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Abstract: Soil moisture effects limit radar-based aboveground biomass carbon (AGBC) prediction
accuracy as well as lead to stripes between adjacent paths in regional mosaics due to varying soil
moisture conditions on different acquisition dates. In this study, we utilised the semi-empirical water
cloud model (WCM) to account for backscattering from soil moisture in AGBC retrieval from L-band
radar imagery in central Mozambique, where woodland ecosystems dominate. Cross-validation
results suggest that (1) the standard WCM effectively accounts for soil moisture effects, especially
for areas with AGBC ≤ 20 tC/ha, and (2) the standard WCM significantly improved the quality of
regional AGBC mosaics by reducing the stripes between adjacent paths caused by the difference
in soil moisture conditions between different acquisition dates. By applying the standard WCM,
the difference in mean predicted AGBC for the tested path with the largest soil moisture difference
was reduced by 18.6%. The WCM is a valuable tool for AGBC mapping by reducing prediction
uncertainties and striping effects in regional mosaics, especially in low-biomass areas including
African woodlands and other woodland and savanna regions. It is repeatable for recent L-band data
including ALOS-2 PALSAR-2, and upcoming SAOCOM and NISAR data.

Keywords: aboveground biomass estimation; L-band radar; water cloud model; African woodland

1. Introduction

Radar remote sensing from a space-borne platform provides the possibility of analysing
woody aboveground biomass carbon (AGBC) from the local to global scale in a consistent
manner and at high resolution [1]. The ability of radar to estimate AGBC follows from
the fundamental physical relationship between the number of woody elements of charac-
teristic size and the amount of energy returned to the radar antennae [2–7]. For decades,
empirical and semi-empirical relationships between radar cross section and forest canopies
have been established for the retrieval of AGBC in varying ecosystems, in particular us-
ing long-wavelength radar, for example, from the Japanese Phased Array type L-band
Synthetic Aperture Radar instruments aboard the Advanced Land Observing Satellite
(ALOS-1/2 PALSAR-1/2) [8–16]. In African woodlands, previous work has also shown a
strong biomass–backscatter relationship [17].

However, several challenges hinder the application of such methods to large-scale
AGBC mapping when applying to open savanna and woodland ecosystems. The AGBC of
woodlands varies widely according to the amount and extent of tree cover, from 1.8 tC/ha
in the absence of trees [18] to 12–24 tC/ha in dry miombo woodlands [19], and 45 tC/ha in
wet miombo woodlands [20]. Unlike other high-biomass ecosystems where the saturation
of radar signal is considered as a major limitation for radar-based AGBC retrieval [21],
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influence of soil moisture in low-biomass regions is critical [22,23]. Characterised by an
open canopy (Figure 1), long-wavelength radar signal is more likely to penetrate through
the canopy and interact with the imaged ground surface in the woodlands. Because of the
high soil fraction in the returned signal, radar backscatter in woodlands is more sensitive
to soil conditions of the imaged ground surface compared to other forest ecosystems.
Wetter soils scatter more radar energy, an effect differentially mediated by the woody
canopy, complicating AGBC estimation in the context of seasonally varying soil moisture.
Overestimation of AGBC is particularly an issue for low biomass regions, causing large
uncertainties [24].
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Rose Pritchard.

Various studies have discussed the influence of soil moisture in L-band biomass-
backscatter relationships [13,22,23,25]. A study that modelled the contribution of volume
and surface scattering of L-band radar in different forest stands exhibited a reduced volume
scattering (70%) in young forest stands with an AGBC of <25 tC/ha compared to a 80–90%
volume scattering contribution when AGBC exceeded 50 tC/ha [7]. This indicates a strong
influence of soil in low-biomass regions. In addition, the main source of soil moisture
variability in African savanna ecosystems is pulsed rainfall, with soil moisture dissipating
between 17 and 50 days [26]. Because radar observations are limited by a restrictive duty
cycle of the imager due to the observation scenario, and, as such, adjacent areas are often
observed days to weeks apart, introducing variable soil moisture conditions into adjacent
scenes. This issue of the soil moisture’s influence on AGBC retrieval (Figure A1) becomes
important for large area AGBC mapping. A relative correlation method (e.g., polygonal
curve approximation) based on the statistics of overlay areas can balance the intensity
between neighbouring paths and create a stripe-free mosaic [11,27–29]. However, reducing
error propagation and potential bias remains problematic because either path can be used
as a reference. A method that considers the soil moisture difference in intensity balance
between neighbouring paths is greatly needed.

The semi-empirical water cloud model (WCM) [30] was formulated to analyse such
joint effects of the canopy and soil in scattering radar waves. Although initially intended for
use for shorter wavelengths in croplands, the WCM has proven to be robust in describing
the biomass–backscatter relationship across different forest ecosystems and imaging con-
ditions with L-band radar [11,13,31–33]. In these applications, the scattering components
from soil were considered as fixed parameters and fitted empirically alongside other vege-
tation parameters. Quantitatively accounting for the soil moisture effect on AGBC retrieval
with L-band radar remains problematic. In particular, the relative contributions of canopy
volume scattering, double bounces from the interaction of large stems, and the scattering
from soil is yet to be resolved, a situation which necessitates an element of trial and error
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in semi-empirical applications. A global soil moisture product with increasing temporal
and spatial resolution [34–38] may serve as a proxy for the soil scattering component in the
WCM. It therefore offers a promising approach to improving AGBC estimation in situations
of variable soil moisture in African woodlands.

Despite a much lower carbon density compared to closed evergreen forests in tropical
regions, accurate estimation of AGBC in African woodlands is of great importance. Over
150 million people inhabit African woodland regions, relying on forest resources for their
livelihoods [39]. Characterised by an open tree canopy and a complex mosaic landscape,
African woodland are one of the most extensive woody formations in sub-Saharan Africa,
covering over 7.5 million km2 of land [11,40]. It plays a significant role in the assessment of
the terrestrial carbon cycle of continental Africa [41] and is one of the major contributors of
uncertainties in carbon flux estimation, resulting from its diverse interannual variability,
highly varied spatial diversity, and close link to human-induced disturbances [42–44].
Accurate and reliable monitoring of stocks in biomass are key parts to sustainable land
management [1,45].

The aim of this paper was to assess the potential of using the WCM to improve L-band-
based AGBC retrieval in low-biomass regions in African woodlands. Varying degrees of
complexity were introduced to explore which mechanisms needed to be represented in the
WCM. We compared a standard WCM (WCMstd) and a complex WCM (WCMk including
variables that represent the patchiness of African woodlands) to a simple exponential
regression, which has been suggested as a heuristic model in this context (WCM0). The
main objectives for this study are to:

1. Assess whether a semi-empirical WCM can be used to account for soil moisture effects
in AGBC retrieval in low-biomass regions;

2. Assess whether explicit consideration of the patchiness of African woodlands im-
proves the performance of the WCM; and

3. Create a large-scale moisture-adjusted AGBC map for central Mozambique.

2. Materials and Methods
2.1. Study Area

The Manica and Sofala Provinces in central Mozambique served as the study area,
which covers around 20 million hectares of land and is dominated by woodland ecosystems
(Figure 2). The woodland ecosystem in the study site mainly belongs to two classes: the
‘drier Zambezian miombo woodland’ and ‘undifferentiated woodland’. Other woodland
classes in this region are ‘Colophospermum mopane woodland’ and ‘scrub woodland’. A
small portion of the study site is covered by the ‘East African coastal forest mosaic’ [40].
The composition and structure of an undisturbed woodland is relatively uniform, with
woody plants comprising 95–98% of the AGBC of undisturbed stands [46].

In central Mozambique, the climate typically alternates between a rainy and a dry
season, with little rainfall between April to October. Characterised by pulsed rainfall in the
wet season, the monthly precipitation estimates range between 0.05 mm/h and 0.65 mm/h
in dry and wet season in the study region, respectively (Figure 3).
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Figure 2. The extent of woodland in Africa (A), the study region (B), and the distribution of the in
situ plots (C). ALOS PALSAR-1 footprint and locations of the in situ AGBC plots are also shown in
(B). Forest and woodlands delineation were adopted from the vegetation map of Africa [40].

2.2. Data
2.2.1. In Situ AGBC Data

In situ AGBC data were collected during inventories undertaken between 2006 and
2010 in Manica Province, Mozambique (Figure 2B). In total, 96 plots (Table 1) were invento-
ried, recording the diameter at breast height of all trees >5 cm. Plot size ranged between
0.1 and 2.2 ha, with a mean estimated AGBC of 24 tC/ha. The estimated AGBC ranged
from 0.39 to 56 tC/ha. The range of AGBC covered the range found by other studies
of woodlands [19,20]. A more detailed summary of plot sampling methodology, and an
allometric model for AGBC estimation are presented in [47].

2.2.2. ALOS PALSAR-1 Imagery

All available ALOS-1 PALSAR-1 L-band radar images (2007–2011) in fine beam dual
mode (FBD) at product level 1.1 (single look complex, SLC) were obtained from the Japan
Aerospace Exploration Agency (JAXA) archive to cover the study regions. All images
were acquired in ascending orbit, with an incidence angle of 34.3 degrees. Because the
WCM is based on a simplified scattering mechanism only involving single scattering from
the volumetric content of the soil and vegetation, only HV polarisation was used in this
study for its sensitivity to volume scattering [48]. In total, 202 images were acquired,
covering nine paths from 575 to 583, 11 frames from 6750 to 6850, and 16 acquisition dates
(Figure 2). The plot data were covered by one frame with 10 time steps (Table A1). The
areas of overlap between paths were used to test the effect of the model’s de-stripping
effects as they represent observations of the same location from different dates and hence
soil moisture. These overlap areas covered 26 scenarios with different soil moisture and
backscatter combinations (Table A3).

ALOS PALSAR-1 images were processed using the Mapready Remote Sensing Tool Kit
from Alaska Satellite Facility [49] (version 3.1, https://asf.alaska.edu/how-to/data-tools/
data-tools/#mapready accessed on 10 January 2022). Each image was multi-looked with
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8 × 2 looks (in range and azimuth, respectively), terrain corrected using the 30 m digital
elevation model (DEM) from the Shuttle Radar Topography Mission (SRTM), filtered using
an enhanced Lee filter with window size 5 [50], and geocoded to 25 m resolution.

2.2.3. Soil Moisture Datasets

We used globally available daily soil moisture information at a spatial resolution of
0.25◦ from the Climate Change Initiative Soil Moisture Product v04.7 (CCI SM) as the soil
moisture proxy [37,51]. The CCI SM was demonstrated to have higher accuracies when
compared to other satellite-derived soil moisture products [52]. We used CCI SM data from
the same acquisition date as the ALOS PALSAR-1 image for model calibration and the
analysis of de-striping effects (Table 1). Missing values in the CCI SM dataset were filled
using the mean soil moisture value of the previous and later dates. The dataset was then
resampled to 25 m using a mean method to match the resolution of radar data. To illustrate
the difference in spatial variation and temporal consistency of the soil moisture datasets in
the study region, the soil moisture value was extracted and plotted for three example plots
with various AGBC levels (Figure 3).
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Figure 3. Change in soil moisture for three example plots with low (12 tC/ha, red line), medium
(23 tC/ha, green line), and high (50 tC/ha, blue line) AGBC. Monthly precipitation estimates (dotted
line) were plotted from Tropical Rainfall Measuring Mission (TRMM) data version 3B43 v7 from
Google Earth Engine [53]. Note that monthly precipitation estimates are given in mm/h.

Table 1. Data used in this study for model calibration and validation.

Type Period Spatial Resolution Number of Samples/Images Reference

In situ AGBC 2006–2010 Plot size: 0.1–2.2 ha 96 plots [47]

ALOS PALSAR-1 2007–2011 25 m pixel spacing For model calibration: 10 images
For de-striping effects: 202 images

Refer to Tables A1 and A3
for detailed information.

Soil moisture 2007–2011 0.25◦ For model calibration: 10 images
For de-striping effects: 16 images [37]

Tree cover fraction 2005 30 m 1 image [54]

2.2.4. Tree Cover Fraction

Tree canopy parameter represents the tree cover fraction at the plot level. This repre-
sents the tree canopy parameter (k) used in Equation (8). The Landsat-based Vegetation
Continuous Fields (VCF) data from [54] were used to estimate the tree canopy parameter
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for each plot (Table 1). The VCF product was resampled from 30 m Landsat resolution to
25 m resolution to match the spatial resolution of ALOS PALSAR-1 imagery.

2.3. Methods

First, the WCM presenting varying degrees of complexity (WCMstd Equation (6),
WCMk Equation (7), and WCM0 Equation (9)), were fitted and validated with in situ AGBC
data, HV radar backscatter from ALOS PALSAR-1 imagery for 2007–2010, and CCI SM data.
Second, the forward WCMs were inverted to express AGBC as a function of soil moisture
scattering and total received backscatter. Third, wall-to-wall AGBC maps for the study
region were generated. The calibration and validation accuracies of the models within
the AGBC range of the training in situ data (0–60 tC/ha) and the models’ performance
for prediction at a higher AGBC range (0–200 tC/ha) were analysed. The difference in
mean predicted AGBC between the overlay areas were used to test the de-striping effects
of WCM to generate regional AGBC mosaics. A flowchart of the method is provided in
Figure 4.
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2.3.1. Model Formulation

Complex scatter interactions in a vegetated area were simplified into a volume scatter-
ing model only involving single scattering of the vegetation and soil, where the reflections
from the soil were added incoherently to the vegetation contribution (Equation (1)) [30].
WCM assumes a homogeneous ‘slab’ of canopy above the soil, which scatters some energy
back to the antenna and thus attenuates the signal from the soil:

σ0 = σ0
veg + t2σ0

soil (1)

where the backscatter coefficient σ0 (m2/m2) is the total power backscattered by the land
surface; σ0

veg is the contribution from vegetation; σ0
soil is the contribution from the soil; and

t2 is the two-way attenuation of the soil signal through the vegetation canopy.
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Canopy scattering in the WCM was considered from a collection of identical, randomly
distributed scatterers, and expressed as a first-order approximation of the backscattering
characteristics from clouds of hydrometeors [30]. Ref. [55] further introduced vegetation
descriptors V1 and V2. to characterise σ0

veg (Equation (2)) and t2 (Equation (3)).
For given incidence angle θ, the scattering by the canopy (σ0

veg) is approximated as:

σ0
veg = A·V1

(
1− t2

)
cos θ (2)

Whilst the two-way attenuation by the canopy (t2) is represented as:

t2 = e
−2B·V2

cos θ (3)

Ref. [30] suggested a linear relationship between the volumetric soil moisture content
ms and scattering coefficient of soil σ0

soil expressed in dB. Scattering by soil σ0
soil in the power

ratio can be approximated as:

σ0
soil = 10(C

′+D′ms)/10 = 10C′/10 × 10(D′ms)/10 ≈
(

1 + ln10·C
′

10

)(
1 + ln10·D

′

10
ms

)
= C + D·ms (4)

Overall, this allows the WCM (Equation (1)) to be described as:

σ0 = A·V1 cos θ·
[

1− e(
−2B·V2

cos θ )

]
+ e(

−2B·V2
cos θ )(C + D·ms) (5)

where A and B are vegetation parameters and C and D are soil moisture parameters all
specific to the incidence angle θ. Parameter A relates to the albedo of the vegetation; B is the
canopy attenuation coefficient; C represents a calibration constant for soil/radar backscatter
from dry soil; and D relates to the sensitivity of the radar signal to variations in volumetric
soil moisture [33,56,57]. ms is the volumetric soil moisture content proxy by soil moisture
CCI SM in m3/m3. σ0 is the backscatter coefficient in m2/m2.

Given that there is no general theoretical background allowing us to define the best set
of canopy descriptors, Equation (5) can be interpreted in various ways due to the complexity
of the vegetation structure and the relative simplicity of the models [55]. Table 2 summarises
various remote-sensing-generated indices used in previous studies to represent V1 and V2.
To reduce the difficulties in the inversion of WCM for AGBC mapping, following [11,13],
V1 = 1 was used in this study (Equation (6), referred to as the standard WCM (WCMstd) in
this paper):

σ0 = A·V1 cos θ·
[

1− e(
−2B·V2

cos θ )

]
+ e(

−2B·V2
cos θ )(C + D·ms) (6)

Table 2. Remote-sensing-based index for vegetation descriptors used in the WCM from the literature.
V1 and V2 are vegetation descriptors [55], W is the volumetric water content of the vegetation
layer [30], LAI is the leaf area index [58], and GSV is the growing stock volume [59].

V1 V2 Model Description Reference

1 W Developed for different frequency, polarization
and crop type [30]

1 LAI Cropland; 8.6, 13.0, 17.0, and 35.6 GHz [60]
LAI LAI Cropland; 8.6, 13.0, 17.0, and 35.6 GHz [60]
LAI LAI Cropland; C and X-bands [55]

1 LAI Cropland; ERS-1 C-band [61]
LAI LAI Cropland; C and X-bands [62]

1 AGBC African savannahs; L-band [11]

1 GSV/AGBC Varies forest ecosystems; X-, C-, and L-band;
tree canopy parameter k was introduced [13,31]
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Even in this case, the heterogeneity of African woodlands may play an important
role in the scattering. Most African woodlands violate the ‘slab’ assumption of the WCM
as they are partly composed of tree-free areas where only soil interaction will take place.
Following a similar model formulation suggested by [31], such a ‘patchy’ WCM (WCMk)
can be represented as:

σ0 = k·
[

A· cos θ·
[

1− e(
−2B·V2w

cos θ )

]
+ e(

−2B·V2w
cos θ )(C + D·ms)

]
+ (1− k)·(C + D·ms) (7)

V2w = V2/k (8)

where k is the tree canopy parameter that describes the fraction of the plot covered by the
tree canopy.

We compared WCMstd and WCMk to a reduced model of no soil moisture effects
(‘vegetation-only’ model):

σ0 = σ0
veg = A· cos θ·

[
1− e(

−2B·V2
cos θ )

]
(9)

Forward WCMs were inverted to express vegetation parameter V2 as a function of soil
moisture scattering and total received backscatter. In this study, we considered V2 to scale
linearly with AGBC, while the soil moisture content (ms, kg/m3) scaled with soil moisture
estimates from CCI SM. Thus, the forward WCMs (WCMstd, WCMk, and WCM0) can be
inverted as a function of backscatter and ms to estimate AGBC as follows (referred to as
BM-WCMstd, BM-WCMk, and BM-WCM0, respectively):

AGB =
cos θ

−2B
ln
(

A· cos θ − σ0

A· cos θ − C− D·ms

)
(10)

AGB =
k· cos θ

−2B
ln

(
A· cos θ − 1

k
(
σ0 − (1− k)·(C + D·ms)

)
A· cos θ − C− D·ms

)
(11)

AGB =
cos θ

−2B
ln
(

1− σ0

cos θ·A

)
(12)

2.3.2. Parameterisation

Data described in Section 2.2 were used to fit the forward WCMs (WCMstd, WCMk,
and WCM0) and the inverted WCMs for AGBC estimation (BM-WCMstd, BM-WCMk, and
BM-WCM0). We used in situ AGBC data to represent vegetation volume scattering; L-band
ALOS PALSAR-1 imagery at HV polarisation to represent the total backscatter σ0; and CCI
SM as the soil moisture proxy acquired for each available radar observation. It is worth
noting that in situ AGBC data may not be acquired on the same acquisition day as the radar
imagery due to the limited amount of field work conducted. Soil moisture and vegetation
parameters in the models were estimated simultaneously using the nonlinear least squares
model (nls package) in R (version 3.2.3) [63].

2.3.3. Assessing Model Performance

Calibration and validation error were used to assess the forward WCMs (WCMstd,
WCMk, and WCM0) and the inverted WCMs (BM-WCMstd, BM-WCMk, and BM-WCM0)
and compared among different AGBC or soil moisture groups. Root mean square error
(RMSE) of calibration (Equation (13)) was used to represent the calibration error, which
quantifies how well the fit between the data and the calibration model.

RMSE =

√
∑n

i=1
(
Yi − Ŷi

)2

n− 2
(13)
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where n is the number of plots used in the fitting of the model; Yi is the ith observed value;
and Ŷi is the ith predicted value.

The overall uncertainty of the model’s prediction was validated with a 5000 cross-
validation with 50:50 split. In each iteration, the training and validation data are selected
randomly without any duplicate realisation. Absolute bias (Biasval) and RMSE (RMSEval)
for each compared model were calculated with Equations (14) and (15), respectively.

Biasval = ∑5000
j=1

∣∣∣∣∣∑n′
i=1
(
Yi − Ŷi

)
n′

∣∣∣∣∣
/

5000
(14)

RMSEval = ∑5000
j=1

√
∑n′

i=1
(
Yi − Ŷi

)2

n′ − 2

/
5000

(15)

where j = 1 . . . 5000 realisation of the 50:50 cross-validation; i = 1 . . . n′ is the ith validation
plot in a total of n′ points (in a 50:50 split cross-validation, n′ equals half of the total plots);
Yi is the ith validation AGBC value; and Ŷi is the ith AGBC prediction from the regression.

To assess how well the model removed the striping effects, we compared the predicted
AGBC in overlapping areas between different paths, with radar data acquired at different
dates, and thus with different soil moistures. The difference in mean predicted AGBC
between the two dates in the overlay areas were used to measure the effectiveness of
inverted WCMs in de-striping an AGBC mosaic by correcting the soil moisture effects
between adjacent paths.

3. Results
3.1. Prediction Accuracy of the Forward WCMs

Compared to WCM0, which does not account for soil moisture scattering, WCMstd and
WCMk showed improved backscatter estimation accuracy with a reduced cross-validation
RMSEval of 26.5% from 0.0083 m2/m2 to 0.0061 m2/m2. Separating the vegetation and
soil contribution in the fitted WCMstd and WCMk (Figure 5) indicated that soil moisture
played a more important role than vegetation scattering when AGBC was <16 tC/ha for
WCMk, and 12 tC/ha when WCMstd was applied. This effect from soil moisture decreased
as AGBC increased, but still existed within the entire range of the in situ AGBC values
(0–60 tC/ha) observed in this study.

To explore the implications of the fitted model, we extrapolated beyond the range
of the calibration data (0–60 tC/ha for AGBC and 0.0077–0.473 m3/m3 for soil moisture)
and simulated the model’s performance in a higher AGBC (0–200 tC/ha) and soil mois-
ture (0–1 m3/m3) range. Figure 6 depicts how the influence of soil moisture is biomass-
dependent. Backscatter predictions from WCMstd varied according to different AGBC
or soil moisture levels. When AGBC was ≥140 tC/ha, the predicted backscatter coeffi-
cient was almost constant as soil moisture increased, meaning that the soil contribution
is negligible. When AGBC was <140 tC/ha, the prevailing phenomenon was attenuation
of the soil contribution by the vegetation, and attenuation increased as AGBC increased.
The lower the AGBC level, the more the attenuation rate of WCMstd was altered by soil
moisture proxies.
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Figure 5. In situ AGBC data and fitted forward WCMs (WCMstd, WCMk, and WCM0) with separate
lines illustrating model prediction of total backscatter, vegetation contribution, and soil moisture
contribution, covering the range of observed values (0–60 tC/ha). Total backscatter is expressed in
normalised radar cross-section (NRCS, m2/m2). Fitted parameters a, b, c, and d are provided in
Table A2.

3.2. Prediction Accuracy of the Inverted WCMs for AGBC Estimation

Validation error suggests that considering the soil moisture effects and the patchiness
of the tree canopy in the model improved AGBC estimation (Table 3), particularly for
regions with AGBC ≤20 tC/ha (Figure 7). RMSEval for BM-WCMstd and BM-WCMk at the
low AGBC range (≤10 tC/ha) was around 15% lower (5% for ≤20 tC/ha AGBC group)
than that of BM-WCM0 whereas at higher AGBC range (>20 tC/ha), the RMSEval was
similar among all three models (Figure 7). The overall RMSEval was similar between BM-
WCMk (7.70 tC/ha) and BM-WCMstd (7.72 tC/ha), which were slightly lower than that of
the BM-WCM0 (8.10 tC/ha) (Table 3). Parameters for each fitted model are presented in
Table A2 with the model’s prediction curve presented in Figure A2.

Table 3. Calibration and validation error of forward WCMs and inverted WCMs.

Forward WCMs Inverted WCMs

Model Type Calibration
Error (m2/m2)

Validation Error
(m2/m2) Model Type Calibration

Error (tC/ha) Validation Error (tC/ha) Validation RMSE Per Group
(tC/ha)

RMSE RMSE Bias RMSE RMSE Bias ≤10 tC/ha ≤20 tC/ha

WCMstd 0.0061 0.0061 0.00040 BM-
WCMstd

7.62 7.72 0.50 7.06 6.69
WCMk 0.0060 0.0061 0.00041 BM-WCMk 7.74 7.70 0.49 7.14 6.74
WCM0 0.0082 0.0083 0.00167 BM-WCM0 8.02 8.10 0.55 8.08 7.02
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Figure 6. Predicted backscatter (m2/m2) from the fitted WCMstd model versus different levels of
AGBC (A) and surface soil moisture (B). Plot (A) shows the backscatter prediction from different
AGBC levels when soil moisture increased from 0.00 to 1.00 m3/m3. Each line is a 20 tC/ha increase
in AGBC from 0 to 200 tC/ha; Plot (B) shows thee backscatter prediction from different soil moisture
levels when AGBC increased from 0 to 200 tC/ha. Each line is a 0.1 m3/m3 increase in soil moisture
from 0.00 to 1.00 m3/m3.
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inverted WCMs (BM-WCMstd, BM-WCMk, and BM-WCM0 fitted with all in situ data).

3.3. Effects of Inverted WCM on Producing Regional AGBC Mosaics

BM-WCMstd reduced the stripes in the generated regional AGBC mosaic compared to
when BM-WCM0 was used (Figure 8B vs. Figure 8C). Among the 26 scenarios tested, the
biggest soil moisture difference was 0.21 m3/m3 (Table A3). The biggest de-striping effect
of BM-WCMstd occurred between path 576/577 (Figures 2 and 8C), where the difference
in mean predicted AGBC in the overlay area was reduced by 18.6% from 4.52 tC/ha to
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1.47 tC/ha compared to when the BM-WCM0 was used (Table A3). It was also where the
biggest soil moisture difference occurred, suggesting that the reduction in the difference
in AGBC prediction in the overlay area was mainly the result from the correction of soil
moisture effects.
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4. Discussion
4.1. How Much Uncertainty Can Be Reduced in AGBC Estimation When Soil Moisture Is
Accounted for?

Compared with BM-WCM0, BM-WCMstd and BM-WCMk exhibited a significant im-
provement in AGBC estimation for African woodlands with an AGBC <20 tC/ha (Figure 7).
As expected, between 20–60 tC/ha, the calibration and validation accuracy among all
models were similar, indicating a less important soil moisture influence compared to other
sources of error (such as errors in the field measurement, speckle in the backscatter, and ran-
dom errors). As AGBC further increased, the scattering from soil moisture was negligible
(Figure 6). The fact that the soil moisture correction effects of BM-WCMstd and BM-WCMk
only apply to low-biomass areas, which is a small fraction of the calibration and validation
data points, explains a limited reduction in AGBC estimation uncertainties when analysed
across an AGBC range of 0–60 tC/ha (Table 3). However, with an average AGBC predicted
to be around 20 tC/ha in this and previous studies [19,20,47], adjusting for scattering from
soil moisture is crucial for an accurate AGBC estimation in African woodlands.

More analysis is needed to draw concrete conclusions of the model’s sensibility to
soil moisture in regions with AGBC > 60 tC/ha. This is due to a lack of in situ AGBC data
with AGBC >60 tC/ha imported in the model parameterisation and validation processes.
Moreover, a large amount of uncertainty remains unquantified (Figure 7). WCM and
BM-WCM could benefit from a soil moisture dataset with improved spatial resolution, or a
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simultaneous field measurement of AGBC and soil moisture with the acquisition date of
the radar imagery.

Results from this study also suggested that AGBC is a good proxy for vegetation
scattering (σ0

veg) in the WCM. This finding is in accordance with previous studies where
a simplified WCM was used in describing the biomass–backscatter relationship across
different forest ecosystems [11,13,31–33].

4.2. Does Reverted WCM Reduce Stripes in AGBC Mosaics by Accounting for Soil Moisture
Changes between Adjacent Paths?

Regional AGBC mosaics are normally generated based on annual radar backscatter
mosaics such as the Global PALSAR-2/PALSAR Yearly Mosaic provided by JAXA. His-
togram matching or polygonal curve approximation were normally used to balance the
intensity between neighbouring paths to create a stripe-free mosaic [27–29], based on which
a stripe-free regional biomass map was generated [11]. Although gaps are introduced to
reduce error propagation during image balancing [27], bias may still persist. A relative
correction algorithm relays statistics from overlay areas and aims to reduce the relative
systematic bias between two compared paths, meaning that either path can be used as a
reference; however, the resulting mosaic can be biased. Applying inverted WCM could
achieve better de-striping results because the correction is biomass-dependent and avoids
the potential accumulated bias introduced by applying a relative correction algorithm
between adjacent paths. The CCI SM data are provided at a high temporal resolution of
one day, meaning that it is possible to capture the difference in bias between AGBC maps
produced from ALOS PALSAR-1 imagery with different acquisition dates using inverted
WCM. Results from Figure 8 support this conclusion by showing an improved correlation
in AGBC estimation for overlay areas from adjacent paths when BM-WCMstd was used
compared to BM-WCM0. Although applying inverted WCM might introduce variation to
the prediction due to errors from the soil moisture dataset, the mosaic should be less biased
than when using a relative correction algorithm. This de-striping effect is particularly im-
portant in African woodlands, which are characterised by pulsed rainfall and open canopy.
Changes in soil moisture conditions between different acquisition dates will cause a huge
difference in backscatter intensity between adjacent paths [23,27]. When temporally dense
time series of radar data become available, accounting for soil moisture effects between
images from different acquisition dates will become more and more important in AGBC
retrieval. The capacity of the proposed WCM to provide de-striped mosaics can be an
important contribution for future large-area studies in global woodland regions.

4.3. Does Explicit Consideration of the Patchiness of African Woodlands Improve the Performance
of the WCM? Which Other Factors Matter?

Previous studies have shown robust water-cloud types of models that consider the
patchiness of the tree canopy in describing the backscatter to AGBC relationship [13,31,64].
In these studies, Light Detection and Ranging (LiDAR) data were used to provide accurate
canopy gap information. In this study, BM-WCMk’s performance was only slightly better
than BM-WCMstd. This is most likely due to uncertainties in the tree cover data used to
parameterise the model (Table 3). Due to the lack of LiDAR data, which are rarely available
at a large scale, VCF tree cover data at 30 m resolution was used for model parameterisation.
Further study incorporating more accurate global tree cover data (e.g., the forest canopy
height product from [65]) are needed to prove the efficiency of BM-WCMk in large-scale
AGBC mapping.

Compared to a more uniformly planted cropland (for which the WCM used in this
study was developed), the backscattering mechanism of a wooded area is more complex.
While the theory of the WCM neatly describes total backscatter as the sum of contributions
from the vegetation and soil moisture, there is no general theoretical basis to define the
best set of canopy or soil moisture descriptors, and consequently, to derive the values of
vegetation parameters A and B and soil moisture parameters C and D [57,66]. Applying
a comprehensive multi-layer WCM may improve AGBC estimation by describing the
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scattering mechanism in woodlands more thoroughly. This has a larger effect in areas
with more incident angle dependence of backscattering such as mountain areas. Finally,
importantly, other land surface conditions such as soil roughness and texture, which were
not considered in the WCM, could also play an important role in altering the biomass–
backscatter relationship in African woodlands.

5. Conclusions

A set of semi-empirical WCMs were used to correct the soil moisture effects in AGBC
retrieval in African woodlands. In situ AGBC data, L-band ALOS PALSAR radar imagery,
and daily soil moisture estimates from CCI SM were used for model parameterisation with
thee BM-WCMstd yield showing the best result. Soil moisture has a significant impact
in AGBC retrieval in low-biomass regions. In this study, correcting soil moisture effects
in areas with AGBC ≤20 tC/ha led to a 15% increase in AGBC estimation accuracy. As
AGBC increased, the impact of soil moisture was less important, and even negligible. In
addition, an improved regional AGBC mosaic was created using BM-WCMstd because
WCM effectively accounted for the difference in soil moisture conditions between different
acquisition dates for adjacent paths. The difference in mean predicted AGBC was reduced
by 18.6% in overlay areas for two paths with a large soil moisture difference. Explicitly
considering the patchiness of African woodlands in the WCM provided limited improve-
ment in AGBC prediction compared to a standard WCM. Incorporating a more accurate
global tree cover data is promising to provide better AGBC estimations. The capacity of the
proposed WCM to account for soil-moisture difference and provide de-striped mosaics can
be an important contribution for future large-area studies in global woodland regions (e.g.,
savanna forests in Australia, cerrado in Brazil, and dry forest in Mexico) when dense time
series of ALOS PALSAR-2 or NASA-ISRO Synthetic Aperture Radar (NISAR) data become
openly available.
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Appendix A

Table A1. Acquisition date, processing level, and metadata for each time step of ALOS PALSAR-1
imagery used in the model parameterisation.

Region Year Month Day Product Level Frame Track Orbit

Mozambique

2007 6 23 1.1 6800 578 7523
2007 8 8 1.1 6800 578 8194
2007 9 23 1.1 6800 578 8865
2008 6 25 1.1 6800 578 12891
2008 5 10 1.1 6800 578 12220
2009 6 28 1.1 6800 578 18259
2009 9 28 1.1 6800 578 19601
2010 5 16 1.1 6800 578 22956
2010 10 1 1.1 6800 578 24969
2010 7 1 1.1 6800 578 23627

Table A2. Estimated parameters for the WCMs and BM-WCMs fitted using ALOS PALSAR-1
backscatter, CCI SM data, and field AGBC plot data.

Model a b c d

WCMstd 0.070053 0.007570 0.009327 0.017934
WCMk 0.1436208 0.0036719 0.0097886 0.0144768
WCM0 0.040273 0.038612 / /

BM-WCMstd 1.000000 0.005724 0.0016250 0.0210471
BM-WCMk 1.000000 0.0005995 0.0015920 0.0207997
BM-WCM0 0.104472 0.008363 / /
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Table A3. Statistics for each compared overlay area in the AGBC mosaics including the path, acquisition dates, soil moisture, and predicted AGBC from BM-
WCM0 and BM-WCMstd for the reference and compared paths with differences in acquisition dates, soil moisture, predicted AGBC, and predicted area for the
overlay regions.

Reference Path. Compare Path Overlay Area BM-WCM0 Prediction Statistics BM-WCMstd Prediction Statistics

Path Day of
Year

Soil
Moisture
(m3/m3)

Path Day of
Year

Soil
Moisture
(m3/m3)

Area (ha)
Difference
in Acquisi-

tion
(days)

Difference
in Soil

Moisture
(m3/m3)

Mean AGBC
(Reference)

(tC/ha)

Mean
AGBC

(Compare)
(tC/ha)

Absolute
Difference

in Mean
(tC/ha)

Mean AGBC
(Reference)

(tC/ha)

Mean
AGBC

(Compare)
(tC/ha)

Absolute
Difference

in Mean
(tC/ha)

575 169 0.1780 576 186 0.2292 255,682 17 0.0512 22.56 19.64 2.93 19.77 18.06 1.71
575 169 0.1780 576 278 0.0426 251,055 109 0.1353 23.06 19.42 3.64 19.93 15.05 4.87
576 186 0.2292 577 203 0.0988 490,935 17 0.1304 20.14 16.00 4.14 19.19 13.42 5.77
576 186 0.2292 577 295 0.0196 481,940 109 0.2096 20.09 18.71 1.38 19.17 14.65 4.52
576 278 0.0426 577 203 0.0988 499,512 75 0.0561 17.87 15.85 2.02 14.48 13.42 1.06
576 278 0.0426 577 295 0.0196 490,579 17 0.0231 17.72 18.47 0.76 14.43 14.65 0.22
577 203 0.0988 578 220 0.0451 581,227 17 0.0537 15.63 14.66 0.98 12.75 11.34 1.42
577 203 0.0988 578 266 0.0317 557,049 63 0.0671 15.80 14.51 1.29 12.83 11.07 1.75
577 295 0.0196 578 220 0.0451 593,844 75 0.0255 16.22 14.72 1.49 12.41 11.37 1.04
577 295 0.0196 578 266 0.0317 568,455 29 0.0121 16.35 14.53 1.81 12.49 11.12 1.37
578 220 0.0451 579 283 0.0283 737,958 63 0.0167 17.37 13.87 3.50 14.77 11.33 3.44
578 266 0.0317 579 283 0.0283 775,789 17 0.0034 16.20 14.00 2.19 13.39 11.46 1.93
579 283 0.0283 580 162 0.1187 757,593 121 0.0903 18.37 15.21 3.16 15.89 14.20 1.69
579 283 0.0283 580 254 0.1187 763,426 29 0.0903 18.25 16.42 1.84 15.88 13.86 2.02
580 162 0.1187 581 225 0.1187 511,570 63 0.0000 19.16 17.84 1.31 18.17 15.28 2.89
580 162 0.1187 581 271 0.0627 491,326 109 0.0560 19.27 18.23 1.05 18.22 16.40 1.82
580 254 0.1187 581 225 0.1187 512,187 29 0.0000 20.31 17.75 2.56 17.88 15.39 2.50
580 254 0.1187 581 271 0.0627 492,136 17 0.0560 20.50 18.20 2.30 17.95 16.55 1.40
581 225 0.1187 582 196 0.0627 260,384 29 0.0560 19.55 15.49 4.05 17.14 13.24 3.89
581 225 0.1187 582 288 0.0168 254,649 63 0.1019 19.53 16.25 3.28 17.11 13.75 3.36
581 271 0.0627 582 196 0.0627 266,131 75 0.0000 18.52 15.55 2.98 16.81 13.22 3.59
581 271 0.0627 582 288 0.0168 260,515 17 0.0459 18.50 16.28 2.22 16.79 13.71 3.08
582 196 0.0627 583 213 0.0006 88,890 17 0.0621 14.03 12.31 1.72 11.84 9.92 1.92
582 196 0.0627 583 259 0.0077 90,859 63 0.0550 14.04 12.88 1.16 11.84 10.56 1.28
582 288 0.0168 583 213 0.0006 91,113 75 0.0162 13.13 12.33 0.80 10.81 9.91 0.91
582 288 0.0168 583 259 0.0077 93,078 29 0.0091 13.14 12.89 0.25 10.82 10.55 0.28
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evident but less extreme and only visible when zoomed in.
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