
����������
�������

Citation: Ilniyaz, O.; Kurban, A.; Du,

Q. Leaf Area Index Estimation of

Pergola-Trained Vineyards in Arid

Regions Based on UAV RGB and

Multispectral Data Using Machine

Learning Methods. Remote Sens. 2022,

14, 415. https://doi.org/10.3390/

rs14020415

Academic Editors: Manuel

Campos-Taberner, Inkyu Sa, Marija
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Abstract: The leaf area index (LAI), a valuable variable for assessing vine vigor, reflects nutrient con-
centrations in vineyards and assists in precise management, including fertilization, improving yield,
quality, and vineyard uniformity. Although some vegetation indices (VIs) have been successfully
used to assess LAI variations, they are unsuitable for vineyards of different types and structures.
By calibrating the light extinction coefficient of a digital photography algorithm for proximal LAI
measurements, this study aimed to develop VI-LAI models for pergola-trained vineyards based on
high-resolution RGB and multispectral images captured by an unmanned aerial vehicle (UAV). The
models were developed by comparing five machine learning (ML) methods, and a robust ensemble
model was proposed using the five models as base learners. The results showed that the ensemble
model outperformed the base models. The highest R2 and lowest RMSE values that were obtained
using the best combination of VIs with multispectral data were 0.899 and 0.434, respectively; those
obtained using the RGB data were 0.825 and 0.547, respectively. By improving the results by feature
selection, ML methods performed better with multispectral data than with RGB images, and better
with higher spatial resolution data than with lower resolution data. LAI variations can be monitored
efficiently and accurately for large areas of pergola-trained vineyards using this framework.

Keywords: leaf area index (LAI); light extinction coefficient; unmanned aerial vehicles (UAV);
multispectral data; RGB data; machine learning; pergola-trained vineyards

1. Introduction

Adequate and affordable food supplies, which can be fulfilled only by the continuous
improvement of sustainable agricultural services [1], are an urgent requirement to meet the
growing demands of an increasing global population. This has become even more urgent
with the advent of the current COVID-19 pandemic. Improving food quality and yield by
optimizing the management of farms is a challenge because sophisticated field status and
growing conditions are difficult to monitor, and this limits our ability to carry out targeted
management. Therefore, the demand for monitoring crop growth and status in different
locations and conditions, with various temporal and spatial resolutions and for various
purposes, is increasing [2]. The leaf area index (LAI), being one of the most important
variables, is strongly correlated with canopy structure [3]. It is a key factor in many
physiological and functional plant models of crop growth [4], including in vineyards [5,6]
and it could provide decision-making criteria for the delineation of management zones.
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LAI is defined as the ratio of one-sided leaf area per unit ground area [7,8], of which the
measurement is destructive, labor-intensive, and time-consuming [9]. Therefore, indirect
methods have been developed using empirical equations, and they have been verified by di-
rect measurements. They are widely used to estimate the LAI for various crops [10,11]. The
optical methods are based on direct or diffuse light penetration through the canopy [12–14].
Various hand-held devices have been developed, including the LAI-2000 (Licor Inc., Lin-
coln, NE, USA), which measures diffuse radiation at different distinct angles [14]; DEMON
(Centre for Environmental Mechanics, Canberra, Australia), which uses direct radiation [15];
and SunScan (Delta-T devices Ltd., Cambridge, UK), which is based on photosynthetic
active radiation measured at wavelengths of 400–700 nm [16]. Although they are frequently
used because of their high accuracy and ease of handling, they are too expensive for gen-
eral use. Simple methods have been developed based on digital cover photography and
gap fraction analysis [17], which is simple, accurate, and practical, and it can be used on
mobile digital devices. Examples include Plant Screen Mobile [18], Easy Leaf Area [19],
PocketLAI [20] and VitiCanopy [21], which can be applied using smartphones or tablets to
carry out in situ LAI measurements easily. Although these methods transform destructive
sampling measurements into easier and more time-saving methods, they are suitable for
smaller areas. It takes too much time and labor to apply them on a larger scale. In addition,
some local calibrations cannot be used for other cultivars or cultivars with different canopy
structures [22], because some parameters are site- and cultivar-specific, such as the light
extinction coefficient.

The light extinction coefficient, which is an important parameter of the digital cover
photography algorithm in LAI estimation, varies according to vegetation type, structures,
and canopy styles, as well as the proportions of non-leaf areas in captured pictures [17,23,24].
Several papers discuss how to determine the value of k in different species. Smith et al.
(1991) discovered that the k value was lower at low relative densities because of the
presence of canopy gaps [25]. Pierce et al. (1988) proposed a constant k value of 0.52
for coniferous species in western Montana, USA [26], based on the measurements by
Jarvis et al. (1983) [27]. Vose et al. (1995) estimated that the k value ranged between
0.53–0.67 in mature hardwood stands in the southern Appalachians [28]. In addition,
Hassika et al. (1997) proposed a mean k value of 0.33 for a maritime pine forest near
Bordeaux, France, and found that it changes with varying sun elevations [29]. In their
study on k values for apple trees, Poblete et al. (2015) reported that the k values showed
different correlations to foliage cover, both in an exponential and linear style, in different
experiments, which gave rise to many uncertainties [22]. However, the fixed value of
0.70 was used in VitiCanopy as the default k value, which was suitable in vineyards in
Australia [21]. Therefore, optimizing the site-specific k value is a precondition of our
study. To the best of our knowledge, no study has been conducted to propose a k value for
pergola-trained vineyards, especially for the vine species in our study area.

However, rapidly emerging remote-sensing platforms and techniques are capable of
obtaining field information through analysis of spectral characteristics of crops, comple-
menting the inadequacies of existing ground-based measurement methods [30–32]. These
methods are non-destructive, simple, and applicable over large areas. The platforms and
data can be obtained according to the demand of users, such as the MODIS LAI [33] and
CYCLOPES LAI [34] products that can be used over very large regions with coarser spatial
and temporal resolutions. For smaller regions, medium-resolution satellite images such
as Landsat-7, Landsat-8, Sentinel-2, and Gaofen-6, amongst others, are good options with
spatial resolutions of 30, 10 and 8 m, respectively. Although they can be applied to various
crops at larger scales, for some plants that are grown in rows, such as vines, it is very diffi-
cult to extract more specific growing variables. This is because their inter-row spaces occur
in the same pixels as the vines and have an impact on the overall field observations [35]. In
this situation, remote-sensing data with a higher resolution, such as those obtained from
Gaofen-2 [36] and WorldView-2 [37–39], as well as very high spatial resolution images
obtained by manned or unmanned aerial vehicles (UAVs) [40–43], are becoming increas-
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ingly popular in precision agriculture. In particular, UAV platforms capable of carrying
a variety of sensors, such as visible [44,45], multispectral [40,46], hyperspectral [47,48],
and LiDAR [49], have more advantages such as high flexibility, time-saving, and less of
a labor requirement. These kinds of data make management decisions easier, since ev-
ery small variation in the field can be detected and analyzed conveniently. Because it
remains consistent while the spatial resolution changes, it is possible to estimate the LAI
in coarser remote-sensing data by combining the gap between different spatial-resolution
images [35,50], ranging from leaves to landscape and landscape to regional scales.

Machine learning (ML) methods, such as support vector machines (SVM) [51], partial
least squared regression (PLSR) [52,53], random forest (RF) [54] and gradient boosting
regression (GBR) [55] have unprecedented advantages in complex and non-linear data
fitting and recognition, and are being increasingly applied in interpreting remote-sensing
data to estimate agricultural information. Improvement of the data mining ability with
limited sensor bands is an effective way to improve the prediction accuracy of the LAI.

Pergola-trained vineyards have the advantage of effectively protecting grapes from
sun damage, especially in extremely arid regions such as Turpan, China. The excellent
canopy and health of the leaves contribute significantly to high-quality fresh table grapes
and raisins [56]. However, the LAI can provide effective and quantitative information
about vineyards and can be used as a guide for various management practices, such as
pruning [57,58], trellising and canopy development [59,60], fertilization [61] and irrigation
scheduling [16]. Earlier remote-sensing methods for LAI estimations were focused mostly
on vertical shoot positioning (VSP) trained vineyards [5,62], and relatively few studies
have been conducted for pergola-trained vineyards. It is unclear if LAI estimation models
based on VSP-trained vineyards can be directly used for pergola-trained vineyards, due
to differences in the trellising structures, resulting in differences in top-of-canopy remote-
sensing data.

In order to fill this gap, the present study combined airborne UAV multispectral and
RGB sensors with LAI ground measurements at different growth stages to construct several
VI-LAI estimation models using five different ML methods, namely the the support vector
regression (SVR), random forest regression (RFR), partial least square regression (PLSR) and
gradient boosting regression (GBR) and K-nearest neighbor regression (KNN). In addition,
an ensemble model using ML models as base learners was proposed. Upward looking
images taken under the pergola were used to calculate LAI values using digital cover
photography methods, and then optimized by adjusting the light extinction coefficient,
which was calibrated using true LAI values from destructive sampling.

Encouraged by recent achievements, using the pergola-trained vineyards in extremely
arid regions such as the study area, this study attempted to: (a) estimate a light extinc-
tion coefficient for an image-based LAI prediction algorithm suitable to pergola-trained
vineyards; (b) identify the vegetation indices (VIs) for estimating the LAI with the best
combination; and (c) establish VI-LAI models to accurately estimate the LAI using VIs
derived from UAV-based RGB and multispectral data with different spatial resolutions.
Our study will determine to what extent the UAV based RGB and multispectral data can
monitor the LAI variations in pergola-trained vineyards. Our results provide a precise
management basis for the similar vineyards and references for relevant future studies, such
as yield and quality assessments in precision viticulture.

2. Materials and Methods
2.1. Site Description

The study was carried out in Turpan city, Xinjiang, one of the largest table grape
growing regions in China, where significant interests are arising in the development of
strategies to ensure grape quality and yields [63] in recent years. Turpan has a continental
warm temperate desert climate with a mean annual precipitation of 16.4 mm and a mean
annual temperature of 13.9 ◦C (1950–2011). Extreme temperatures reach 47.8 ◦C (2008) in
summer and −28.0 ◦C (1960) in winter [64,65]. In general, vine plants are buried under the
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soil during winter to protect them from freezing, and then unearthed in spring. The most
widespread vine type in Turpan is Vitis vinifera L. cv. Thompson seedless, which has a good
reputation for high sugar content and good quality and, therefore, is a suitable research
subject for this study.

The experiment was conducted from May to August 2021 in a small vineyard in Pichan
County (Figure 1). The vines were 10 years old, planted in five ditches, where two of them
were attached on one pergola from two sides, and the other three were attached on separate
pergolas. The planting spaces between vines were approximately 1.50 m, and the distances
between ditches were approximately 6.00 m with an average pergola height of 1.60 m. The
vines were unearthed and first irrigated on 16 and 26 March 2021.

Figure 1. Location of study area, birds eye view of a vineyard, and a scene below the pergola.

2.2. Data
2.2.1. Unmanned Aerial Vehicle (UAV) Data Acquisition

Data were collected from May to August 2021, covering the main important growing
seasons. Drone-based RGB and multispectral images were captured from flight heights
of 17 m and 91–100 m to generate images of 0.007–0.008 m and 0.040–0.045 m with spatial
resolutions (or ground sample distance (GSD)). Two flight heights were used because the
lower flight height data can be used for smaller vineyards with higher spatial resolutions,
and higher flight heights can be used to monitor larger fields. An overlap of 80–90% at
the front and 60–80% at the side was maintained. This overlap ensured creation of good
quality orthomosaic images. The UAV (DJI Phantom 3 Advanced, SZ DJI Technology Co.,
Ltd., Shenzhen, China) has characteristics of stable flight, and has a flight time of about
15 min/battery. It is equipped with a remote controller, a global navigation satellite system
(GNSS) receiver, and autonomous flights were carried out using the Pix4Dcapture app
(Pix4D SA, Lausanne, Switzerland) on an Android smartphone.

RGB images were captured using the built-in camera of the UAV. It was attached to a
three-axis gimbal mount to provide stability, it has a 12.4-megapixel sensor, which allows
the acquisition of RGB images with a maximum image dimension of 4000 × 3000 pixels.
A multispectral camera of Tetracam ADC Micro (Tetracam, Inc., Gainesville, FL, USA)
was installed on the UAV, with an image dimension of 1280 × 1024 pixels. The ADC
Micro is a single-sensor digital camera designed and optimized for capturing visible
light wavelengths longer than 520 nm and near-infrared wavelengths up to 920 nm, with
three fixed green, red, NIR filters (equivalent to Landsat TM2, TM3, TM4) [66]. The
primary design of this product is to record vegetation canopy reflectance [67,68], and
multi-spectral earth-observing satellites such as Landsat ETM, SPOT, and IKONOS obtain
spectral information in the same few broad wavebands [69]. The multispectral images were
taken simultaneously with RGB images in RAW format, then calibrated and converted to
TIF format using PixelWrench2 software.
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The RGB and multispectral images were then mosaiced using the photogrammetric
software Pix4DMapper (Pix4D SA, Lausanne, Switzerland). Ground control points (GCPs)
were distributed evenly in the study area, and coordinates were measured using real-time
kinematics (iRTK2, Hi-Target Satellite Navigation Technology Co., Ltd., Guangzhou, China)
with an error range of ±10 mm. The schedules of the missions are listed in Table 1. The
final images were resampled to 0.007 m and 0.045 m spatial resolutions for 17 m and
91–100 m flight heights, respectively, after preprocessing. For convenience, we abbreviated
the different spatial resolution and sensor data as follows: the data derived from 0.007 m
spatial resolution of the multispectral sensor are called the 0.007 m GSD MS dataset; the
data derived from 0.007 m spatial resolution of the RGB sensor are called the 0.007 m GSD
RGB dataset; the data derived from 0.045 m spatial resolution of the multispectral sensor
are called the 0.045 m GSD MS dataset; and the data derived from 0.045 m spatial resolution
of the RGB sensor are called the 0.007 m GSD RGB dataset.

Table 1. Sampling date and corresponding growing seasons for true leaf area index (LAI), VitiCanopy
and unmanned aerial vehicle (UAV) missions.

Mission Date Growth Period of Vine Data Type Flight Height GSD

4 May Blooming stage VitiCanopy, UAV data 17 m 0.007 m
14 May Fruit setting stage VitiCanopy, UAV data 100 m 0.045 m
29 June Veraison stage VitiCanopy, UAV data 17 m, 100 m 0.007 m, 0.045 m

7 August Post-harvest stage True LAI, VitiCanopy, UAV data 17 m, 91 m 0.007 m, 0.045 m

Note: UAV data includes both red, blue and green (RGB) and multispectral data; GSD refers to the ground sample
distance (spatial resolution).

2.2.2. Leaf Area Index (LAI) Data Acquisition by Destructive Sampling

To calibrate the VitiCanopy parameters, the true LAI values were obtained using a
destructive sampling method (Figure 2). The experiment was carried out from 7–9 August
2021. Ten samples of the vineyard LAI were measured using a 0.80 m × 0.90 m rectangular
iron frame to separate the samples of vine leaves measured by VitiCanopy. Sampling
points were selected after detailed inspection of the field survey on the sampling day
to cover characteristic LAI values, of which the thickest and sparsest areas were both
taken into consideration. We added an extra plot that did not include any canopy for
representing the zero value of the LAI. The spatial distribution of the samples is shown in
Figure 3. The procedure was as follows [5]: (1) carry out the UAV mission and VitiCanopy
measurements in the same day; (2) install a rectangular wire frame at each plot with a size
of 0.80 m × 0.90 m which corresponds to VitiCanopy measurements, and collect all leaves
inside the frame; (3) put the leaves on white A2 paper (0.594 m × 0.420 m) and photograph
with a digital RGB camera; (4) classify the pictures as leaf and non-leaf areas using ENVI5.3
(Harris Geospatial Solutions, Broomfield, CO, USA), and calculate the leaf area of each
sample. The Greenness Index was used to distinguish leaf area in this study [70]. The LAI
was then calculated by dividing the accumulated leaf area of the samples at each site into
the area of the rectangular wire frame. The locations of the destructive samplings were
confirmed by comparing the orthoimages before and after defoliation.
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Figure 2. Calculation procedure of true LAI values: (a) collect all leaves inside the rectangular frame;
(b) put leaves on A2 paper and take photo with RGB camera; (c) distinguish the leaves and calculate
the area.

Figure 3. Locations of VitiCanopy and destructive sampling measurements. Ortho mosaiced RGB
and false color images of sampled vineyard with 0.007 m and 0.045 m GSD on different dates. The
yellow and black rectangles refer to 0.80 m × 0.90 m regions which were measured using VitiCanopy
and black rectangles refer to the plots of the destructive sampling measurements.

2.2.3. LAI Data Acquisition by Digital Cover Photography Method

LAI values were measured using a free smartphone and tablet PC application called
VitiCanopy, which was developed to measure the LAI of vineyards, and proved to be
effective for vertical shoot positioning (VSP) trained vineyards with a light extinction
coefficient of 0.70 [21,71]. It was also proved that this application was valid for other tree
crops such as cherry [72], cocoa [73] and apple trees [22] by adjusting input parameters
such as the light extinction coefficient.

The measurements were carried out near the girders for convenience of marking, so
the positions could be easily located in orthomosaic UAV images for later calculations,
as shown in Figure 3. The pictures were taken approximately 0.80 m below the pergola,
as suggested by the software developer [21], and cover about 0.80 m × 0.90 m of the
rectangular region. Applying the default light extinction coefficient of 0.70, approximately
40–60 plots were measured in four different growing stages, including non-leaf area and
very dense vegetated regions. Low-quality measurements were removed based on the
picture quality as assessed by VitiCanopy. The number of samples used in different sensor
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and GSD datasets were given in Table 2. The software performs a cloud-filtering process
and automatic gap analysis of upward-looking digital images [74]. The light extinction
coefficient was then optimized using the true LAI values, which will be discussed in the
following sections.

Table 2. Number of samples in each dataset.

Dataset Number of Samples

0.007 m GSD MS 148
0.007 m GSD RGB 145
0.045 m GSD MS 148

0.045 m GSD RGB 145

2.3. Methods

The overall workflow of this study consists of three key steps: (1) calibration of the
light extinction coefficient by the digital cover photography method using a destructive
sampling method; (2) calculation of VIs from UAV-based multispectral and RGB images;
and (3) calibration and validation of VI-LAI models using LAI values from the first step
and VIs from the second step (Figure 4). This study adopted the World Geodetic System
1984 (WGS1984) as the coordinate system for georeferenced images, maps, or any others in
this paper, if not particularly indicated.

Figure 4. An overview of workflow in this study, and datasets used for constructing models.

2.3.1. Determination of Light Extinction Coefficient

The digital cover photography method can estimate the LAI values of many vegetation
types [22,72]. The VitiCanopy application was developed on the basis of the digital cover
photography method [21], which obtains the number of total pixels, big gaps, and total
gaps of vegetation area from pictures, and then calculates the fractions of foliage cover and
crown cover by applying the following equations [17]:

f f = 1− gT
TP

(1)

fc = 1− gL
TP

(2)
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where the f f is the foliage cover, fc is the crown cover, gT is the total number of gap pixels,
TP is the total number of pixels, and gL is the total number of big gap pixels. Using the
calculated f f and fc values, the crown porosity, clumping index at the zenith, and the
effective leaf area index can be calculated from Beer’s Law [74,75]:

Φ = 1−
f f

fc
(3)

Ω0 =
(1−Φ) ∗ ln

(
1− f f

)
ln(Φ) ∗ f f

(4)

LAIM =
− fc ∗Ω0 ∗ ln(Φ)

k
(5)

where Φ is the crown porosity, Ω0 is the clumping index, LAIM is the effective leaf area
index, and k is the light extinction coefficient, which was set at 0.70 as the default. Therefore,
the light extinction coefficient can be calculated by inverting Equation (5) and using the
measured true LAI values (LAIT) as follows [22]:

k =
− fc ∗Ω0 ∗ ln(Φ)

LAIT
(6)

We can take the average of k values, as in many other studies [26,29]. We also experi-
mented with a variable k for better estimation of the LAI by investigating the correlations
with other parameters, such as the fraction of foliage cover ( f f ), as studied by Poblete et al.
(2015) [22]. The optimized k values were used to calculate the LAI values of other sampling
points, which were used as ground truth data for LAI estimation models, as stated in the
following steps.

2.3.2. Spectral Feature Extraction and Reduction

Modeling using only three band spectral data is a time-saving method, but its accuracy
is difficult to guarantee. Therefore, based on the Index Database website (https://www.
indexdatabase.de/, last accessed on 30 September 2021), 32 vegetation indices (VIs) were
calculated using one to three spectral bands from each sensor, where 17 VIs are from
multispectral data and 19 VIs are from RGB data (Table 3). Among these, R, G, GtoR, and
RmG can be applied to both sensors. For every rectangular area that VitiCanopy could
detect (Figure 3), the average VI values were calculated. These VI values were used as
variables for the LAI estimation models, which will be introduced in the following sections.
Calculations were performed using the GDAL library in Python.

Table 3. Vegetation indices used in this study.

Vegetation Index Name Abbrev. Formula Used Sensor Source

Near Infrared NIR NIR MS
Red R R MS, RGB [76]

Green G G MS, RGB [76]
Blue B B RGB [76]

Normalized Differential Vegetation Index NDVI (NIR − R)/(NIR + R) MS [77]
Chlorophyll Vegetation Index CVI NIR∗R/G2 MS [78]

Chlorophyll Index Green CIgreen (NIR/G) − 1 MS [79]
Green Difference Vegetation Index GDVI NIR − G MS [80]

Enhanced Vegetation Index 1 EVI1 2.4∗(NIR − R)/(NIR + R + 1) MS [81]
Enhanced Vegetation Index 2 EVI2 2.5∗(NIR − R)/(NIR + 2.4*R + 1) MS [82]

Green-Red NDVI GRNDVI (NIR − R − G)/(NIR + R + G) MS [83]

https://www.indexdatabase.de/
https://www.indexdatabase.de/
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Table 3. Cont.

Vegetation Index Name Abbrev. Formula Used Sensor Source

Green NDVI GNDVI (NIR − G)/(NIR + G) MS [84]
Green Ratio Vegetation Index GRVI NIR/G MS [85]
Difference Vegetation Index DVI NIR/R MS [86]

Log Ratio LogR Log(NIR/R) MS
Soil Adjusted Vegetation Index SAVI (1 + L)(NIR − R)/(NIR + R + L) MS [87]

Simple Ratio Green to Red GtoR G/R MS, RGB
Simple Ratio Blue to Green BtoG B/G RGB [88]
Simple Ratio Blue to Red BtoR B/R RGB [88]

Simple difference of green and blue GmB G − B RGB [76]
Simple difference of red and blue RmB R − B RGB [76]

Simple difference of red and green RmG R − G MS, RGB
Simple Ratio of Green and Red + Blue tGmRmB 2G − R − B RGB [89]

Mean RGB RGBto3 (R + G + B)/3 RGB
Red Percentage Index RtoRGB R/(R + G + B) RGB [76]

Green Percentage Index GtoRGB G/(R + G + B) RGB [76]
Blue Percentage Index BtoRGB B/(R + G + B) RGB [76]

Normalized Green-Red Index NGR (G − R)/(G + R) RGB [76,85]
Normalized Red-Blue Index NRB (R − B)/(R + B) RGB [76]

Normalized Green-Blue Index NGB (G − B)/(G + B) RGB [76]
Green Leaf Index GLI (2G − R − B)/(2G + R + B) RGB [70]
Coloration Index CI (Red - Blue)/Red RGB [90]

Note: MS refers to the multispectral sensor, and RGB refers to the RGB camera of the UAV.

In supervised learning, the models based on all variables (VIs) may show better
performance than using only three band data but require higher computing capacity. To
overcome the calculation expenses and improve the accuracy, we implemented feature
(the VI in this study) selection procedures, which maintain useful information with highly
correlated VIs and exclude redundant ones from regression analysis [91]. Feature selection
methods are of great importance in the field of data mining [92] and help to obtain good or
better accuracies in predictive models while requiring less data. Using fewer attributes is
desirable because it reduces the complexity of the model, and a simpler model is simpler to
understand and explain [93]. Therefore, the selection of variables is an important step in
improving the efficiency of models.

In this study, we carried out feature selection using the recursive feature elimina-
tion (RFE) approach, which is a widely applied method and performed well in previous
studies [94–96]. It was performed in two steps: (1) running an estimator to determine
the feature importance, and (2) removing the feature with the lowest importance score
and evaluating the model performance. The built-in feature selection method of random
forest (RF) was used in this study to derive the importance of each variable in the tree
decision [97]. We implemented the process 300 times to obtain the feature importance in
step (1), and determined the features to participate in the final modeling in step (2).

2.3.3. Ensemble Model Development

To enhance the prediction performance, an ensemble model was proposed based
on the voting strategy, including the following steps: (1) training and applying multiple
machine learning models independently and (2) combining multiple prediction results
through voting [98]. In this study, the voting regressor was used; it is a composite strategy
across ML models and performed best on average across subjects. Five ML regression
methods were employed as the base learners to construct the ensemble learning, namely,
the SVR, RFR, PLSR, GBR, and KNN. These are widely used in many studies [95,96,99,100].
The entire dataset was randomly split into training and testing sets to implement the
independent validation. One-third of the whole dataset was used for validation (three-
fold), which was determined by comparing the results 2–10 fold, while two-thirds were
used for training. For the RFR method, the number of trees was 600, the minimum sample
leaf was set to 3, and the maximum depth was 10. For the SVR method, the “linear”
was used as the kernel, because it has the best performance among all the tests. In the
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GBR method, the number of boosting stages was set to 30. Six was set for the number of
estimators in the PLSR methods, while three was set for datasets with only three variables.
Three was chosen as the number of nearest neighbors for the KNN method. All parameters
were chosen using the tuning and grid search methods.

The modeling tests were carried out using datasets of 0.007 m and 0.045 m GSD
data separately. To test the robustness of all the models, 100 repetitions of three-fold
cross validation were performed, resulting in a total of 300 experiments. To assess the
performance of these models, the coefficient of determination (R2), root mean squared error
(RMSE), and mean absolute error (MAE) were calculated as follows:

R2 =
∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − ýi)

2 (7)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n− 1
(8)

MAE =
1
n ∑n

i=1|yi − ŷi| (9)

where yi is the measured value, ŷi is the predicted value, ýi is the average of the mea-
sured values, and n is the number of samples. Modeling and accuracy assessments were
implemented using the scikit-learn packages in Python.

3. Results
3.1. Calibration Result of Light Extinction Coefficient

We attempted to find a variable k, which ranged from 0.29 to 0.56, for better estimation
of LAI, and we found that they have certain correlations with the fraction of foliage cover
( f f ) (Table 4), which is in line with a previous study of Poblete et al. (2015) [22]. Although
R2 was larger in the exponential model, according to the RMSE, the linear model showed
higher performance than the exponential model. However, considering that we have only
10 samples of leaf area (we did not include the k value for the non-leaf plot, since it cannot
be calculated because the denominator was zero in Formula (6)), and its linearity was not
obvious with an R2 of 0.57 only (Figure 5), we chose to use the average k value (0.41) and
apply it to the LAI calculations as stated in the previous studies.

Table 4. Models for light extinction coefficient as a function of fractions of foliage cover ( f f ), and the
goodness of fit (R2) and root mean square errors (RMSE) of those models.

Model Type Equation R2 RMSE

Linear km = 0.34 × ( f f ) + 0.17 0.57 0.0591
Exponential km = 0.49 × ( f f )0.50 0.65 0.0593
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Figure 5. Linear and exponential correlations of light extinction coefficient (km), which were calcu-
lated from true LAI values, and fraction of foliage cover ( f f ).

The correlations between the true LAI and the values based on VitiCanopy, using
the default and optimized k values, are shown in Figure 6. As seen, the LAI values from
VitiCanopy after optimizing k were closer to the true values with a slope of 1.03, indicating
that a k value of 0.41 would be suitable for pergola-trained vineyards. For decreasing the
accumulated error between the true LAI and the LAI from VitiCanopy (k = 0.41), LAI_k_0.41
were corrected again using the relationship shown in Figure 6.

Figure 6. The relationship between true and VitiCanopy calculated LAI (LAI_viti) values before and
after optimization of k value. The default and optimized k values were 0.70 and 0.41 separately.

3.2. Vegetation Indices and Selection

The optimized LAI values, which were based on VitiCanopy measurements, and
VIs from both UAV RGB and multispectral data were compared. As seen in Figure 7, all
17 VIs from multispectral data showed strong correlations with the LAI, except for the
green band. GDVI showed the best correlation with a Pearson’s correlation coefficient
of 0.903 significant at the 0.01 level, while the green band showed the lowest correlation.
Among the 19 VIs from RGB images, only eight showed better correlations (Figure 8), and
0.007 m and 0.045 m GSD data showed large discrepancies in the same VIs.
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Figure 7. Pearson’s correlation coefficients between LAI_viti and vegetation indices (VIs) derived
from UAV multispectral images from 0.007 m (n = 148) and 0.045 m (n = 145) GSD data.

Figure 8. Pearson’s correlation coefficients between LAI_viti and VIs derived from UAV RGB images
of 0.007 m (n = 148) and 0.045 m (n = 145) GSD data.

The 17 VIs from the multispectral sensor and 19 VIs from the RGB sensor at different
spatial resolutions were ranked using the RFE strategy described in Section 2.3.2. Figure 9
shows the VI rankings for 0.007 m GSD data, and Figure 10 shows the rankings of VIs for
0.045 m GSD data. Most of the VIs have stable ranking orders, where the rankings were
obtained from 300 repeated experiments. For example, GDVI, GtoR, DVI, CVI, and RmG
are mostly highly ranked in 0.007 m GSD data from multispectral sensors, and almost all
VIs ranked stably in 0.007 m GSD data from the RGB sensor.
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Figure 9. Statistics of VI rankings in 300 experiments using 0.007 m GSD data from (a) multispectral
sensor and (b) RGB sensor.

Figure 10. Statistics of VI rankings in 300 experiments using 0.045 m GSD data from (a) multispectral
sensor and (b) RGB sensor.

3.3. Model Comparison and Performance

According to the rankings of VIs for four different datasets (0.007 m GSD MS, 0.007 m
GSD RGB, 0.045 m GSD MS, 0.045 m GSD RGB), we iteratively added the top ranked VIs
one by one into the ML models and updated the model performance until all VIs were
included. Every experiment was conducted 100 times with three-fold cross validation,
and the training accuracies obtained by the five base models and ensemble model were
calculated. The results of the 0.007 m GSD MS dataset are shown in Figure 11. As shown,
RFR and GBR achieved the highest performance when five VIs were included among the
five base models. The others achieved the best performance when 14 VIs were included.
The accuracy of the ensemble model reached the highest while including five VIs. The
results for the other datasets are given in the Appendix A (Figures A1–A3). In the same
way, we chose 10 VIs for the 0.045 m GSD MS dataset, 18 VIs for the 0.007 m GSD RGB
dataset, and three VIs for the 0.045 m GSD RGB dataset.
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Figure 11. Model training accuracies as a function of the number of VIs derived from 0.007 m GSD
multispectral data.

In addition, we trained all base models and ensemble models in full and selected
features, as well as using only the three-band data on training samples, and evaluated the
model performance on test samples. The test accuracies of 300 experiments (100 times
of three-fold cross validation) for the 0.007 m GSD MS dataset are shown in Table 5.
Satisfactory accuracies were achieved by all approaches, demonstrating the effectiveness of
these models in LAI estimation in pergola-trained vineyards. In particular, the ensemble
model outperformed all the base models, achieving an R2 of 0.830 using the three-band
data, 0.887 using all VIs, and 0.889 using the selected five VIs. The test accuracies of other
datasets with different variables are provided in the Appendix A (Tables A1–A3).

Table 5. Test accuracies including mean and standard deviation of five base models and an ensemble
model trained on the 0.007 m GSD MS dataset in a different number of VIs (n = 148).

ML
Methods

Using All 17 VIs Using Selected 5 VIs Using 3 Bands

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

SVR 0.872
(0.022)

0.466
(0.030)

0.372
(0.021)

0.864
(0.029)

0.479
(0.043)

0.385
(0.038)

0.807
(0.026)

0.572
(0.026)

0.466
(0.038)

RFR 0.864
(0.009)

0.481
(0.013)

0.399
(0.019)

0.879
(0.015)

0.455
(0.022)

0.373
(0.028)

0.742
(0.045)

0.661
(0.051)

0.556
(0.054)

PLSR 0.880
(0.020)

0.451
(0.028)

0.366
(0.027)

0.869
(0.026)

0.469
(0.039)

0.384
(0.036)

0.822
(0.041)

0.547
(0.050)

0.451
(0.052)

GBR 0.860
(0.011)

0.489
(0.018)

0.398
(0.033)

0.879
(0.016)

0.454
(0.025)

0.368
(0.034)

0.759
(0.059)

0.636
(0.073)

0.524
(0.084)

KNN 0.856
(0.033)

0.492
(0.054)

0.404
(0.046)

0.850
(0.014)

0.506
(0.018)

0.413
(0.031)

0.773
(0.032)

0.621
(0.033)

0.508
(0.043)

Ensemble 0.887
(0.013)

0.438
(0.018)

0.358
(0.027)

0.889
(0.018)

0.434
(0.030)

0.354
(0.039)

0.830
(0.031)

0.536
(0.042)

0.449
(0.053)

3.4. Model Adaptability for Different Datasets

Then, we evaluated the model adaptability under different GSD and sensor datasets.
Table 6 shows the R2, RMSE, and MAE of all the base models and ensemble models using
the different datasets. Generally, all models achieved good results except for the 0.045 m
GSD RGB dataset, where SVR showed the lowest performance. Among the base models
using 0.007 m GSD data, RFR and GBR performed better than others in the MS dataset,
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whereas SVR and PLSR outperformed others in the RGB dataset; for the base models using
0.045 m GSD data, SVR and PLSR showed better performances than others in the MS
dataset, and RFR and GBR performed better than others in the RGB dataset. The ensemble
model outperformed all the base models in most cases.

Table 6. Performances of base and ensemble models in LAI prediction under different GSD and
sensor data.

Model Metrics 0.007 m GSD MS 0.007 m GSD RGB 0.045 m GSD MS 0.045 m GSD RGB

SVR
R2 0.864 0.818 0.790 0.438

RMSE 0.479 0.556 0.590 0.952
MAE 0.385 0.407 0.449 0.678

RFR
R2 0.879 0.791 0.754 0.676

RMSE 0.455 0.598 0.635 0.734
MAE 0.373 0.470 0.499 0.611

PLSR
R2 0.869 0.820 0.783 0.490

RMSE 0.469 0.552 0.598 0.921
MAE 0.384 0.432 0.459 0.695

GBR
R2 0.879 0.788 0.758 0.708

RMSE 0.454 0.602 0.630 0.697
MAE 0.368 0.470 0.492 0.568

KNN
R2 0.850 0.772 0.772 0.539

RMSE 0.506 0.623 0.614 0.872
MAE 0.413 0.492 0.479 0.720

Ensemble
R2 0.889 0.825 0.796 0.637

RMSE 0.434 0.547 0.581 0.775
MAE 0.354 0.422 0.452 0.626

The agreement between the true LAI (optimized from the VitiCanopy results) and
the predicted LAI of each model using the selected features for each dataset is shown in
Figure 12. Among all models, the best agreement was found in the ensemble model using
the 0.007 m GSD MS, 0.007 m GSD RGB, and 0.045 m GSD MS datasets (Figure 12(f1–f3)).
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Figure 12. Scatter plots of predicted and true LAI values from (a) SVR, (b) RFR, (c) PLSR, (d) GBR,
(e) KNN and (f) ensemble model for (1) 0.007 m GSD MS dataset, (2) 0.007 m GSD RGB dataset,
(3) 0.045 m GSD MS dataset and (4) 0.045 m GSD RGB dataset.

4. Discussion
4.1. Contributions of Feature Selection for Datasets

This study explored the potential of UAV data as an alternative method for LAI extrac-
tion for pergola-trained vineyards. Many vegetation growth variables can be accurately
and remotely retrieved from satellite and UAV-based remote-sensing data for different
vegetation types, and they have been used to carry out precise management [101]. In
their study on the ratio indices of rice (e.g., CIgreen) using UAV data (the same series of
multispectral sensors as in our study), Yang et al. (2021) showed the lowest correlation with
LAI, and EVI2 had a relatively higher correlation, while the normalized indices (NDVI)
had the median [102]. In their study on selection of vegetation indices for mapping the
sugarcane condition, Susantoro et al. (2018) showed the DVI and GNDVI derived from
Landsat8 were highly correlated to LAI [103], which is in agreement with our study. ML
methodologies can be used to effectively analyze and utilize information-rich datasets as
well as high-dimensional observation data. However, the performance of different ML
methods varies with different datasets. For the data obtained by hyperspectral sensors,
machine learning methods can be used to directly choose the best related spectral bands
to train the models [47,104]. It is possible to obtain better performance by calculating
vegetation indices and using them as independent variables [96]. Compared to hyperspec-
tral sensors, relatively fewer spectral data can be obtained from multispectral sensors. In
our study, modeling using only three-band spectral data saves time, while also making it
possible to obtain good results. For example, the R2 for the ensemble model, which was
based on 0.007 m GSD MS data, reached 0.830 (Table 5). However, this is not always the
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case, especially for sensors such as those on the RGB camera. In this case, none of the three
bands were highly correlated to LAI (Figure 8), and most of the models had low accuracies.
Figures 13 and 14 show the performances of different models in different datasets with
different combinations of variables. The models based on all variables (VIs) showed better
performance than those using only three band data, for both multispectral and RGB data.
However, they required more computing capacity. The models based on only three-band
data showed lower stability than those based on all variables. In brief, feature selection
improved model performance compared to that when using all features (VIs) or only three
band data. This was observed in both multispectral and RGB data.

Figure 13. Performance of different models in 0.007 m GSD MS datasets with (a) all VIs, (b) three band
data and (c) selected VIs, and RGB datasets with (d) all VIs, (e) three band data and (f) selected VIs.

Figure 14. Performance of different models in 0.045 m GSD MS dataset with (a) all VIs, (b) three band
data and (c) selected VIs, and RGB datasets with (d) all VIs, (e) three band data and (f) selected VIs.
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4.2. Comparing Different Machine Learning Methods in Different Datasets

In addition to the selection of vegetation indices, the regression algorithm itself is
another crucial factor that affects LAI estimation accuracy. A suitable model can help
improve the accuracy of LAI predictions from remote-sensing data. Figures 13 and 14 also
show the performances of the different models in different datasets.

All base models used in this study have been commonly applied in many studies, and
all models have their advantages in specific situations. SVR and PLSR perform better in
higher dimensional datasets, as reported in previous studies [51], but they show lower
accuracy and stability with possibly noisy datasets (Figure 14f). The RFR method, which
is less likely to overfit [54], showed higher stability in all datasets. SVR outperforms RF
in most cases in MS data, and this result is in line with a previous study by Grabska et al.
(2020) when using Sentinel-2 imagery [105]. The GBR method showed a higher stability
in most cases. All base models showed satisfactory accuracies except for the 0.045 m GSD
RGB data, where the SVR performed the worst, with an R2 of 0.438.

However, instead of using a single machine learning model, we developed an ensem-
ble model that combines five base learners. Our results show that the ensemble model
outperformed all base models (again, except for the 0.045 m GSD RGB dataset) significantly
both using all variables or selected ones, as well as using only the three-band data. With
selected VIs, the ensemble models obtained 0.889 in R2, 0.434 in RMSE, and 0.354 in MAE,
and achieved an increase of 1.14%, 4.41%, and 5.09%, respectively, compared to the best
single base model in the 0.007 m GSD MS dataset. For other datasets, the ensemble models
achieved 0.825, 0.796, and 0.637 in R2 for 0.007 GSD RGB, 0.045 m GSD MS, and 0.045 m
GSD RGB datasets, respectively.

4.3. Effects of Different Ground Sample Distance (GSD) and Sensor Datasets

Accurate positions of proximal measurements were difficult to locate in lower spatial
resolution data, which also contained more mixed pixels. This may be one reason the
models based on the 0.045 m GSD datasets showed lower performances than those based
on the 0.007 m GSD datasets. The models based on multispectral data showed better
performance compared to those based on RGB data, as vegetation types can be easily
differentiated by near-infrared and red regions [32,106] and RGB images only distinguish
the green canopies according to their surface colors. In addition, all single bands of
the RGB sensor were weakly correlated to the LAI (Figure 8), which may be another
reason the datasets from the RGB sensor showed a lower performance than those from
the multispectral sensor. The performance of different ML methods varies according to
datasets: multispectral sensors would be the best choice for LAI estimations, but RGB
sensors can also be used as a low cost and easily available alternative.

5. Conclusions

By integrating remote-sensing data with machine learning techniques, our study
demonstrated the potential of UAV-based remote-sensing data in the estimation of LAI
variations in pergola-trained vineyards. It provides a solid ground for further applications,
such as precision viticulture.

In summary, this study achieved the following results:

(a) We proposed a light extinction coefficient that is suitable for estimating the LAI
in pergola-trained vineyards. The LAI values estimated using the proposed light
extinction coefficient of 0.41 were closer to the true LAI, using which in situ LAI
values can be estimated quickly by the use of portable devices such as mobile phones
or tablets.

(b) We propose a robust VI-LAI estimation ensemble model that outperforms other base
models. Among these, those using multispectral data-derived VIs showed higher
potentiality than RGB data-derived ones. However, RGB data were also found to be a
promising data source with an R2 reaching 0.825, RMSE 0.546, and MAE 0.421.
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(c) Feature selection improved the accuracy and efficiency of LAI estimation models by
using the best combinations of VIs from both multispectral and RGB data.

This study is the first to apply UAV remote-sensing data to assess the LAI of pergola-
trained vineyards. Compared to manual ground measurements, it has the advantages of
high efficiency, time saving, and suitability for obtaining LAIs in large vineyards. However,
it also had some limitations because we used different spatial resolution data at different
crop stages as the whole dataset and assumed that the VI-LAI relationship does not change
over the whole season. Therefore, we see our study as an initial step for developing
a larger-scale and real-time LAI estimation method for pergola-trained vineyards, and
we recommend using multiple data sources such as hyperspectral, LiDAR, and thermal
sensors to obtain more information. We also recommend developing better LAI estimation
models in different spatio-temporal conditions. More advanced instruments and methods,
such as deep learning, as well as more specific datasets, will improve the accuracy of
estimation models.
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Appendix A

Table A1. Test accuracies including mean and standard deviation of five base models and an ensemble
model trained on the 0.007 m GSD RGB dataset in different number of VIs.

ML
Methods

Using All 19 VIs Using Selected 18 VIs Using 3 Bands

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

SVR 0.813
(0.016)

0.565
(0.021)

0.415
(0.020)

0.818
(0.021)

0.556
(0.028)

0.407
(0.023)

0.783
(0.014)

0.608
(0.008)

0.453
(0.011)

RFR 0.790
(0.015)

0.599
(0.029)

0.471
(0.011)

0.791
(0.015)

0.598
(0.028)

0.470
(0.010)

0.623
(0.033)

0.804
(0.052)

0.610
(0.018)

PLSR 0.723
(0.059)

0.684
(0.069)

0.485
(0.041)

0.820
(0.032)

0.552
(0.037)

0.432
(0.045)

0.787
(0.029)

0.602
(0.027)

0.447
(0.023)

GBR 0.787
(0.007)

0.604
(0.015)

0.471
(0.014)

0.790
(0.005)

0.600
(0.015)

0.467
(0.007)

0.645
(0.034)

0.779
(0.055)

0.600
(0.023)

KNN 0.766
(0.029)

0.630
(0.028)

0.496
(0.020)

0.772
(0.030)

0.623
(0.030)

0.492
(0.023)

0.643
(0.063)

0.777
(0.058)

0.602
(0.046)

Ensemble 0.817
(0.011)

0.560
(0.006)

0.432
(0.016)

0.825
(0.012)

0.546
(0.007)

0.421
(0.019)

0.762
(0.008)

0.638
(0.012)

0.489
(0.020)
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Table A2. Test accuracies including mean and standard deviation of five base models and an ensemble
model trained on the 0.045 m GSD MS dataset in a different number of VIs.

ML
Methods

Using All 17 VIs Using Selected 10 VIs Using 3 Bands

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

SVR 0.787
(0.019)

0.594
(0.018)

0.451
(0.027)

0.790
(0.018)

0.590
(0.017)

0.449
(0.024)

0.768
(0.017)

0.620
(0.030)

0.475
(0.003)

RFR 0.751
(0.044)

0.638
(0.036)

0.500
(0.028)

0.754
(0.041)

0.635
(0.032)

0.499
(0.026)

0.715
(0.074)

0.679
(0.066)

0.531
(0.040)

PLSR 0.772
(0.025)

0.614
(0.033)

0.470
(0.034)

0.783
(0.026)

0.598
(0.030)

0.459
(0.032)

0.767
(0.017)

0.622
(0.021)

0.485
(0.034)

GBR 0.754
(0.049)

0.634
(0.041)

0.496
(0.040)

0.759
(0.037)

0.629
(0.029)

0.491
(0.028)

0.730
(0.049)

0.665
(0.037)

0.534
(0.029)

KNN 0.754
(0.025)

0.638
(0.012)

0.496
(0.017)

0.772
(0.024)

0.614
(0.010)

0.479
(0.015)

0.732
(0.055)

0.662
(0.045)

0.522
(0.029)

Ensemble 0.787
(0.025)

0.592
(0.019)

0.453
(0.027)

0.796
(0.023)

0.581
(0.018)

0.452
(0.021)

0.777
(0.027)

0.606
(0.015)

0.478
(0.022)

Table A3. Test accuracies including mean and standard deviation of five base models and an ensemble
model trained on the 0.045 m GSD RGB dataset in a different number of VIs.

ML
Methods

Using All 19 VIs Using Selected 3 VIs Using 3 Bands

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

SVR 0.364
(0.144)

1.025
(0.088)

0.735
(0.031)

0.438
(0.192)

0.952
(0.152)

0.678
(0.053)

0.048
(0.393)

1.239
(0.242)

0.865
(0.007)

RFR 0.653
(0.045)

0.765
(0.075)

0.626
(0.067)

0.676
(0.058)

0.734
(0.040)

0.611
(0.029)

0.495
(0.051)

0.925
(0.081)

0.757
(0.040)

PLSR 0.442
(0.134)

0.958
(0.090)

0.713
(0.028)

0.490
(0.096)

0.921
(0.060)

0.695
(0.024)

0.214
(0.105)

1.148
(0.069)

0.897
(0.067)

GBR 0.689
(0.037)

0.724
(0.058)

0.604
(0.048)

0.708
(0.051)

0.697
(0.032)

0.568
(0.036)

0.539
(0.096)

0.882
(0.126)

0.713
(0.064)

KNN 0.572
(0.020)

0.850
0.019)

0.669
(0.006)

0.539
(0.113)

0.872
(0.070)

0.720
(0.072)

0.451
(0.111)

0.957
(0.080)

0.781
(0.088)

Ensemble 0.626
(0.044)

0.792
(0.015)

0.622
(0.039)

0.637
(0.077)

0.775
(0.053)

0.626
(0.039)

0.466
(0.012)

0.950
(0.042)

0.767
(0.044)
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Figure A1. Model training accuracies as a function of the number of VIs derived from 0.007 m GSD
RGB data.

Figure A2. Model training accuracies as a function of the number of VIs derived from 0.045 m GSD
multispectral data.

Figure A3. Model training accuracies as a function of the number of VIs derived from 0.045 m GSD
RGB data.
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