
����������
�������

Citation: Liu, Z.; Chang, J.; Li, H.;

Chen, S.; Dai, T. Estimating Boundary

Layer Height from LiDAR Data

under Complex Atmospheric

Conditions Using Machine Learning.

Remote Sens. 2022, 14, 418. https://

doi.org/10.3390/rs14020418

Academic Editors: Patricia K. Quinn,

Maria João Costa, Oleg Dubovik and

Jean-Christophe Raut

Received: 7 December 2021

Accepted: 12 January 2022

Published: 17 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Estimating Boundary Layer Height from LiDAR Data under
Complex Atmospheric Conditions Using Machine Learning
Zhenxing Liu 1,2,3 , Jianhua Chang 1,2,*, Hongxu Li 4, Sicheng Chen 1 and Tengfei Dai 1

1 Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Nanjing University of
Information Science and Technology, Nanjing 210044, China; 20171100005@nuist.edu.cn (Z.L.);
20191219004@nuist.edu.cn (S.C.); 20211118003@nuist.edu.cn (T.D.)

2 Collaborative Innovation Center of Atmospheric Environment and Equipment Technology,
Nanjing University of Information Science and Technology, Nanjing 210044, China

3 Department of Information Technology, Taizhou Polytechnic College, Taizhou 225300, China
4 School of Electronic Information Engineering, Wuxi University, Wuxi 214000, China;

20181132088@nuist.edu.cn
* Correspondence: jianhuachang@nuist.edu.cn

Abstract: Reliable estimation of the atmospheric boundary layer height (ABLH) is critical for a range
of meteorological applications, including air quality assessment and weather forecasting. Several algo-
rithms have been proposed to detect ABLH from aerosol LiDAR backscatter data. However, most of
these focus on cloud-free conditions or use other ancillary instruments due to strong interference from
clouds or residual layer aerosols. In this paper, a machine learning method named the Mahalanobis
transform K-near-means (MKnm) algorithm is first proposed to derive ABLH under complex atmo-
spheric conditions using only LiDAR-based instruments. It was applied to the micro pulse LiDAR
data obtained at the Southern Great Plains site of the Atmospheric Radiation Measurement (ARM)
program. The diurnal cycles of ABLH from cloudy weather were detected by using the gradient
method (GM), wavelet covariance transform method (WM), K-means, and MKnm. Meanwhile, the
ABLH obtained by these four methods under cloud or residual layer conditions based on micropulse
LiDAR data were compared with the reference height retrieved from radiosonde data. The results
show that MKnm was good at tracking the diurnal variation of ABLH, and the ABLHs obtained
by it have remarkable correlation coefficients and smaller mean absolute error and mean deviation
with the radiosonde-derived ABLHs than those measured by other three methods. We conclude that
MKnm is a promising algorithm to estimate ABLH under cloud or residual layer conditions.

Keywords: LiDAR; atmosphere boundary layer height; cloud; residual layer; machine learning

1. Introduction

The atmospheric boundary layer (ABL) is the lowest part of the troposphere near the
Earth’s surface. Moreover, it is the layer within which energy, water, momentum, and
matter in the atmosphere are mixed and exchanged with the surface [1–3]. Pollutants
from the ground are dispersed and trapped within this layer, and fog also occurs in
the ABL. It evolves throughout the day and is season influenced by solar radiation and
other factors. Therefore, the atmospheric boundary layer height (ABLH) is a crucial
parameter in numerical weather prediction models, climate change studies and air quality
assessments [4–7].

Many instruments have been implemented to detect ABLH, such as tethered bal-
loons [8], microwave radiometers [9], radiosonde (RS) [10–13], LiDAR [14–16], and ceilome-
ter [17]. RS can estimate ABLH with high precision from the vertical profiles of measured
temperature and humidity. Thus, it is the most reliable instrument, and its estimate is
often used as a reference value to compare with the ABLH obtained by other instruments.
However, the radiosonde test is labor intensive and the limited launch frequency cannot
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monitor the evolving process of ABLH which is necessary for a range of meteorological
applications. LiDAR is an active remote sensing tool with high spatial and temporal resolu-
tion, long detection range, and strong anti-interference ability, which can continuously and
automatically measure the ABLH. It is assumed that the distribution of aerosols in the ABL
is almost uniform and the concentration of aerosols in the ABL is much higher than that in
the free troposphere (FT). There is a transition zone between ABL and FT, known as the
entrainment zone (EZ). The center of the EZ is the ABLH at which the aerosol concentration
decreases sharply [17,18]. There are two main kinds of methods to estimate ABLH based on
LiDAR: (1) Methods to finding an abrupt change based on vertical distribution information
regarding the aerosol concentration reflected by LiDAR backscatter signals, such as the
threshold method [19], gradient method (GM), [20] and wavelet covariance transform
method (WM) [21]; (2) methods based on statistical analysis that seek the maximum vari-
ance of the LiDAR backscatter signal [22]. However, these methods operate in cloud-free
meteorological conditions, and will misjudge the ABLH from cloud interference.

Machine learning (ML)—which extracts features from the training data—is a powerful
tool for classification and regression problems [23,24]. Moreover, ML has been widely used
in target recognition [25], computer vision [26], and other fields [27–29], and has achieved
remarkable results. In this paper, we regard the detection of ABLH as a cluster problem
and explore how the appropriate algorithm can be used to solve this problem. Toledo
proposed a cluster analysis (CA) method to calculate the ABLH by taking advantage of
both the vertical distribution of aerosols and the variation in concentration [30]. The study
indicated that cluster analysis is a reliable method for studying the ABLH. Toledo tested
the robustness and capability of six numerical methods usually used to determine ABLH
from LiDAR data under different atmospheric conditions [18]. The results showed that
all methods are in agreement with radiosonde measurements under sea-land breeze and
non-dusty conditions. However, the presence of a residual layer (RL) affected the use of
these methods and CA performed best under dusty conditions. Caicedo assessed three
aerosol LiDAR-retrieved algorithms for ABLH detection and found that there is good
agreement between radiosonde and aerosol-derived ABLH in cloud-free conditions [17].
The presence of clouds creates difficulties for estimating ABLH for all methods. Rieutord
described two machine learning methods that derive ABLH from LiDAR data, which
are based on K-means and AdaBoost [31]. The case study indicated that both algorithms
performed well. Nevertheless, K-means is sensitive to the clustering initial value, and
AdaBoost is constrained by its training data. Moreover, the meteorological conditions of
low-level clouds (cloud base height below 3 km) were discarded.

As is known, clouds cover about 60% of the globe [32]. Estimating ABLH under
cloudy conditions is a necessary but challenging task. Krishnamurthy [33] used multiple
instruments to define the ABLH under clouds conditions. However, these instruments are
not always available for field measurements. Dang [34] proposed a top limit technique
to eliminate interference from the cloud layer. However, in that study, the threshold
−2 gradient used for cloud location determination was not applicable to other observation
sites. Li [14] determined the ABLH based on the WCT method with whale optimization
algorithm and the top limit. The empirical threshold −2 was also used as a reference
for the detection of boundary layer height information. Zhong [35] estimated the ABLH
under multi-layer conditions by using maximum limited height initialization and range
restriction. Nevertheless, the parameter was determined by experience which is limited
to the research area and is unsuitable for other areas. The applicability of these ABLH
estimation methods is limited due to the uncertainty of threshold selection. Therefore, it
is necessary to use methods other than threshold to estimate the ABLH. To improve the
reliability and convenience of ABLH estimation under clouds or residual layer conditions,
we propose a new algorithm, known as Mahalanobis transform K-near-means (MKnm), in
which only LiDAR data are used. In this study, the observation datasets are constructed
based on the characteristics of the categories. Mahalanobis transform is used to partition
the data due to the correlation and different magnitudes of each feature in the observation
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data, and the interference from outliers is reduced with the data that near the previous
centers to update the next centers. The most important factor is the LiDAR backscatter
signal gradient which is used as a reference to select the initial clustering value. To verify
the effectiveness of the proposed MKnm, micropulse LiDAR data—under cloud or residual
layer aerosol conditions—from the Southern Great Plains site C1 were used for testing, and
the ABLH defined by MKnm, K-means, VM, and HM were compared with reference ABLH
calculated from radiosonde data.

The rest of this article is organized as follows. Section 2 introduces the materials used
in our study. ABLH retrieval using existing methods and proposed MKnm are described in
Section 3. The results of our study, including comparisons of the methods with radiosonde,
are presented in Section 4. In Section 5, we discuss the proposed method. Section 6
concludes the study.

2. Materials

Ground-based micro pulse LiDAR (MPL) and radiosonde data used in this work
were collected from the central facility (36.607322◦ N, 97.487643◦ W) near Lamont in north-
central Oklahoma at the Southern Great Plains (SGP) site of the Atmospheric Radiation
Measurement (ARM) program [33,36,37]. The dataset spanned 2 years (2003 and 2004). The
instruments described below refer mainly to works during this period.

2.1. Micro-Pulse LiDAR (MPL)

The micro-pulse LiDAR (Version 2.0) instrument installed at the SGP site is an eye-safe
instrument that can be operated autonomously. It emits a laser pulse at a wavelength of
523 nm. Moreover, with pulse-repetition frequencies of 2.5 KHz, the maximum detection
range is up to 60 km. The raw MPL data have a vertical resolution of 30 m and temporal
resolution of 30 s. After system dead-time correction, background subtraction, range
correction, overlap, after-pulsing, and energy-level normalization, the resulting signal is
referred to as normalized relative backscatter (NRB):

NRB(r) =

{
[n(r)× D[n(r)]]− nap(r)− nb

}
r2

Oc(r)E
= Cβ(r)T(r)2 (1)

where n(r) represents the measured signal return in photoelectron counts per second at
range r. D[n(r)] is the dead time; nap(r) is the after-pulsing; nb is background; Oc(r) is
the overlap factor; C represents the calibration constant of a dimensional system; E is
the transmitted laser pulse energy; β is the backscatter coefficient; T is the atmospheric
transmittance; NRB is the value-added data product (VAP) of ARM that is used for de-
tecting clouds and aerosols, and the vertical resolution is 90 m. In this work, the interval
thresholding technique is used to reduce noise interference [29]. NRB data below 4.37 km
are used, and data from rain and fog meteorological conditions are discarded. In this study,
we focus mainly on demonstrating the ability to detect the ABLH under cloud or residual
layer aerosol conditions by the proposed method.

2.2. Radiosonde (RS)

Vaisala RS90 radiosonde was equipped at the SGP site that is usually launched four
times daily—05:30, 11:30, 17:30, and 23:30 UTC [33]. It provides vertical variation informa-
tion of air pressure, temperature, relative humidity. The most widely used approaches to
determine the ABLH involve finding the maximal positive gradient of the vertical potential
temperature profile or the minimum negative gradient value of the vertical relative humid-
ity profile. Three different algorithms were used to estimate ABLH from RS data in the
ARM ABLH VAP: (1) the Heffter method, (2) bulk Richardson number method [38,39], and
(3) Liu and Liang method [33]. The Liu and Liang method determines ABLH of the convec-
tive, stable, and neutral boundary layer from radiosonde soundings profiles collected from
14 major field campaigns around the world [10]. It is a robust method and can produce
realistic ABLH that can be verified by several thousand additional soundings; its perfor-
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mance is also validated by substantial literature [14,33]. In particular, Krishnamurthy [33]
compared these three methods using 1785 cases with radiosonde data and daytime clear
or shallow cumulus conditions. From comparisons results, they found that the Liu and
Liang technique resulted in the best overall agreement with the Tucker method, and used
as a reference to calibrate the RF model in their study. The observation site in our study is
same as Krishnamurthy’s. Therefore, we also use Liu and Liang method as a reference to
evaluate the proposed method. In order to match the ABLH detected by LiDAR data and
RS data, the LiDAR data are the average within 10 min of launching radiosonde.

3. Methods

Figure 1 shows a typical example of NRB under cloudy conditions at SGP. Figure 1a
illustrates the vertical distribution profiles of normalized relative LiDAR backscatter (NRB)
signals observed at 23:31 UTC, 05 February 2003. Figure 1b,c shows the gradient and
relative increase in NRB (RE = (NRB (z + ∆z) − NRB (z))/NRB (z)), respectively. In
Figure 1a, NRB almost decreases with altitude until approximately 2.2 km above ground
level (AGL) where a rapid increase occurs and a sharp decline at approximately 2.4 km
AGL, which correspond to the strongest positive and negative gradient pairs shown in
Figure 1b. In addition, In Figure 1c, a relative increase in the NRB—larger than 0.55—is
clearly shown between 2.2 km and 2.4 km AGL, indicating that one cloud layer is located
between 2.2 km to 2.5 km, which is also confirmed by the cloud data from the ARM SGP
site [36]. In Figure 1a, the LiDAR signal above the cloud top almost decays to zero due to
cloud attenuation. The ABLH determined by RS is 1.082 km.
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3.1. Gradient Method (GM)

As mentioned above, the aerosol concentration in the boundary layer is significantly
higher than that in the free atmosphere. There is a marked change in the LiDAR signal
when it enters the free atmosphere from the boundary layer. Therefore, the boundary layer
height is defined as the position where the LiDAR signal decays fastest or the height at
which the minimum gradient is obtained, and is defined as:

ABLHGM = argminr
d(NRB(r))

dr
(2)

Or

ABLHGLM = argminr
d(ln NRB(r))

dr
(3)

where NRB(r) represents the normalized relative backscatter at the height r. Here, we use
Equation (2) to compute ABLHGM. GM is simple and convenient but is easily disturbed by
noise and the aerosol layer structure.
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3.2. Wavelet Covariance Transform Method (WM)

Wavelet covariance transformation is a method that uses the Haar step function to
detect the LiDAR signal step changes. The wavelet covariance function is defined as:

WNRB(a, b) =
1
a

∫ ru

rl

NRB(r)h
(

r− b
a

)
dr (4)

where rl and ru are the lower and upper boundaries of the LiDAR profile; a and b are the
dilation and translation parameters of the Haar step function. Here, a = 2n∆r, n is a positive
integer, ∆r denotes the vertical resolution of LiDAR, and b is set to 90 m step size from
0.3 km to 4.37 km considering the vertical resolution of NRB.

The Haar wavelet function is expressed as:

h
(

r− b
a

)
=


+1 : b− a

2 ≤ r ≤ b
−1 : b ≤ r ≤ b + a

2
0 : elsewhere

(5)

The ABLH obtained by WM is to find the maximum WNRB(a,b) and is shown as:

ABLHWM = argmaxr(WNRB(a, b)) (6)

where WM shows good performance in many studies and is often used as the manufac-
turer’s method. However, parameters a and b need to be appropriately selected.

3.3. K-Means Method

K-means is a classical unsupervised learning algorithm that partitions objects accord-
ing to their distance from k cluster centers [40]. It is commonly used in many applications
since it is simple and computationally efficient. The K-means implementation process to
identify ABLH is as follows:

Step 1—Build dataset X∈RN×F. N is the number of data points; F is the dimension of
data that each dimension represents a feature of clusters. Here, F =3 –altitude r, normal-
ized relative backscatter NRB(r), and the absolute value of the relative change in NRB(r)
expressed as|∆NRB(r)|.

Step 2—Normalize the data making each dimension contribute equally to the partition.
Step 3—Choose the number of clusters k, and select the initial cluster center C1, . . . , Ck

at random locations inside the dataset. Here, the number of clusters k is same as that
determined by MKnm.

Step 4—Cluster the data Xi according to Euclidean distance:

Xi ∈ j, j = argminj d(Xi, Cj) (7)

where j = 1, . . . , k, indicates the cluster; d(Xi,Cj) is the Euclidean distance between data Xi
and cluster center Cj.

Step 5—Update cluster center using the average of the data in the cluster, defined as:

Cj =
1
Nj

∑
Xi∈j

Xi (8)

where Nj is the number of data points in cluster j.
Steps 4 and 5 are repeated until the maximum number of iterations is reached or the

cluster centers stop moving. In this study, the ABLH determine by K-means is located at
the category boundary for the first decrease in cluster strength from bottom to top.

3.4. MKnm Method

K-means has been used to detect ABLH from LiDAR data. However, it is sensi-
tive to the number of clusters and initial cluster centers. Outliers can also affect cluster
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centers that keep them away from real values [31,40]. Moreover, the Euclidean distance
measurement—often used in K-means—does not take into account the relationship between
object features [41,42]. Therefore, MKnm is proposed to solve these problems.

3.4.1. Algorithm Description

MKnm estimates ABLH by cluster analysis from only the LiDAR signal. One key work
of this method is to select features of the clusters. There are at least three clusters to be
identified, such as ABL, FT, and cloud (for Figure 1). The algorithm is based on the fact that
the intensity of the LiDAR backscatter signal generally decreases with altitude, however,
increases sharply when interacting with clouds or uplifting aerosols and decreases rapidly
at the upper part of them due to scattering and attenuation [34,35]. Therefore, the LiDAR
backscatter signal changes significantly when it encounters clouds, as shown in Figure 1.
In this study, we choose the feature of clusters as altitude r, normalized relative backscatter
NRB(r), and the absolute value of the relative change in NRB(r) expressed as|∆NRB(r)|.
Aerosols with adjacent positions, similar concentrations, and varying intensities are clas-
sified into one category. This supposes that the ABLH will be of higher accuracy under
improved clustering.

In order to accurately partition data, the relationship of each feature should be con-
sidered. Two pieces of data that are closely related may not belong to the same cluster,
and the magnitude of each feature can also affect the clustering results. MKnm takes
the Mahalanobis transform to the raw dataset in order to eliminate effects arising from
correlation and different magnitudes from each feature. These processes are expressed as:

Z = Y


1
σ1

1
σ2

1
σ3

 = XUT


1
σ1

1
σ2

1
σ3

 (9)

where Z is the new dataset obtained by taking Mahalanobis transform to raw dataset X; Y
is the dataset after projecting X onto UT, which is similar to principal component analysis
(PCA); σi is the standard deviation of the ith feature of Y; U is the orthogonal matrix of the
eigenvectors of Σ, expressed as Σ = UQUT; Σ is the covariance matrix of X.

In the next step, MKnm uses K-near-means to partition dataset Z into k clusters by
calculating the Euclidean distance between data and cluster centers. It should appropriately
select the number of clusters k and the initial cluster centers C. The aim of this algorithm is
to estimate ABLH which means the main focus is to identify ABL and FT. Therefore, a low
number of clusters will not extract ABL and FT from NRB. However, a greater number of
clusters will only further classify the ABL or FT and increase the cost, which has a minimal
effect on ABLH estimation. As mentioned previously, the ABLH will be of higher accuracy
under improved clustering. Figure 2 illustrates the clustering under varying numbers of
clusters with random initial centers.

From Figure 2, it can be observed that the aerosol layer is further classified with an
increase in the number of clusters k. It divides into cloud layer and non-cloud layer at k = 2
and divides into aerosol layer 1, aerosol layer 2, clouds layer, and the attenuation layer
above the cloud k = 4. In our study, in order to clustering the aerosol properly, the NRB
gradient is chosen as the observed object. The optimal number of clusters is determined by
the number of same direction intervals on the gradient of NRB after the process using the
interval thresholding technique. It is known that NRB almost decreases with altitude under
ideal atmospheric conditions in which the number of same direction intervals is one. It can
be identified as ABLH by dividing aerosols into two clusters. Under cloud atmospheric
conditions, the NRB gradient is negative until it interacts with clouds or the elevated
aerosol layer; it is positive at the lower part and negative at the upper part, corresponding
to an enhancement and attenuation of backscatter signals. There are three same direction
intervals of the NRB gradient that are needed to divide into three or four clusters to identify
ABLH that includes ABL, FT, and cloud or elevated aerosol layer, and the attenuation layer
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above the cloud may need to be selected. Therefore, the optimal number of clusters is the
number of same direction intervals of the NRB gradient or the addition of one. The change
in the NRB gradient from Figure 1 is shown in Figure 3.
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In Figure 3, there are three same direction intervals. Thus, the optimal number of
clusters is three or four. Next, we analyze the effect of the initial center in the cluster
analysis. Figure 4 illustrates the clustering under different initial centers with a given
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number of clusters. From the figure, it can be seen that the result of the cluster will be
affected by the initial center. We can obtain different ABLH with different initial centers
from the same number of clusters. Therefore, the initial center of clusters needs to be
selected carefully. In our study, the maximum of the same direction intervals is selected as
the initial centers, and is then fine-tuned.
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Since the cluster center is the mean of the data in the cluster during the update process,
the outliers will remove it from the real value. In this study, the data point that nears the
cluster center is chosen to update it, defined as:

C(n+1)
j =

1

N(n)
j

∑
Z(n)

i ∈k(n)j ,d(Z(n)
i ,C(n)

j )≤2H(n)

Z(n)
i (10)

H(n) =
1

N(n)
j

∑
Z(n)

i ∈k(n)j

d(Z(n)
i , C(n)

j ) (11)

where Cj
(n+1) is the center of the jth cluster at time n + 1, kj

(n) is the jth cluster at time n,
Nj

(n) is the number of the jth cluster at time n, Zi
(n) is the data point i of the jth cluster at

time n, H(n) is the mean Euclidean distance between data, and cluster centers at time n.

3.4.2. Flowchart of ABLH Estimated by MKnm

Figure 5 is the flowchart of ABLH estimated under complex atmospheric conditions
based on LiDAR data by MKnm. The gradient and relative increases in NRB need to be
calculated first to construct dataset X. Indeed, the intensity of the LiDAR backscatter signal
usually declines with altitude. However, it increases rapidly when the cloud or elevated
aerosol layer is encountered and decreases sharply at the upper boundary of each layer.
Therefore, zero-crossing of the derivative occurs at the boundary of the cloud or elevated
aerosol layer. Campbell also indicates that the relative increase in NRB will be at least
0.55 when a cloud exists [36]. Interval thresholding—which considers the same direction
interval as the whole to implement threshold operations—shows better performance for
removing noise interference. The NRB gradient that deals with interval thresholding can
reflect the distribution of the cloud or elevated aerosol layer in vertical space. Then, the
optimal number of clusters K can be determined by calculating the performance metrics.
We select the maximum in the same direction interval from the NRB gradient as the initial
cluster center.

Considering the correlation of elements contained in the data, a Mahalanobis transform
is implemented for the dataset. In addition, data that near the cluster center are used to
update the center to reduce interference from outliers. Performance metrics are calculated
with the given initial cluster center, and fine-tuning is implemented until 10 times. Finally,
the dataset is cluster analyzed using the optimal cluster number and initial cluster center.
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In order to estimate the ABLH, the average intensity of each cluster needs to be calculated.
The ABLH is located at the category boundary for the first decrease in cluster strength from
bottom to top.
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3.4.3. Performance Metrics

In this study, three indexes were used: (1) the sum of the squared errors (SSE); (2) the
mean of the silhouette coefficient (MSC) [43]; and (3) Davies–Bouldin indices (DBI) [44],
defined as:

SSE =
k

∑
i=1

∑
Z∈Ci

d(Z, Ci)
2 (12)

where Z is the data in cluster i; k is the number of clusters; Ci is the cluster center of cluster i.

MSC =
1
N

N

∑
i=1

bi − ai
max{ai, bi}

(13)

where N is the number of data points; ai is the mean distance between data point Zi and
other data points with the same cluster. bi is the minimum mean distance between data
point Zi and other data points with a different cluster and is defined as:

ai =
1

NCi − 1 ∑
Zi ,Zj∈Ci ,j 6=i

d(Zi, Zj) (14)

bi = min
k 6=i

1
NCk

∑
Zj∈Ck

d(Zi, Zj) (15)

where NCi is the number in the cluster i; ai represents the similarity between data point Zi
and other data points in the cluster. bi represents the dissimilarity between data point Zi
and other data points in other clusters. MSC locates in the range of [−1, 1]. In general, a
bigger MSC indicates a better clustering result, however, does not always work since it is
affected by ai and bi. Hence, in our study, the initial centers of clustering are selected based
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on SSE and MSC. Davies–Bouldin indices also need to be used when selecting the optimal
number of clusters, defined as:

DBI =
1
k

k

∑
i=1

max
i 6=j

[
µi + µj

d(Ci, Cj)

]
(16)

where k is the number of clusters,µi is the mean distance between data and their cluster
center in cluster i, and d(Ci, Cj) is the distance between cluster center Ci and cluster center Cj.

4. Results

To assess the validity of the proposed Mknm, this section shows the ABLH obtained
different methods and analyzes the ABLH diurnal cycles under cloudy conditions using
different methods. Furthermore, ABLHs retrieved by the LiDAR method are compared
with radiosonde methods under residual layer or cloudy conditions.

4.1. ABLH Estimated by Different Methods

Figure 6 shows the ABLH obtained by four methods based on LiDAR data from
Figure 1 defined as ABLH-GM, ABLH-WM, ABLH-Kmeans, and ABLH-Mknm. The
reference ABLH defined by RS is 1.082 km. Notably, the best result is provided by Mknm,
which has the lowest deviate (0.1622 km) and relative deviation (0.1499). The ABLH
estimated by GM, WM, and K-means are close to the top of the cloud with a large deviate
and relative deviation. The ABLH obtained by GM is highest in all methods which is
farthest from the reference ABLH.
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4.2. ABLH Diurnal Cycles under Cloudy Conditions

Figure 7 is the NRB time-height distribution, and the ABLH retrieved by different
methods are shown using different symbols. The diurnal cycles in ABLH are detected
by four methods with data measured at the ARM SGP site C1 on 2 October 2003. The
NCRB are averaged every 10 min, and the convective boundary layer (CBL) in the daytime
(from 11:05–23:45 UTC) is analyzed. Radiosonde launches at 11:30, 17:30, and 23:30, and
ABLH determined by RS is shown in Figure 7 as the black diamond. As can be seen from
Figure 7, a layer or more clouds appear in the sky throughout the day. ABLHs—calculated
by GM and WM—are almost located at the top of the cloud where the strongest change
in aerosol concentration occurs. However, ABLHs detected by Kmeans and Mknm are
in good agreement with the change in ABLHs, and Mknm can precisely identify ABLHs.
From 11:05–14:00, the boundary layer is clearly visible at lower altitudes, and there is a
thick high cloud layer above 2.1 km AGL which is shown as a white region. The NCRB is
completely attenuated above the cloud top at this time. GM and WM capture the upper
edge of the cloud as ABLH with a large error. Kmeans and Mknm are able to correctly
identify ABLHs, and Mknm obtains the best results that correctly and accurately capture
the change process of ABLHs. Between 17:05 and 19:05 UTC, more than one cloud layer
appears in the sky. GM and WM detect the cloud layer, which occurs as the strongest
change in aerosol concentration as ABLH. Kmeans and Mknm capture the location as
a marked change in aerosol concentration under clouds as ABLH. From 19:25 to 21:05
UTC, the ABLH may couple with the cloud layer due to no sharp change in NRB beside
them; the ABLH is located at the upper edge of the cloud estimated by all four methods.
It is clear that the ABLH determined by MKnm and Kmeans match very well with that
obtained by radiosonde at 11:30 and 23:30 UTC, and MKnm performance best. GM and
WM overestimate ABLH as estimated from radiosonde. At 17:30 UTC, there is a low
cloud. The ABLH estimated by radiosonde method is the base of the cloud layer where the
temperature profile changes rapidly. Considering the continuity of ABLH in two adjacent
moments, the ABLH determined by MKnm is selected [34].
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4.3. Comparisons of ABLH Retrieval between LiDAR and Radiosonde Methods under Clouds or
RL Conditions

In order to further evaluate and quantify the performance of the proposed method,
the ABLH detected by four LiDAR-based methods in the presence of RL and cloud layers
are compared with ABLH identified by radiosonde. The mean absolute error (MAE) and
Pearson correlation coefficient (R) are used as scores to assess the quality of methods. They
are defined as:

MAE =
1
N

N

∑
n=1

∣∣Ẑ(n)− Z(n)RS
∣∣ (17)

R =
cov(Ẑ, ZRS)

σ(Ẑ)σ(ZRS)
(18)

where N is the number of data points, Ẑ is the ABLH detected by LiDAR-based methods,
and ZRS is the ABLH determined by radiosonde. cov(•) denotes the covariance, and σ(•)
denotes the standard deviation. A lower MAE and higher R are better since this indicates
that ABLHs detected by LiDAR-based methods are closer to references. Moreover, the mean
deviation D—which is the difference between the mean of ABLH detected by LiDAR-based
methods and radiosonde—was also used to assess the methods.

The residual layer (RL) occurs in the morning or evening and is disconnected from
the surface aerosol layer. It has the same properties as the cloud layer when interacting
with the LiDAR beam that affects the defined ABLH. Figure 8 shows the comparisons
between ABLH results determined by LiDAR-based methods and radiosonde in cloud or
RL scenarios at the ARM SGP site from January 2003 to May 2004. Previous studies have
indicated that the ABLH derived from LiDAR-based methods is affected by distinct weather
patterns and LiDAR-blind areas. Therefore, meteorological conditions including rain, snow,
or fog were not considered, and the ABLH below 300 m, determined by radiosonde,
was also discarded. This study selected 56 well-defined cases for comparison. Figure 8a
compares the ABLH estimated by GM and radiosonde. The ABLH determined by GM is
much higher than that obtained from radiosonde due to the presence of clouds or RL, with
a correlation coefficient of 0.23, a mean absolute error of 1698 m, and a mean deviation of
1690 m. The comparison results of ABLH—determined by WM and by radiosonde—are
shown in Figure 8b, with a correlation coefficient of 0.24, a mean absolute error of 1639 m,
and a mean deviation of 1624 m. From Figure 8a,b, it can be seen that ABLH determined
by GM and WM both have large errors with ABLH determined by radiosonde. Given
the number of clusters, the ABLH determined by cluster analysis (K-means and MKnm)
is in close agreement with those by radiosonde as shown in Figure 8c,d. The correlation
coefficient between K-means and radiosonde derived ABLH is 0.77, the mean absolute
error is 220 m, and the mean deviation is 86 m. The proposed MKnm method obtained
the best result, which is consistent with radiosonde, with a correlation coefficient of 0.95, a
mean absolute error of 87 m, and a mean deviation of −8 m. Table 1 shows the comparison
results of ABLH—determined by LiDAR-based methods and by radiosonde. The results
indicate that MKnm performs well under cloud or RL conditions.

Table 1. Correlation coefficients (R), mean absolute error (MAE), mean deviation (D) between ABLH
determined by LiDAR-based methods and radiosonde.

Method R MAE(m) D(m)

GM 0.23 1698 1690

WM 0.24 1639 1634

K-means 0.77 220 86

MKnm 0.95 87 −8
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Figure 9 shows a comparison of the ABLH determined by four LiDAR-based methods.
From the figure, it can be seen that ABLHs—determined by GM and WM—have the
closest correlation, with a correlation coefficient of 0.99. The result is consistent with those
described previously since they are methods that find the maximum change in the LiDAR
backscatter signal. The cluster analysis methods—K-means and MKnm—are closely related,
with a correlation coefficient of 0.8. However, it also shows that the ABLH—defined by
MKnm—varies slightly from that defined by K-means. Compared with MKnm, K-means
with random initial center has a larger error. Table 2 shows the comparison results of
ABLH—determined by these four LiDAR-based methods. Overall, in most cases, the
ABLHs estimated by K-means and MKnm are quite different from those by GM and WM
in the presence of clouds or RL.

Table 2. Correlation coefficients (R) of ABLH determined by LiDAR-based methods.

GM WM K-means MKnm

GM 1 0.99 0.24 0.19

WM 0.99 1 0.25 0.21

K-means 0.24 0.25 1 0.80

MKnm 0.19 0.21 0.80 1
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5. Discussion
5.1. Evaluation Index to Quantify the Quality of Clustering

SSE is the sum of the square errors between observations and their cluster center
and decreases with an increase in the number of clusters. The magnitude of decline is
initially large and gradually decreases. Researchers often use the elbow method to select
the optimal number of clusters. Nevertheless, it is easy to fall into local optimum, and
the selection of elbow points has a certain uncertainty in which errors are easily produced.
In this study, we used SSE as one evaluation index to select the initial cluster centers;
because, in the case of the same cluster number K, SSE can better evaluate the clustering
effect, which is conducive to selecting better initial centers. MSC combines the cohesion of
observations within clusters and the separation of observations between clusters. In terms
of good clustering performance, observations of the same cluster should be as similar as
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possible and vice versa. Thus, a larger MSC is better. The DBI index tests the similarity of
observations among clusters, and better clustering results lead to significant differences
among clusters, that is, a smaller DBI is better. MSCand DBI are effect evaluation indexes
that quantify the quality of clustering which is conducive to selecting the optimal clustering
category K and the initial center C.

5.2. Define the ABLH after Clustering

According to the aerosol vertical structure distribution characteristics, the ABL is in the
lowest layer of the troposphere. Therefore, after clustering, the bottom category is generally
ABL, and the upward category adjacent to its potential boundary layer, free atmosphere,
cloud, or RL, can be judged according to the aerosol intensity (average) information from
these categories. If the intensity of the upward category does not differ greatly from
that of the bottom category but is weaker, the upward category is the boundary layer. If
the intensity differs greatly from the known boundary layer category and is weaker, the
category is free atmosphere. If the intensity differs greatly from the known boundary layer
category and is stronger than the known boundary layer category, the category is residual
layer aerosol or cloud. Based on this, the boundary layer height can be obtained.

5.3. Estimation of ABLH above the Cloud

The ABLH is mostly below the cloud, but in rare cases, it may be coupled to or
appear above the cloud [34]. In this scenario, it is challenging to define ABLH based on
ground-based LiDAR only, and presently, there is no suitable method. In many cases,
due to cloud attenuation, even for high-power systems, the LiDAR signal completely
decays before reaching the cloud top, and the LiDAR pulse may be unable to penetrate
the cloud to obtain the backscattered LiDAR signal generated by aerosols above the cloud
top [45]. In this case, the LiDAR echo signal on the cloud top will attenuate into background
noise, therefore, making it difficult to detect the ABLH on and above the cloud top. As
the LiDAR backscattering signal rapidly decays at the upper boundary of the cloud, the
gradient-based boundary layer height detection method (gradient method and wavelet
method) determines the upper boundary of the cloud as the boundary layer height, and
the clustering analysis method also determines the upper boundary of the cloud as the
boundary layer height. However, with the weak attenuation of clouds, the LiDAR pulse
can penetrate the clouds and obtain aerosol information above the cloud. The methods
based on the clustering analysis have great advantages, e.g., they can estimate the ABLH
locating at that area. however, the gradient-based method will also define the ABLH as the
cloud top.

6. Conclusions

The estimation of ABLH based on the LiDAR backscatter signal is significantly in-
fluenced by complex atmospheric structures such as clouds and uplifting aerosol layers.
This paper proposed a new method known as MKnm to define ABLH under cloud or RL
conditions. MKnm is a clustering method that aims to overcome the disadvantage of classic
clustering methods as K-means. Firstly, it estimates the optimal number of clustering. The
NRB gradient reflects the varying aerosol concentration intensity. We can obtain the overall
distribution of aerosol concentration intensity in vertical space by implementing interval
thresholding. Thus, the optimal number of clustering is related to the number of same
direction intervals on the NRB gradient. Secondly, it selects initial centers of clustering.
The experiment proved that the ABLH can be affected by initial centers of clustering. In
this paper, the interval extreme value was used as the candidate center, and the initial
center was determined by fine-tuning based on the evaluation index. Thirdly, Mahalanobis
distance was used to partition observations by considering the correlation and different
magnitudes of each feature, and the near observations were used to update the centers by
eliminating interference from outliers. MKnm, K-means, GM, and WM were compared
with RS by taking the LiDAR data under cloud or RL conditions from the ARM SGP C1 site.
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The diurnal cycles of ABLH from cloudy weather were detected by using four methods.
MKnm and K-means can trace the changing trend of ABLH, however, GM and WM
misidentified the cloud top or residual layer as ABLH. MKnm outperformed the K-means
which sometimes had a large error. The ABLH estimated by MKnm, K-means, GM, and
WM were compared with that defined by radiosonde based on LiDAR data (from January
2003 to May 2004) under cloud or RL conditions. Experimental results showed that GM
and WM were similar in estimating ABLH, and the ABLH obtained by both was less
related to the ABLH defined by radiosonde; the value was only 0.23–0.24, and the mean
absolute error and mean deviation were larger (above 1600 m). However, the ABLH
obtained by the clustering analysis method is in close agreement with the ABLH defined
by radiosonde—the mean absolute error and mean deviation are small. The proposed
MKnm performed best in these methods, with a correlation coefficient of 0.95, a mean
absolute error of 87 m, and a mean deviation of −8 m. Overall, MKnm can—with high
accuracy—estimate the presence of ABLH in complex weather conditions, and, from the
results of this study, the performance of K-means can be improved.
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Atmospheric boundary layer ABL
Atmospheric boundary layer height ABLH
Radiosonde RS
Free Troposphere FT
Entrainment zone EZ
Gradient method GM
Wavelet covariance transform method WM
Machine learning ML
Cluster analysis CA
Residual layer RL
Mahalanobis transform K-near-means MKnm
Micro-pulse LiDAR MPL
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Southern Great Plains SGP
Atmospheric Radiation Measurement ARM
Normalized relative backscatter NRB
Value-added data product VAP
Sum of the squared errors SSE
Mean of the silhouette coefficient MSC
Davies–Bouldin indices DBI
Mean absolute error MAE
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