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Abstract: Coal mine surface subsidence detection determines the damage degree of coal mining,
which is of great importance for the mitigation of hazards and property loss. Therefore, it is very
important to detect deformation during coal mining. Currently, there are many methods used to
detect deformations in coal mining areas. However, with most of them, the accuracy is difficult to
guarantee in mountainous areas, especially for shallow seam mining, which has the characteristics
of active, rapid, and high-intensity surface subsidence. In response to these problems, we made a
digital subsidence model (DSuM) for deformation detection in coal mining areas based on airborne
light detection and ranging (LiDAR). First, the entire point cloud of the study area was obtained
by coarse to fine registration. Second, noise points were removed by multi-scale morphological
filtering, and the progressive triangulation filtering classification (PTFC) algorithm was used to
obtain the ground point cloud. Third, the DEM was generated from the clean ground point cloud,
and an accurate DSuM was obtained through multiple periods of DEM difference calculations. Then,
data mining was conducted based on the DSuM to obtain parameters such as the maximum surface
subsidence value, a subsidence contour map, the subsidence area, and the subsidence boundary angle.
Finally, the accuracy of the DSuM was analyzed through a comparison with ground checkpoints
(GCPs). The results show that the proposed method can achieve centimeter-level accuracy, which
makes the data a good reference for mining safety considerations and subsequent restoration of the
ecological environment.

Keywords: airborne LiDAR; coal mine; surface subsidence; deformation detection; digital subsidence
model

1. Introduction

Deformation detection has been defined as the identification of geometric state differ-
ences based on multiple periods of data capturing. The detection of the surface subsidence
of coal mining areas is a part of deformation detection and has become a hot topic to
mitigate hazards and property loss.

Generally, the surface subsidence caused by coal mining is the main source of danger
for the destruction of buildings and structures, inevitably causing surface collapse and
environmental damage [1–3]. Therefore, scholars have adopted various methods to observe
the surface subsidence of coal mining areas. The traditional geodetic method detects
surface subsidence with fixed points on the ground [4,5]. Although high-precision data
can be obtained, it is still point-to-point acquisition, which is inefficient and expensive.
Moreover, this method only measures local subsidence, and full coverage of a mining area
cannot be obtained. Recently, Shi et al. [6–9] tried to detect surface deformation with the
method of interferometry synthetic aperture radar (InSAR), which can obtain accurate
vertical displacement measurements. However, the speed of the surface subsidence of
a shallow coal seam is relatively fast, and a long period of SAR satellite observation
easily causes incoherence of SAR images [8,9]. UAV oblique photogrammetry can obtain
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the three-dimensional (3D) coordinate information of ground features [10–14]. Many
scholars have tried to use oblique photogrammetry to detect the surface subsidence of
mining areas [15–18]. However, the 3D point cloud generated by UAV oblique images
includes a large number of vegetation points [19], which leads to limited accuracy without
control points. Martínez-Carricondo et al. [20] improved the accuracy of UAV oblique
photogrammetry with high-density control points. However, there are landslides, ground
fissures, and other hazards in mining areas, which cannot allow high-density control points.
Terrestrial laser scanning (TLS) has been used to detect the deformation of landslide, dam,
and mining areas, and accurate detection results have been achieved [21–24]. However, TLS
adopts station-type scanning, with which there are problems, such as ground obstructions,
narrow fields of view, heavy workloads, and special terrain not being scannable. Airborne
LiDAR can capture large-scale, dense 3D point clouds [25]. It can be divided into manned
and unmanned airborne LiDAR. Yu and AO [26–28] tried to apply manned airborne
LiDAR to the surface deformation monitoring of a large mining area, which can achieve
comprehensive observations without being restricted by terrain. Moreover, ground point
clouds in the presence of vegetation can be obtained through vegetation gaps. However,
manned airborne LiDAR data collection requires a lot of manpower and material resources,
making it unsuitable for small-scale observations. Making airborne LiDAR unmanned
greatly reduces the costs (equipment cost and data acquisition cost) and improves the
efficiency, which we term UAV-based LiDAR in this paper. It has been widely used in
topographic surveys [29], power line diagnoses [30], dam deformation monitoring [31],
vegetation height measurements [32,33], and so on. However, few scholars have applied
UAV-based LiDAR to detecting the subsidence of the working face of a mining area.
Therefore, we took a working face as our study area, which has the characteristics of active,
rapid, and high-intensity surface subsidence, to explore the utility of UAV-based LiDAR in
the deformation detection of the working face of a coal mining area.

The purpose of this study was to determine the potential of UAV-based LiDAR in the
deformation detection of the working face of a coal mining area. Two field measurement
campaigns using UAV-based LiDAR were performed to collect data during 7 November
2020 and 19 May 2021. The main contributions of this paper are as follows: (1) we proposed
and made a DSuM with multiple periods of DEM difference calculation for deformation
detection based on UAV-based LiDAR. (2) Data mining was conducted based on DSuM to
obtain parameters such as the maximum surface subsidence value, a subsidence contour
map, the subsidence range, the subsidence area, and the subsidence boundary angle. (3) The
accuracy of DSuM was analyzed through comprehensive comparisons with GCPs. The
results showed that the proposed method can achieve centimeter-level accuracy.

The remainder of this paper is organized as follows. Following this introduction,
Section 2 describes the study area, reference data, and data processing method. Then,
Section 3 describes the experimental results. Section 4 shows the discussion of the ex-
perimental results. Finally, the conclusions and future research directions are presented
in Section 5.

2. Materials and Methods
2.1. Study Area
2.1.1. Physical Geography and Environment

Liangshuijing Coal Mine belongs to Yushen Coal Field, located in northwest Shaanxi,
China, as shown in Figure 1. Its geographical location is 38◦47′29′′–38◦53′24′′ north,
110◦14′22′′–110◦21′24′′ east, and the coal mine covers an area of 68.91 km2. Its altitude is
from 1100 to 1326 m above sea level. The terrain is generally high in the west and low in
the east.
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Figure 1. The location of the study area and the working face.

Yushen Coal Field is located in the transition zone of the Muus Desert and the Loess
Plateau. The eastern part consists of a loess ridge and a valley; the western part consists of
wavy dunes. The study area has a mid-temperate, continental, semi-arid climate. There are
regular droughts. There is little rain (mean annual precipitation of 435.7 mm; the annual
average evaporation is 1774.1 mm, which is 4–5 times the precipitation), sparse vegetation,
and serious soil erosion. The ecological environment is very fragile [34]. Thus, it is of great
significance to monitor the deformation of the coal mining areas. In this study, a local part
of a working face was selected as the study area. UAV-based LiDAR was used to obtain the
surface deformation data, and checkpoints were obtained by leveling.

2.1.2. Mining and Geological Conditions

We took the 431,301 working face of Liangshuijing Coal Mine as the study area. The
working face, which mined 3–4 coal seams, is stable and has flat seams. The coal seam
thickness is 1.17–1.43 m, the average thickness is 1.3 m, and the average depth of coal seam
is 138 m. The working face adopts the longwall, fully mechanized, and full-seam mining
method, the roof of which is managed with the all fall method. The ground is covered by
loose sandy soil with a strong flow characteristic. The entire study area is 858 m long from
east to west and 466 m long from north to south, giving an area of 399,431 m2. The location
of the study area and the working face is shown in Figure 1.

2.2. Reference Data

Our data include airborne laser scanning data and geodetic data. The geodetic data
were obtained by laying observation piles on the ground. Then, static and dynamic
GNSS [35], total station observation, and precision leveling were used to obtain geodetic
data. In the study, the checkpoints include plane (RTK observation) and elevation (leveling
observation) data.

2.2.1. LiDAR Data

UAV-based LiDAR was used to collect initial data, and the DSuM was generated by
the data for detecting the deformation. The endurance time of UAV in each flight was
35 min, and the effective working time was about 20 min. The laser scanner was a RIEGL
miniVUX-1UAV with scanning range of 250 m. The same aerial survey parameters were
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used to ensure each data acquisition would have the same system error. The parameters
included flying height, flying speed, laser scanning speed, pulse emission frequency, and
weather conditions. The flying height was 50 m, and the flying speed was 8 m/s. The laser
scanning speed was 100 lines/s, and the pulse emission frequency was 100 kHz. Each laser
beam had five echoes, and data collection was performed under the same conditions on
different dates. Two groups of point clouds were obtained by UAV-based LiDAR.

The diagram of the UAV-based LiDAR data collection and the mining process of the
underground working face is shown in Figure 2. The nth LiDAR data collection was carried
out to obtain the initial shape of the surface. After a period of time, the coal seams were
mined, which caused surface deformation. The m-th LiDAR data collection was carried
out to obtain the current surface morphology. With the calculation of two phases of LiDAR
data, the surface shape change caused by underground working face mining was obtained,
which is called the subsidence basin.
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Figure 2. The diagram of ground deformation monitoring by UAV-based LiDAR.

Figure 2 shows the process of mining subsidence. The layered structure on the right
of Figure 2 represents the geological structure, which includes the ground surface, sandy
soil layer, rock layer, coal seam, and other strata. The main part of Figure 2 shows the
relationship between coal seam mining and surface deformation. The surface deformation
was different at different mining locations. The black arrow indicates the mining direction
of the coal seam. Numbers 1 and 2 indicate the locations of the shearer on different dates.
The continuous mining produced a goaf in the coal seam, caused surface deformation, and
formed a subsidence basin on the surface.

The data collection dates were 7 November 2020 and 19 May 2021, and the correspond-
ing coal seam mining locations are shown in Figure 3. The original point cloud statistics
are shown in Table 1.

Table 1. Statistics of the point cloud in the study area.

Date Study Area (m2) Number of Points Point Cloud
Density (per/m2)

Number of
Ground Points

Ground Point
Cloud Density

(per/m2)

7 November 2020 399,431 35,590,816 89 33,227,279 83
19 May 2021 399,431 26,361,111 66 21,776,124 55
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Figure 3. The map of the ground and underground facilities.

Figure 3 shows the 2D relations between the ground facilities and underground
facilities, but they had different elevations. The ground facilities included the UAV route,
checkpoints, and study area. The UAV route indicated by the light blue line shows the
data acquisition range. The black triangles indicate the locations of the ground checkpoints.
The underground facilities included a mining roadway and goaf. Mining roadways are
indicated by black lines, which were used for transportation and ventilation. Goaf B
represents the existing goaf at the time of the first observation. Goaf A represents the area
mined during the period between the first and second observations. The light blue line
(number 1) and dark blue line (number 2) in Figure 3 represent the positions of the shearer
on 7 November 2020 and 19 May 2021, and they have the same meaning as the numbers
in Figure 2.

2.2.2. Ground Checkpoints

The fixed observation piles were used as the objects to obtain the partial subsidence
value of the ground surface, because there were few fixed markers in the study area.
The observation piles were made by precasting concrete, whose structure is shown in
Figure 4b, and the locations of the observation piles are shown as black triangles in Figure 3;
they are also called ground checkpoints. The processing of GCPs included the design of
ground checkpoints’ locations, observation pile burying, geodetic surveying, measurement
calculations, and subsidence polyline drawing, as shown on the right-hand side of Figure 5.
In order to verify the measurement accuracy of the point cloud, DEM, and DSuM, the
observation piles were measured on 7 November 2020 and 19 May 2021, the same dates as
the UAV-based LiDAR scanning. The results of GCPs were also used to calculate the max
subsidence value and boundary angle.

2.3. Data Processing

When the shearer mined different positions on the working face, the two periods of
UAV-based LiDAR surveying were carried out to obtain the surface morphology of the
working face in different periods, as shown in Figures 2 and 3. The GCPs were mainly
used to verify the accuracy of the point cloud, DEM, and DSuM, which were all generated
directly or indirectly based on LiDAR. Similarly to previous related studies [7,17,35–37],
we used geodetic data as a reference to analyze the accuracy of the point cloud, DEM, and
DSuM. The multi-scale morphological algorithm [38] and progressive triangulation filter
algorithm [39,40] were chosen for filtering the point cloud, and the Kriging interpolation
algorithm [41] was chosen for generating DEM. This paper also analyzes the influence of
resolution on DEM accuracy and proposes a new model termed DSuM based on the optimal
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resolution of DEM to detect the deformation of coal mining areas. The main purposes of
coal mining subsidence monitoring are subsidence value acquisition and boundary angle
calculation. This section introduces the calculation methods for the subsidence value and
boundary angle, and the process of generating DSuM from the UAV-based LiDAR data.
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2.3.1. Subsidence Value and Boundary Angle

Subsidence data analysis includes data preprocessing, data calculation, subsidence
polyline drawing, and boundary angle calculation. The data preprocessing is used to
remove error data caused by human factors; data calculation is to obtain the difference
between the two periods’ data. Then, subsidence polyline diagram is drawn, and boundary
angles are obtained. The subsidence of the observation points is calculated by Formula (1):

ωn = H0
n − Hm

n (1)

where ωn represents the subsidence value of point n; H0
n and Hm

n represent the elevation of
point n during the first and the m-th observations.

The boundary angle is used to determine the range and boundary of the subsidence
caused by coal mining. Due to the observation error and the seasonal variations of the soil,
an observation point with a subsidence value close to zero could not be accurately deter-
mined, so points with subsidence values of 10 and 100 mm were taken as the boundaries
of the subsidence basin, as shown in Figure 4. Boundary angles calculated by different
boundary thresholds are different. The boundary angle is calculated as follows:

δ0 = arctan
H0

L1
, (2)

where L1 represents the horizontal distance between the boundary of the underground
goaf and the strike or incline boundary of the subsidence basin, H0 represents the average
depth of the coal seam, and δ0 represents the boundary angle.

2.3.2. UAV-Based LiDAR Data Processing

The data processing of UAV-based LiDAR mainly included data checking, point
cloud processing, and interpolation calculation. Data checking was to remove erroneous
data; point cloud processing included registration, denoising, and filtering; the purpose of
interpolation calculation was to generate the DEM. After data checking, the produced raw
data were converted to point clouds. The point cloud was roughly registered by pose data
generated by GNSS/INS integration, and then fine registration was carried out based on
the iterative closest point (ICP) algorithm. Subsequently, we removed the noise points with
the morphological method [42]. Then, the PTFC algorithm was used to obtain the ground
point cloud, and the DEM was generated from the ground point cloud. Finally, an accurate
DSuM was obtained through multiple periods of DEM difference calculation.

We compared the GCPs and the point cloud data at the same location to verify the
point cloud accuracy, which is a direct accuracy verification method. Subsequently, we
evaluated the accuracy of the DEM by comparing it with GCPs. The Kriging interpolation
algorithm was used to generate the DEM, and the most suitable grid size was determined
by trial and error.

There are two methods to evaluate the accuracy of a DEM. The elevation error sta-
tistical analysis method compares the DEM with the reference DEM or checkpoints; the
logical analysis method is a qualitative method for overall accuracy evaluation, including
a visual interpretation method, contour analysis, visual analysis, and other methods [41].
We adopted the method of comparing DEM to checkpoints. The differences in elevation
between the checkpoints and the DEM with different resolutions were calculated, and the
results were displayed by box plots. Meanwhile, the mean error (ME), the mean absolute
error (MAE), and the root mean square error (RMSE), were calculated [19]:

ME =
1
n ∑n

m=1(Rm − Zm) (3)

MAE =
1
n ∑n

m=1(|Rm − Zm|) (4)



Remote Sens. 2022, 14, 421 8 of 19

RMSE =

√
1
n ∑n

m=1(Rm − Zm)
2 (5)

where Rm represents the value of the DEM and Zm represents the value of a checkpoint.
Since directly calculating the difference between two point clouds is difficult, we used

the difference between any two DEMs created by the point cloud to represent the ground
surface subsidence deformation during the period. The difference between the two DEMs
is called the DSuM. Finally, the accuracy of the DSuM was analyzed by GCPs. The analysis
of a point cloud, DEM, and DSuM is shown in Figure 5.

2.4. Pipeline of DSuM

The difference between DEMs obtained on any two different dates can be calculated
to obtain the ground surface elevation change during this period, in our case, the ground
surface subsidence value caused by underground coal mining. In this paper, the difference
between the DEMs was calculated, and represented by DSuM, which is a digital model that
represents the value of ground subsidence in an ordered array of values. Each pixel value of
the DSuM represents the subsidence value of the pixel location caused by coal mining. The
schematic diagram of DSuM generation is shown in Figure 6, which is a digital expression
of whole ground surface subsidence value. A DSuM can be calculated from any two DEMs
obtained on different dates, and can represent the subsidence value of any position in the
ground surface during the mining processing. Finally, data mining was conducted based on
the DSuM to obtain outputs such as the maximum surface subsidence value, a subsidence
contour map, the subsidence range, the subsidence area, and the subsidence boundary
angle, as shown in Figure 5.
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After point cloud data collection, the DEMs were generated from clean ground point
clouds, and the DSuM was obtained through multiple periods of DEM difference calcula-
tion. Then, coal mining subsidence was analyzed based on the DSuM. We adopted point,
line, and area analysis from different perspectives. The point analysis used the method of
simulating traditional monitoring to extract subsidence values from points, which involves
drawing the strike and incline subsidence polyline and obtaining the max subsidence value.
The line analysis easily extracted high-density points from the DSuM, which was used
to extract points in the strike and incline direction in this paper. It is robust for discrete
monitoring points, and it can plot the subsidence curve graph and calculate the strike
and incline boundary angle. The area analysis can analyze the whole subsidence area.
It was used to calculate subsidence area, maximum subsidence value, and the ratio of
subsidence area.

Finally, data mining was carried out based on the DSuM to obtain the maximum
subsidence value, subsidence area, subsidence distribution of surface, boundary angle, and
other parameters for later analysis.
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3. Experimental Results
3.1. GCPs Analysis

The GCPs results were obtained by Formula (1) based on the geodetic data. The results
indicate that the maximum ground subsidence value of the working face was 1826 mm,
and the minimum subsidence value was 0 mm, during 7 November 2020 and 19 May 2021,
respectively. Taking ground observation point A176 as the origin, the subsidence values of
all GCPs are shown as blue squares in Figure 7.
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The GCPs covered the entire subsidence area, including the non-subsidence area and
the maximum subsidence area, and can reflect the surface subsidence in a period of time.
The blue polyline in Figure 7 shows that the subsidence boundary with the threshold of
10 mm located between A205 and A206, and the horizontal distances of A205 and A206
from the boundary of goaf were 121 and 136 m, respectively. The average mining depth
of the coal seam was 138 m. According to Formula (2), the mining subsidence boundary
angle with subsidence threshold of 10 mm was between 45◦ and 48.7◦. The average was
46.9◦. Similarly, the boundary angle with a subsidence threshold of 100 mm was 61.2◦.

3.2. Accuracy Assessment

The ground point cloud could be obtained after filtering the original point cloud.
Since a ground point cloud is composed of a series of discrete points, we took the average
elevation values of points near the GCP to calculate the differences between ground point
cloud and GCPs, and the distances from the selected points to the GCPs had to be less
than a set threshold. The results indicate that the RMSE of elevation was 60.6 mm on
7 November 2020, and 59.9 mm on 19 May 2021, and the results are shown in Table 2.

Table 2. The statistics of the absolute values of point cloud error.

Date Max (mm) Min (mm) Ave (mm) Med (mm) RMSE (mm)

7 November 2020 130.0 1.0 50.0 48.5 60.6
19 May 2021 113.0 4.0 51.5 47.5 59.9

Next, we calculated the accuracy of the DEM and analyzed the influence of resolution
on DEM accuracy. The differences between DEM and GCPs are shown in Figure 8. As
resolution increases, the average error remains basically unchanged, but the error distri-
bution becomes more discrete. The error distribution of the resolution of 0.1 m was most
concentrated, and all errors were less than 100 mm.
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Figure 8. The difference distribution statistics of DEM and the checkpoints.

The difference results of DEM from data at different resolutions and GCPs are shown
in Table 3. The results include ME, MAE, and RMSE, and indicate that with different
resolutions, the maximum ME is 323 mm and the minimum is –34 mm; the maximum MAE
is 537 mm and the minimum is 74 mm; and the maximum RMSE is 97 mm.

Table 3. The statistics of DEM error.

Grid Size (m) ME (mm) MAE (mm) RMSE (mm)

0.05 −34 74 97
0.1 −39 79 106
0.5 −43 77 109
1 −41 76 102
3 −67 106 167
5 −89 157 248
10 −4 165 238
20 323 537 926

The ME did not change, and the optimal state was in the range of 0.05–1 m, but it
increased when the grid size was larger than 1 m. The change in MAE was similar to that
of the ME. Similarly, the RMSE reached an equilibrium state within 0.05–1 m. When the
resolution was greater than 1 m, the RMSE gradually increased as the grid size increased,
and it increased sharply when the resolution became greater than 1 m.

According to Figure 8, the data with 0.1 m grid size are the most concentrated. Therefore,
we selected 0.1 m as the parameter for conducting the study to ensure research accuracy.

Finally, the accuracy of the DSuM was analyzed. The DSuM of the study area was
obtained by the subtraction of DEM in 7 November 2020 from DEM in 19 May 2021, as
shown in Figure 9. Different colors represent different subsidence values in the DSuM.
Additionally, the main area of subsidence caused by coal mining is mainly distributed in
the goaf and its surroundings.

The DSuM contains plane coordinate (X, Y) and subsidence value. The subsidence
value of any position can be acquired. The subsidence monitoring accuracy of UAV-based
LiDAR can be acquired by comparing the subsidence value of the DSuM with those of the
GCPs. The results are shown in Figure 10.
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Figure 7 shows the maximum subsidence value and minimum subsidence value.
The subsidence polyline trends obtained by DSuM and GCPs were basically consistent.
The maximum subsidence value calculated by DSuM was 1860 mm, and the maximum
subsidence value of GCPs was 1872 mm. The inflection points of the subsidence polyline
were consistent. After removing the abnormal subsidence value of ground checkpoint
(A 203), the maximum and minimum of the subsidence difference’s absolute values were
82 and 3 mm, the average difference was 45 mm, and 75% of the difference was within
50 mm. All of the differences were less than 100 mm, and their distribution was relatively
uniform. The absolute values of differences among the point cloud, DEM, and DSM are
shown in Figure 10.

3.3. Analysis of DSuM

In order to comprehensively verify the accuracy of the DSuM, we conducted point,
line, and area analysis based on the DSuM.

3.3.1. Point Analysis

The traditional method of coal mining subsidence monitoring is geodetic surveying by
a fixed observation pile, which is a point survey method. For the point analysis of DSuM,
we used the method of simulating traditional monitoring to extract subsidence values point
by point. The locations of monitoring points were set according to requirements of relevant
specifications. The interval between adjacent points was 15 m, the total number was 50,
and the whole surface subsidence change area was covered, as shown in Figure 11, by
black triangles.
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The subsidence value of each monitoring point was extracted by DSuM and is shown
in the form of a polyline graph in Figure 12.
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Figure 12. The subsidence values of monitoring points. (a) The strike observation polyline; (b) the
incline observation polyline.

The results indicate that the average maximum value of the subsidence basin is
approximately 1650 mm, and the maximum single point subsidence is 1761 mm. The
shape of the strike and incline polyline graph is the same as that of the standard mining
subsidence polyline graph, whose shape is like a basin or a half-basin. The results can reflect
the elevation deformation of the surface caused by coal mining, and meet the requirements
of mining subsidence monitoring.

3.3.2. Line Analysis

Line analysis is robust for discrete monitoring points. Therefore, it is necessary to
obtain high-density points on the observation line. We extracted high-density points
from DSuM in the strike and incline directions and plotted the subsidence curve graph in
Figure 13. The locations of strike and cline lines are shown in Figure 11 in gray. The strike
observation line started from the point named Zstart and ended at the point named Zend,
with a total length of 740 m. The incline observation line started with the point named
Astrat and ended with the point named Aend, with a total length of 413 m.
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Figure 13. The subsidence of observation curves. (a) The strike observation curve; (b) the incline
observation curve.

We extracted monitoring points from DSuM in an interval of 0.1 m, and drew the
points on graphs, as shown in Figure 13a,b—the green points. Finally, we extracted and
drew the strike and incline curves, as shown in Figure 13 as the red curves.

The strike curve is shaped like a basin, conforming to the characteristics of mining
subsidence, and it shows that a super-full mining state in the strike direction was reached.
The incline observation line is in a valley state and is symmetrically distributed due to
the small width of the working face. According to the strike and incline curves, we found
that the maximum subsidence value is about 1700 mm. Since the average accuracy of
UAV-based LiDAR data cannot reach 10 mm, 100 mm was used as the subsidence boundary
threshold to extract and calculate the boundary angle by Formula (2). In the strike direction,
the horizontal distance between the subsidence boundary and the goaf boundary is 68 m;
in the incline direction, the horizontal distance is 60 m, and the average coal mining depth
is 138 m. Therefore, when the boundary subsidence threshold is 100 mm, the strike and
cline boundary angle are 63.8◦ and 66.5◦.

3.3.3. Area Analysis

In order to accurately express the subsidence values of different areas and the subsi-
dence area with different subsidence values, it was necessary to perform area statistical
analysis based on the DSuM. Therefore, we classified and counted the DSuM at the interval
of 100 mm. The results are shown in Figure 14.
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Figure 14. The subsidence classification and statistics map.

The upper half of Figure 14 is the subsidence classification map of the study area.
It shows the locations of different subsidence values, and the different colors represent
different subsidence values. The lower part of Figure 14 is a histogram which represents
the number of pixels for each subsidence value. According to the classification map, there
are some areas with negative subsidence values, especially the red circled area, which are
caused by man—excavation, road construction, etc.

Figure 14 shows that the subsidence area is distributed in an oval shape. The main
subsidence area is located at the center of the study area. Due to the influence of natural
rainfall, there is a large area with subsidence values less than 100 m. In particular, there
are very few areas where the subsidence value is less than −100 mm, as shown in the red
circle in Figure 14. In addition, according to the histogram in Figure 14, we found that the
larger the subsidence value, the smaller the number of the corresponding grids. Next, we
counted the number of grids with different subsidence values, and calculated the areas of
different subsidence values. The results are shown in Table 4.

Table 4 indicates that areas with a subsidence value of less than 100 mm occupied more
than 55% of the study area, in which most of the subsidence values are caused by external
factors. In order to determine the subsidence area caused by coal mining, we took 100 mm
as the minimum subsidence threshold caused by coal mining. The area of subsidence value
larger than 100 mm is about 180,075 m2. The goaf area is 49,789 m2. The ratio is 3.6:1.
According to Table 4, the area with a subsidence value of 100–300 mm is 102,585 m2, which
means the majority of subsidence was caused by coal mining. The maximum subsidence
value is about 1700 mm. We found that the larger the subsidence value, the smaller the
corresponding area, and the area ratios of different subsidence values are shown in Table 4.
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Table 4. Statistics of the areas with different subsidence values.

Subsidence
Value (mm)

Number of
Pixels

Resolution
(m) Area (m2)

Area Ratio
(%)

Subsidence
Area Ratio (%)

<100 22,062,688 0.1 220,627 55.1 -
100–300 10,258,459 0.1 102,585 25.6 57.0
300–600 3,033,611 0.1 30,336 7.6 16.8
600–900 1,710,181 0.1 17,102 4.3 9.5

900–1200 1,341,367 0.1 13,414 3.3 7.4
1200–1500 1,116,807 0.1 11,168 2.8 6.2
1500–1700 516,812 0.1 5168 1.3 2.9

>1700 30,187 0.1 302 0.1 0.2

The isoline map is a classical graphical representation, such as a contour map, which
can be used to represent elevation of terrain. In this study, we took the isoline map to
express the subsidence value, named the subsidence isoline map, which can clearly show
the surface subsidence values in different locations. The subsidence isoline map shows
different forms when setting different interval values, as shown in Figure 15.
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(c): 100 mm, and (d): 200 mm).

It can be seen in Figure 15 that the detailed characteristics of the subsidence isoline map
with different interval values are different. The smaller isoline interval values correspond
to more detailed subsidence characteristics, but also cause the noise to be more pronounced.
Through a comprehensive comparison, we found that the isoline map with a subsidence
interval value of 100 mm can retain the details of subsidence characteristics of coal mining
and reduce the impact of noise.

After analysis of the subsidence isoline map with an interval value of 100 mm, we
took the subsidence value of 100 mm as the minimum subsidence threshold and extracted
the subsidence boundary. The result is shown in Figure 16.
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Figure 16. The subsidence area caused by coal mining. (A) Goaf generated between 7 November
2020 and 19 May 2021; (B) goaf generated before 2020.11.

Figure 16 indicates that the area of subsidence is larger than the goaf area, and the
subsidence area is offset to the right relative to the goaf. The subsidence area was 140,271 m2

during 7 November 2020 and 19 May 2021, which is smaller than the 180,075 m2 calculated
in Table 4, and the ratio of subsidence area to goaf was 2.8:1.

A subsidence value larger than 100 mm is considered to be caused by coal mining. We
divided the subsidence values into six grades, and the corresponding area of each grade
was calculated, and then expressed in a specific color, as shown in Figure 17.
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As shown in Figure 17, the areas with different subsidence grades gradually expanded
outward with the goaf from the center. The subsidence can be divided into six grades:
100–300 mm, 300–600 mm, 600–900 mm, 900–1200 mm, 1200–1500 mm, and more than
1500 mm. The corresponding subsidence areas are 65,101, 29,083, 16,354, 13,178, 11,123,
and 5432 m2. The ratio among the subsidence grades is 46:21:12:9:8:4.
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4. Discussion

The accuracy of the DSuM was determined by point cloud and DEM. Therefore,
we analyzed the accuracy of the point cloud and DEM, and the results are shown in
Tables 2 and 3. We also analyzed the influence of interpolation grid size (resolution of DEM)
on the accuracy of the DEM. The results indicate that the grid size of 0.1 m is suitable for the
study area (Table 3, Figure 8). Compared to the results of Yu H. et al. [26], the average error
of DEM generated by UAV-based LiDAR increased from 0.32 to 0.039 m. Although UAV
oblique photogrammetry can achieve centimeter-level accuracy by arranging high-density
ground control points [43], it is not applicable in coal mining subsidence monitoring due to
the difficulty of setting ground control points in the coal mining area. The proposed method
can achieve centimeter accuracy without ground control points. This paper analyzed and
compared the accuracy of point cloud, DEM, and DSuM. The results indicate that the
accuracy of the DSuM is better than the accuracy of point clouds and DEMs, as shown in
Tables 2 and 3 and Figures 7 and 10. The reason is that the DSuM generated by two periods
of UAV-based LiDAR data adopts the same flight parameters, and the data processing
process is exactly the same. Therefore, it can eliminate some systematic errors and improve
the accuracy.

We calculated the strike and incline boundary angles with the threshold of 100 mm,
which are 63.8◦ and 66.5◦, respectively. The boundary angle value is similar to the strike
boundary angle of 61.2◦ calculated by GCPs. The result indicates that line analysis could
be applied to the calculation of boundary angle with the subsidence threshold of 100 mm,
but it is difficult to detect a boundary of 10 mm. In the area analysis, there was a series of
subsidence values less than zero. The reasons for this may be external factors, such as rain
wash and crop farming. Therefore, to further determine the subsidence area caused by coal
mining, we set the subsidence value of 100 mm as the maximum threshold value caused
by non-coal mining to eliminate the influences of other factors. We calculated and drew
the subsidence isoline map with four different interval values. The result indicates that the
subsidence isoline map with an interval of 100 mm is suitable for subsidence monitoring;
see Figure 15. It can perfectly express the characteristics of coal mining subsidence. We
calculated the area of subsidence area according to the entire study area and the isoline
map (Figures 14 and 16 and Table 4). The results show that the area calculated by the isoline
map is smaller than the area calculated according to the entire study area, the reason for
which is that the area calculated by the entire study area includes some subsidence not
caused by coal mining. The final subsidence area caused by coal mining should be the
result calculated by the isoline map with interval value of 100 mm.

5. Conclusions and Future Works

Subsidence detection is important work for coal mining safety. There are various
methods used to detect the deformation of mining areas. However, the accuracy is difficult
to guarantee in mountainous areas. In this study, UAV-based LiDAR was used to monitor
the ground surface subsidence of the working face of a coal mining area, and a new model
termed DSuM is proposed to detect the subsidence deformation of a coal mining area. The
accuracy of the DSuM was verified by GCPs, and the data mining was performed based
on the DSuM to obtain the parameters required for coal mining subsidence monitoring.
Subsequently, point, line, and area analyses of the DSuM were conducted. The results
indicate that UAV-based LiDAR can be used to monitor continuous changes of the working
face in a coal mining area, which provides basic information for subsidence prediction and
damage recovery in mining areas.

Some issues are still worth investigating. The accuracy of UAV-based LiDAR can reach
the centimeter level, which is not suitable for areas with small subsidence values, especially
when the subsidence values are less than 100 mm. On the other hand, the ground surface
deformation also includes horizontal movement, but the DSuM cannot express horizontal
deformation. Therefore, future work will be focused on further improving the accuracy of
the DSuM and creating a model that can represent horizontal deformation.
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