x) (8)

2.2. Guided Filtering Algorithm

Next, He et al. proposed guided filtering to refine the transmittance. This method
dramatically reduces the processing time, and the edge details of the image refined by
the guided filtering are much clearer. Moreover, the “blocking” effect is greatly reduced,
and the dehazing effect is better. The formula of guided filtering [27] is defined as:

qi =
1
|ω| ∑

k,i,i∈ωi

(ak Ii + bk) (9)

where |ω| represents the number of pixels in a window ωk; ak, bk is the linear parameters of
ωk, which are two fixed constants and expressed as:

ak =

1
|ω| ∑

i∈ωk

Ii pi − µk
−
pk

σ2
k + ε

(10)

bk =
−
pk − akµk (11)

where µk and σ2
k are the mean and variance of the guidance image I in ωk, respectively;

−
pk is the mean of p in ωk.

3. The Proposed Algorithm

A remote sensing image usually has thin fog areas, namely near scene regions,
and heavy fog areas, namely far scene regions. It is difficult for traditional defogging
algorithms to quickly segment near and far scene regions of the remote sensing foggy
image and process different areas in corresponding degrees. Therefore, a two-dimensional
Otsu remote sensing image segmentation algorithm is firstly proposed to segment the im-
age. Then, the improved atmospheric light model and the novel transmittance estimation
method are generated to calculate the improved atmospheric light value and transmittance.
Finally, they are substituted into the foggy image restoration model to restore the final
fog-free image. The flow chart of the proposed algorithm is shown in Figure 1.

Figure 1. Flow chart of the proposed algorithm.

3.1. Two-Dimensional Otsu Remote Sensing Image Segmentation Algorithm

In 1978, the algorithm based on a unidimensional maximum between-cluster variance
was proposed by Otsu, which is called the Otsu algorithm [36]. This algorithm has attracted
widespread attention because of its prominent segmentation effect, extensive application,
simplicity, and effectiveness. However, when the grayscale difference between the target
and background in the image is not apparent, the image information segmented out will be
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lost. Thus, the literature [37] generalizes the unidimensional Otsu thresholding method as
two-dimensional. The two-dimensional Otsu algorithm utilizes the original image and its
neighborhood smooth image to construct a two-dimensional histogram, which is robust to
noise. Under foggy weather, there is little difference in grayscale information for remote
sensing images. Moreover, partial information in the close area is missing, and the close
area omits some bright objects. These factors result in uneven segmentation for the two-
dimensional Otsu algorithm. That is, it is difficult to segment the close and distant areas of
the image accurately. Therefore, the corrosion algorithm of a binary image is utilized to
carry out boundary corrosion of the segmented region. Finally, the maximum connected
region is selected as the final close-range region. The flowchart of the proposed image
segmentation algorithm is shown in Figure 2.

Figure 2. Flow chart of two-dimensional Otsu remote sensing image segmentation algorithm.

The comparison between the Otsu segmentation algorithm and the proposed image
segmentation algorithm is shown in Figure 3. In Figure 3a, the mountain and sky belong to
the near and far scene regions, respectively. Because the snow on the top of the mountain
is a bright object, the Otsu algorithm fails to accurately segment the near scene region.
By contrast, the proposed image segmentation algorithm divides the near scene region
well. In Figure 3b, the near mountains and roads belong to near scene regions, while the
distant mountains and sky areas belong to far scene regions. Since the color of the highway
is light, the Otsu algorithm fails to accurately segment the near scene region. By contrast,
the proposed image segmentation algorithm segments the near scene region well, and the
edge information of the mountains is well reserved.

Figure 3. A comparison diagram of segmentation regions between Otsu algorithm and the proposed
segmentation algorithm. (a) Foggy image on mountain road; (b) Foggy image on mountain.

3.2. Mixed Dark Channel Algorithm

The foggy remote sensing image is segmented by the two-dimensional Otsu remote
sensing image segmentation algorithm, in which the near area is relatively less disturbed
by fog, and the dark channel value is smaller; the distant area is more disturbed by fog and
the dark channel value is larger. The initial dark channel Idark is obtained by selecting the
minimum of the three channels in RGB in a foggy image. Then the dark channel in the
near area Idarkf and the dark channel in the distant area Idarkb are obtained according to the

proposed image segmentation algorithm. The mixed dark channel
∼
I dark is the sum of Idarkf

and Idarkb:
∼
I dark = αIdarkf + βIdarkb (12)
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where α ∈ (0, 1), and β ∈ (0, 1) are adjusting parameters, and α + β = 1. When α < β,
it mainly processes the distant area of the foggy remote sensing image. When α = β,
the near and distant areas are processed at the same time. When α > β, it mainly processes
the near area. The value of α is set in [0, 1] with a step size of 0.1 and 1− β is also taken
in [0, 1] with the step of 0.1. The values of objective quality evaluation index parameters
corresponding to each group (α, β) are calculated, and the parameters corresponding to

the optimal values are selected to obtain
∼
I dark. Based on a large number of experiments,

the defogging effect is the best when α = 0.4, β = 0.6. Figure 4 show the close-range dark
channel image, the distant-range dark channel image and the mixed dark channel image
reconstructed by the mixed dark channel algorithm. It can be seen that the mixed dark
channel image reduces the difference between the dark channel images in a close and
distant area, laying a solid foundation for the subsequent restoration process to obtain a
better restoration effect.

Figure 4. Comparison of traditional and mixed dark channel (a) Urban foggy image; (b) Satellite
remote sensing image.

3.3. Dark-Light Channel Fusion Model

Most algorithms based on image restoration are based on the atmospheric light scat-
tering model described in Equation (1). In Equation (1), the atmospheric light value A is
supposed as a constant. It is found that the atmospheric light value is not invariable, and the
fixed atmospheric light value is not suitable for the whole image. Thus, the atmospheric
light scattering model is improved as follows:

I(x) = J(x)t(x) + A(x)(1− t(x)) (13)

The light channel prior is introduced to estimate the atmospheric light value more
accurately. In contrast to the dark channel prior, light channel prior indicates that at least
one color channel has a large pixel value in most areas of foggy images through a lot of
observation and experiment. For each foggy image I, its light channel Ilight is expressed as:

Ilight(x) = max
c∈{r,g,b}

(
max

y∈Ω(x)
(Ic(y))

)
(14)

where Ic represents a certain color channel of an image I. Ω(x) represents a local region
centered on pixel x.

The light channel prior points out that the light channel value of a pixel in the foggy
image is close to the atmospheric light value of its corresponding fogless image [28],
and then the following formula is obtained:

Ilight(x)→ Alight(x) (15)



Remote Sens. 2022, 14, 425 8 of 21

where Alight(x) is the atmospheric light value estimated by the light channel. Equation (16)
is obtained through Equations (14) and (15):

Alight(x) = max
c∈{r,g,b}

(
max

y∈Ω(x)
(Ic(y))

)
(16)

It is concluded that the atmospheric light value of the foggy image is obtained by its
corresponding light channel value. In order to enhance the robustness of the atmospheric
light value, the light channel and the mixed dark channel are combined to adjust the
calculation of the atmospheric light value, which avoids a higher estimation of atmospheric
light value only by dark channel. A novel atmospheric light value estimation model is
proposed and is expressed:

A(x) = mAlight(x) + nA0 (17)

where A0 is calculated by the mean value of the original fog image pixels, which correspond
to the brightest 0.1% pixels in the mixed dark channel image. m and n are adjusting
parameters. The intensity of the atmospheric light value is greater than that of the fog-
free image, i.e., J(x) ≤ A(x). In addition, t(x) ∈ (0, 1) is obtained from Equation (6),
so J(x) ≤ I(x) ≤ A(x). According to the previous steps, the calculation processes of
Alight(x) and A0 involve the maximum value of I(x), so m + n < 1. Since the pixel value
of the light channel is close to the atmospheric light value of the fog-free image, m > n is
usually set to guarantee that the atmospheric light value has a larger weight. Through a
lot of experimental calculation and analysis of image quality evaluation standards, it is
concluded that when m = 0.7, n = 0.15, the evaluation indexes of the restored image
obtain the optimal value. Figure 5 shows the foggy image and its corresponding improved
atmospheric light map.

Figure 5. Foggy image and its atmospheric light map (a) Image of a foggy coastal city; (b) Satellite
remote sensing image.

3.4. An Adaptive Defogging Intensity Parameter Model

In He’s algorithm, the defogging intensity parameter ω is uniformly set as 0.95 to
make the final restored image more real and natural. However, it is found that not all foggy
images are restored to the best effect when ω takes the same value. Therefore, an adaptive
method for defogging intensity parameters ω is proposed. To exploit the optimal parameter,
many relevant experiments are conducted.

As shown in Figure 6, when ω = 0.65 and ω = 0.75, the defogging intensity is obviously
insufficient; when ω = 0.95, the forest part begins to appear distorted due to excessive satu-
ration, and the image details also become blurred. Furthermore, when ω = 1, the distortion
becomes more serious. When ω = 0.85, the defogging effect on the house and the forest
is noticeable, and the color saturation is moderate, which has a good visual effect. In a
comprehensive comparison, when ω = 0.85, the overall defogging effect is the best. At this
time, the atmospheric light value A0 of the original image in Figure 6 is estimated to be
0.8387 through the dark channel prior, which is exactly the closest to the best defogging
intensity parameter ω.
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Figure 6. (a) Foggy remote sensing image; (b) ω = 0.65; (c) ω = 0.75; (d) ω = 0.85; (e) ω = 0.95; (f) ω = 1.

To further verify the relationship between the defogging intensity parameter and atmo-
spheric light value, many experiments are conducted. As shown in Figure 7, when ω = 0.65,
the buildings of the coastal city are partially restored, the detailed information is prominent,
and the water color is more natural and true. When ω = 0.75, the watercolor of the restored
image starts to become darkened, and the color of the building is saturated. When ω = 1,
the water color and part of the building are too saturated, and the distortion is aggravated,
which is not suitable for human observation. In a comprehensive comparison, when ω = 0.65,
the overall restoration effect is the best. At this time, the atmospheric light value A0 of the
original image in Figure 7 is estimated to be 0.6135 through the dark channel prior, which is
the closest to the best defogging intensity parameter ω.
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Figure 7. (a) Image of foggy coastal countryside; (b) ω = 0.65; (c) ω = 0.75; (d) ω = 0.85; (e) ω = 0.95;
(f) ω = 1.

Figure 8 show that when ω = 0.65 and ω = 0.75, there is still a lot of fog remaining in the
restored image. When ω = 0.85 and ω = 0.95, the dehazing effect is more obvious, but there
is still a small amount of fog in the water. When ω = 1, the restoration effect of the water
area, coastal vegetation, and buildings performs well. In a comprehensive comparison,
when ω = 1, the overall restoration effect is the best. At this time, the atmospheric light
value A0 of the original image in Figure 6 is estimated to be 0.9712 through the dark channel
prior, which is exactly the closest to the best defogging intensity parameter ω.

A large number of experimental results show that the value of ω is not fixed, and it
has its best value in different images. According to the experimental results not limited to
those listed above, ω is related to the atmospheric light value A0 estimated by dark channel
prior. The closer ω is to A0, the better the defogging effect is. Therefore, the value of ω is
taken as the value of A0. Equation (7) is improved here as:

∼
t (x) = 1− A0 min

c∈{r,g,b}

(
min

y∈Ω(x)

(
Ic(y)
Ac(x)

))
(18)
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Figure 8. (a) Image of foggy coastal countryside; (b) ω = 0.65; (c) ω = 0.75; (d) ω = 0.85; (e) ω = 0.95;
(f) ω = 1.

3.5. Brightness/Color Compensation Model Based on Visual Perception

In order to observe the defogging algorithm more intuitively, Equation (13) is trans-
formed as follows:

JY(x) = AY(x) +
IY(x)− AY(x)

tY(x)
(19)
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When calculating the atmospheric light value in YcbCr color space, the first 0.1%
of the brightest pixels in the traditional dark channel image are directly used to find the
corresponding pixels of the original foggy image in YcbCr color space, and their average
value as the atmospheric light value is calculated, as shown in Equation (20):

AY = mean
(

max
(

Jdark
Y (x)

))
(20)

According to Equation (18), Equation (21) is obtained in YcbCr color space as follows:

∼
t Y(x) = 1− A0 min

d∈{y,cb,cr}

(
min

y∈Ω(x)

(
Id(y)
AY

))
(21)

where Id(y) represents the foggy image of a specific channel in YcbCr color space, and
∼
t Y(x)

represents the initial transmittance estimated in YcbCr color space. The flow chart of the
refinement of the rough transmittance in YcbCr color space is shown in Figure 9.

Figure 9. Flow chart of refining rough transmittance in YcbCr color space.

The restored images in RGB and YcbCr color space are weighted and fused to enhance
the sense of reality and color saturation:

J(x) = pJc(x) + qJY(x) (22)

where p, q are adjustment parameters. Both parameters are constants and satisfy p + q = 1;
Jc(x) represents the restored image in RGB color space; JY(x) represents the restored image
in YcbCr color space; J(x) represents the final restored image. The values of the adjustment
parameters are determined through a lot of experiments, and the experimental results are
listed as follows:

Figure 10 show that when p > 0.5 and q < 0.5, the intensity of defogging is lacking,
and a small amount of fog remains in the image. When p < 0.5 and q > 0.5, the image
is distorted. When p = q = 0.5, the defogging effect performs well, the color saturation is
moderate, and the detailed information is kept intact, achieving the ideal defogging effect.
Therefore, the parameters are set as p = q = 0.5.
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Figure 10. (a) original foggy image; (b) p = 1, q = 0; (c) p= 0.75, q = 0.25; (d) p= 0.5, q = 0.5;
(e) p= 0.25, q = 0.75; (f) p= 0, q= 1.

3.6. Restoration of Fog-Free Images

In conclusion, a fog-free image has been obtained. In the improved atmospheric
light scattering model, the atmospheric light image is obtained by the proposed dark-light
channel fusion model, and the gray image of the original image is introduced as the guide
image to refine the transmittance. Then the restored images are obtained in RGB and YcbCr
color space, respectively. Finally, the brightness/color compensation model based on visual
perception is carried out. The image of the defogging process is shown in Figure 11.
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Figure 11. Image of the defogging process.

4. Integrated Performance and Discussion

In this paper, we first build a database that contains 50 images of fog with different con-
centrations and their corresponding defogged images created by five dehazing algorithms.
Sections of the foggy remote sensing images are shown in Figure 12.

Figure 12. Part of the foggy remote sensing images.
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4.1. Visual Effect Analysis

In order to evaluate defogging performance, Tarel’s algorithm [38], He’s algorithm [39],
Tufail’s algorithm [40], and Gao’s algorithm [41] are selected and compared with the
proposed algorithm. The experimental results are as follows:

In Figure 13, Tarel’s algorithm appears gray in the whole image, and the sky section is
seriously distorted. He’s algorithm presents haze and distortion in the link between the
sky and city. Tufail’s algorithm cause the color saturation to appear too high on the whole
image, which makes the restored image appear yellow and dark. Gao’s algorithm lacks fog
removal in the sky while the rest is better. By contrast, the proposed algorithm restores the
cloud well, the sky area becomes a natural blue color, and the city is also clear, which is
more suitable for human eyes to observe.

Figure 13. A comparison of defogging effects of the image of a city with fog. (a) Image of foggy coastal
city image; (b) Tarel’s method; (c) He’s method; (d) Tufail’s method; (e) Gao ’s method; (f) our method.

In Figure 14, Tarel’s algorithm causes noise interference in the whole image, and its visual
effect is poor. He’s algorithm has weak defogging intensity and the distant area of the restored
image appears too dark in color. Tufail’s algorithm makes the image appear black in a large
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area and has severe distortion. Gao’s algorithm has a large area of distortion in the distant
region. By contrast, the proposed algorithm has a good defogging effect in the distant foggy
area, and the color saturation is more natural and realistic in visual perception.

Figure 14. A comparison of defogging effects of the image of winding mountain road with fog. (a) Image
of foggy winding mountain road image; (b) Tarel’s method; (c) He’s method; (d) Tufail ’s method;
(e) Gao ’s method; (f) our method.

In Figure 15, Tarel’s algorithm appears dark in color and low in saturation. He’s algorithm
is dark and has distortion in the sky area. Tufail’s algorithm presents a large area of distortion
in the distant area, and the color is too dark. Gao’s algorithm is insufficient to remove fog in
the distant area, and a small amount of fog remains. In contrast, the proposed algorithm has a
good defogging effect in distant mountains and dense fog areas; the restored color appears
natural, and the detailed information is restored well.

In Figure 16, Tarel’s algorithm still leaves a small amount of fog in the distant area.
He’s and Gao’s algorithms both have a distortion in the upper right of the distant area, but
the rest of the images have a good restoration effect. Tufail’s algorithm shows a large area
of black in the distant area, and the image is seriously distorted. In contrast, the proposed
algorithm has a relatively good defogging effect, and the color saturation is moderate.
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Figure 15. A comparison of defogging effects of foggy country images. (a) Image of foggy country
image; (b) Tarel’s method; (c) He’s method; (d) Tufail ’s method; (e) Gao ’s method; (f) our method.

Figure 16. Cont.
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Figure 16. A comparison of defogging effects of foggy country images A comparison of defogging
effects of foggy port images. (a) Image of foggy port image; (b) Tarel’s method; (c) He’s method;
(d) Tufail ’s method; (e) Gao ’s method; (f) our method.

4.2. Image Defogging Evaluation Index

Universal quality index (UQI) [42], structural similarity index measurement (SSIM) [43],
peak signal-to-noise ratio (PSNR) [44], and information entropy H [45] are adopted as ob-
jective quality evaluations to evaluate the proposed defogging algorithm. SSIM and UQI
are evaluation indicators of the structural similarity between the foggy and restored images.
The higher the value, the more reasonable the structure of the image after defogging. PSNR
and information entropy H are evaluation indicators used to measure the level of image
distortion and image information content, respectively. The larger the value is, the richer
the image information and the clearer the image details are.

The evaluation results of the four groups of comparative experiments are shown
in Tables 1–4:

Table 1. Objective evaluation results on the first group of defogged images based on five
defogging algorithms.

Tarel’s
Algorithm

He’s
Algorithm

Tufail’s
Algorithm

Gao’s
Algorithm

Proposed
Algorithm

UQI 0.6996 0.7404 0.3848 0.7896 0.7954
SSIM 0.8219 0.8368 0.4749 0.8514 0.8828
PSNR 13.2775 15.1127 9.8925 14.2001 16.9181

H 7.4240 7.4163 6.6700 7.4926 7.5637

Table 2. Objective evaluation results on the second group of defogged images based on five
defogging algorithms.

Tarel’s
Algorithm

He’s
Algorithm

Tufail’s
Algorithm

Gao’s
Algorithm

Proposed
Algorithm

UQI 0.5523 0.5811 0.1931 0.5384 0.6056
SSIM 0.6600 0.6449 0.2623 0.5392 0.6791
PSNR 11.9295 10.5063 8.2694 9.5916 12.1122

H 7.0385 6.5117 6.1015 6.3426 7.0759

Table 3. Objective evaluation results on the third group of defogged images based on five defogging
algorithms.

Tarel’s
Algorithm

He’s
Algorithm

Tufail’s
Algorithm

Gao’s
Algorithm

Proposed
Algorithm

UQI 0.7055 0.6941 0.2912 0.7610 0.7780
SSIM 0.8420 0.7652 0.3646 0.8576 0.8723
PSNR 16.0496 10.4442 6.8214 16.1046 16.3206

H 7.3893 7.2419 6.8116 7.4419 7.6805
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Table 4. Objective evaluation results on the fourth group of defogged images based on five
defogging algorithms.

Tarel’s
Algorithm

He’s
Algorithm

Tufail’s
Algorithm

Gao’s
Algorithm

Proposed
Algorithm

UQI 0.7752 0.7439 0.2861 0.7173 0.7878
SSIM 0.8620 0.8681 0.3004 0.8283 0.8753
PSNR 16.5706 16.3768 7.8100 13.3087 16.9963

H 7.4138 7.3514 6.4437 7.4138 7.4954

Due to Tarel’s median filtering method, a “halo” effect appears at the edge of the
restored image where the scene depth changes abruptly. Therefore, Tarel’s method is second
to the proposed algorithm in the fourth group and performs slightly worse in the other
three groups. Due to the inaccurate estimation of atmospheric light value, He’s algorithm
distorts the sky area. It performs relatively well in the second group but slightly worse
in the other groups. Since the atmospheric light value and transmittance are calculated
in YCbCr color space in Tufail’s algorithm, the color saturation of the restored image is
too high. Thus, Tufail’s algorithm performs the least well in the four groups. Moreover,
Gao’s algorithm utilizes an adaptive compensation function to improve the sky or the large
white area with low transmittance. Because this algorithm cannot accurately segment far
scene regions, it easily causes partial distortion. This algorithm is second to the proposed
algorithm only in two groups. Based on improving the estimation of transmittance and
atmospheric light value, a compensation model to further improve the color saturation of
the image is also included in the proposed algorithm. Therefore, the evaluation results are
optimal in four groups of comparative experiments, which verifies the effectiveness of the
proposed algorithm.

5. Conclusions

Based on the principle of dark channel prior, a far and near scene fusion defogging al-
gorithm was proposed. Firstly, a two-dimensional Otsu remote sensing image segmentation
algorithm was proposed, and then the traditional dark channel algorithm and atmospheric
light scattering model were improved. Secondly, the atmospheric light image was obtained
by the dark-light channel fusion model, and the gray image of the original foggy image
was used as the guide image to refine the transmittance. Furthermore, the transmittance
was optimized by improving the defogging intensity parameter to the atmospheric light
value. Finally, the brightness/color compensation model based on visual perception was
introduced to improve the saturation and contrast of the image. Abundant experiments
indicate the proposed algorithm has achieved superior performance in both subjective
and objective aspects. The restored image is clearer with more prominent details, and the
structure is more obvious, which is more suitable for human visual perception.
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