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Abstract: A deep semantic segmentation model-based method can achieve state-of-the-art accuracy
and high computational efficiency in large-scale crop mapping. However, the model cannot be widely
used in actual large-scale crop mapping applications, mainly because the annotation of ground truth
data for deep semantic segmentation model training is time-consuming. At the operational level, it
is extremely difficult to obtain a large amount of ground reference data by photointerpretation for
the model training. Consequently, in order to solve this problem, this study introduces a workflow
that aims to extract rice distribution information in training sample shortage regions, using a deep
semantic segmentation model (i.e., U-Net) trained on pseudo-labels. Based on the time series Sentinel-
1 images, Cropland Data Layer (CDL) and U-Net model, the optimal multi-temporal datasets for
rice mapping were summarized, using the global search method. Then, based on the optimal multi-
temporal datasets, the proposed workflow (a combination of K-Means and random forest) was
directly used to extract the rice-distribution information of Jiangsu (i.e., the K–RF pseudo-labels). For
comparison, the optimal well-trained U-Net model acquired from Arkansas (i.e., the transfer model)
was also transferred to Jiangsu to extract local rice-distribution information (i.e., the TF pseudo-labels).
Finally, the pseudo-labels with high confidences generated from the two methods were further used
to retrain the U-Net models, which were suitable for rice mapping in Jiangsu. For different rice
planting pattern regions of Jiangsu, the final results showed that, compared with the U-Net model
trained on the TF pseudo-labels, the rice area extraction errors of pseudo-labels could be further
reduced by using the U-Net model trained on the K–RF pseudo-labels. In addition, compared with
the existing rule-based rice mapping methods, he U-Net model trained on the K–RF pseudo-labels
could robustly extract the spatial distribution information of rice. Generally, this study could provide
new options for applying a deep semantic segmentation model to training sample shortage regions.

Keywords: Sentinel-1; rice mapping; K-Means algorithm; random forest classifier; pseudo-label;
U-Net

1. Introduction

For the remote sensing community, traditional machine learning algorithms have been
well adapted to the application of crop classification in recent years [1–4], especially for
supervised classifiers trained on pixel point samples. For instance, random forest methods
(RF), support vector machines (SVM), and so on [5–8].

Recently, deep learning-based methods have achieved outstanding performances in
computer vision tasks [9,10], and have attracted increasing attention in the remote sensing
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community [11–14]. Among various deep learning network structures, deep semantic
segmentation networks (i.e., the same as deep convolutional neural networks, DCNNs)
are being expanded to be the new models for crop mapping based on remote sensing
images [15–17]. Compared with traditional machine learning algorithms (e.g., SVM, RF
and so on), they explore and learn global spatial features and temporal signatures in multi-
temporal images, in an end-to-end manner, to improve crop classification accuracy and
calculation efficiency [18]. It is well known that wide and varied training sample collection
(i.e., reference data) is critical to train a supervised classifier with robust performance for
large-scale crop mapping. Currently, for supervised classifier training, the annotation of its
reference data is mainly based on a combination of ground surveys and high-resolution
optical images for photointerpretation [19–21]. However, different from independent pixel
point sample sets used by traditional supervised classifiers, training sample sets of the
DCNN model are composed of a large number of annotated image sets [22–24]. This
means that all pixel points in a continuous space need to be annotated to construct samples
required for DCNN model training; the process is very time-consuming, at an operational
level, and it is unfeasible to construct a large number of ground reference image sets
through visual interpretation [25], limiting its application in large-scale crop mapping.
In fact, when the coverage of a study area is relatively large, all supervised classification
algorithms suffer this similar problem.

Nowadays, for supervised classification algorithms, in order to solve the major bottle-
neck of large-scale crop mapping in training sample shortage regions, two main categories
of method have been proposed: (1) a method based on a combination of phenological char-
acteristics and machine learning models [26–28]; (2) a transfer model-based method [29–31].
The former is achieved by using crop phenological characteristics to construct samples
required for machine learning model training. The latter is achieved by training a trans-
fer model based on existing public datasets. Although these methods can avoid the
time-consuming problem of sample set annotation, there are still some limitations and
disadvantages, as described below.

First, for the combination of phenological characteristics and machine learning models,
only crop phenological rule-based experience can be used to construct samples required
for machine learning model training. Since these phenological characteristics mainly rely
on temporal signals, only those pixels with obvious target crop characteristics (e.g., rice
transplanting periods) can be extracted in a complexity planting environment. For the
traditional machine learning model, the samples can be a collection of independent pixel
points, and a supervised classifier for mining target crops with unobvious features can be
fitted by using these pixel points [27,28]. However, for DCNN model training, as mentioned
above, there are higher requirements for sample annotation training. Consequently, if the
data products generated by phenological characteristics are directly used as samples for
DCNN training (i.e., direct combination of phenological characteristics and DCNN), the
model will not be able to fully learn the potential characteristics of target crop, and it will
cause target crop omission or commission extraction.

Second, for the transfer model-based method, in a certain spatial range, the transfer
model can show robust performance. However, when the target region is far away from
reference region where the model is trained, performance of the transfer model will be
largely impaired [29]. The main reason for this is that phenological characteristics of the
same crops between regions with different climatic zones are significantly different [29]. In
addition, for model transfer, most studies only focus on the multi-temporal datasets that
gradually increase from sowing to mature periods [29–32], ignoring the multi-temporal
datasets that contain critical growth periods shared by the same crop in different regions
(i.e., only the middle parts of the whole crop-growth stage). Consequently, a certain number
of training samples are still essential for crop mapping in target regions.

Therefore, in order to fully explore the impact of multi-temporal datasets correspond-
ing to various growth stages on crop mapping, and efficiently construct reliable training
samples required for DCNN model training, rice was taken as an example in this research.
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First, based on public reference datasets (i.e., Cropland Data Layer, CDL) and DCNN model
(i.e., U-Net), a global search was performed on different multi-temporal Sentinel-1 datasets
(i.e., datasets corresponding to different rice-growth stages) to directly explore the optimal
multi-temporal Sentinel-1 datasets for rice mapping (i.e., the optimal rice recognition pe-
riod). Second, in the training sample shortage regions, based on multi-temporal datasets
acquired from the optimal rice recognition period, a two-step workflow was proposed to
construct reliable rice and non-rice samples (i.e., pseudo-labels) for DCNN model training,
that was achieved by combining K-means [33] and random forest [34] (i.e., K–RF). Step 1 in-
volved homogeneous sample construction based on the K-Means algorithm; step 2 involved
the final fine sample construction based on the random forest classifier (i.e., the samples
required for DCNN model training). Effectiveness of the proposed workflow was validated
by comparing the differences between pseudo-labels generated by the K–RF, and pseudo-
labels generated by the optimal transfer model. Besides, advantages of DCNN trained on
the K–RF pseudo-labels were validated by comparing the differences between the results
of the model trained on pseudo-labels, and the results of typical rule-based methods.

The following three research questions (RQ) were explored in this study:

(RQ1) Based on synthetic aperture radar (SAR) images, what was the optimal multi-temporal
datasets for rice mapping?

(RQ2) In the absence of training samples, could the proposed workflow (i.e., the combi-
nation of K-means and RF, K–RF) effectively extract rice distribution information
as pseudo-labels?

(RQ3) How was the performance of U-Net model trained on the pseudo-labels?

2. Study Area and Datasets
2.1. Study Area

Jiangsu Province (116◦20′20.8′′E~121◦51′4.6′′E, 31◦42′27.7′′N~34◦37′40.9′′N) is located
at the eastern coastal region of mainland China; it is one of the main rice production regions
in China. Throughout the year, its daily average maximum temperature in summer is
25.9 ◦C, its daily average minimum temperature in winter is 3 ◦C, and its average annual
rainfall is 977 mm. Jiangsu Province is bounded by the Huaihe River, its southern and
northern regions are a subtropical monsoon climate and a temperate monsoon climate,
respectively. There is only single-season rice in Jiangsu Province. The location of the target
region in Jiangsu is shown in Figure 1a. The specific rice-growth stages in Jiangsu are
shown in Figure 1c.

For comparison, a transfer model was used to overcome the problem of sample short-
age in Jiangsu Province, China (i.e., the target region). Therefore, it is necessary to use a
rice distribution map with high-confidence to construct a reliable transfer model. Conse-
quently, we selected the main rice production regions in the United States as the reference
region to train the transfer model, namely Arkansas River Basin (89◦50′46′′W~91◦17′39′′W,
33◦4′22′′N~36◦58′10′′N), which has a similar rice growth cycle to that of the target region.
We chose this mainly because reference data from the United States is public and valid (i.e.,
Cropland Data Layer, CDL). The daily average maximum temperature of the Arkansas
River Basin in summer is 34.2 ◦C, the daily average minimum temperature in winter is mi-
nus 3 ◦C, and the average annual rainfall is 1220 mm. The specific location of the reference
region in Arkansas River Basin, and the corresponding rice-growth stages, are shown in
Figure 1.
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reference regions. The red boxes represent scenes covered by the selected Sentinel-1 images. The 
light blue polygonal areas represent the counties used to verify the extracted rice planting area. 
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target region in Figure 1a were selected and downloaded from 
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overcome differences of the rice growth cycle caused by different planting times between 
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Figure 1. Location of the target and reference regions. (a) Location of the target region in Jiangsu.
(b) Location of the reference region in Arkansas River Basin. (c) Rice calendar of the target and
reference regions. The red boxes represent scenes covered by the selected Sentinel-1 images. The light
blue polygonal areas represent the counties used to verify the extracted rice planting area.

2.2. Sentinel-1 Datasets

For the target region (i.e., the region in Jiangsu Province, China), according to the rice
growth cycle of the target region, the Sentinel-1 images covering the three parts of the target
region in Figure 1a were selected and downloaded from (https://search.asf.alaska.edu/
(accessed on 15 April 2021)), and the specific data acquisition dates are listed in Table 1.
For the reference region (i.e., the region in the Arkansas River Basin), in order to construct
the optimal transfer model, multi-temporal datasets acquired from different years (i.e.,
2017, 2018 and 2019) were used to enable the model to overcome differences of the rice
growth cycle caused by different planting times between different years. Consequently, the
three years of Sentinel-1 images that covered the whole rice-growth stages of the reference

https://search.asf.alaska.edu/
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region (Figure 1c) were selected and downloaded from the same website, and the specific
data acquisition dates are listed in Table 1. Furthermore, all these Level-1 ground range
detected (GRD) products were preprocessed in SNAP software, using the same steps with
reference [18], and the spatial resolution of all datasets was processed to 30 m.

Table 1. Data acquisition dates (Month/date).

Jiangsu
(i.e., the Target Region)

Arkansas River Basin
(i.e., the Reference Region)

2019 2017 2018 2019

4/23 4/4 3/30 4/6
5/5 4/28 4/23 4/30

5/17 5/22 5/17 5/24
5/29 6/3 5/29 6/5
6/10 6/15 6/10 6/17
6/22 6/27 6/22 6/29
7/4 7/9 7/4 7/11

7/16 7/21 7/16 7/23
7/28 8/2 7/28 8/4
8/9 8/14 8/9 8/16

8/21 8/26 8/21 8/28
9/2 9/7 9/2 9/9

9/26 9/19 9/14 9/21

2.3. Reference Datasets

For the target region located in China, the rice planting area of each county derived
from Sentinel-1 images was compared with that of statistical data to verify the reliability
of rice mapping results, since coverage of county in the target region is relatively small in
the scene of Sentinel-1 image. The statistical data of rice planting area was collected from
prefectural statistical yearbook of the target region in 2019, it recorded the rice planting
area information of each county. Although there are some problems with statistical data, it
is the only available open-source data that can reflect the rice planting situation of China.
Moreover, some researchers have already used the crop planting area information recorded
in the statistical yearbook to verify the reliability of the crop mapping results [35–38].
Consequently, we selected a total of 16 counties of the target region for the accuracy
assessment of the rice mapping results (i.e., the counties located in northern, central and
southern Jiangsu, which are covered by the blue polygons in Figure 1a).

For the transfer model construction, the reference datasets were downloaded from
the Cropland data layer (CDL) (https://nassgeodata.gmu.edu/CropScape/ (accessed
on 20 April 2021)). The CDL is an annual publicly available land cover classification
map provided by the U.S. Department of Agriculture (USDA) [39]. The 30 m CDL map
was derived from NASS June Agriculture Survey, National Land Cover Dataset (NLCD),
Common Land Unit (CLU), and imagery from several satellites (e.g., Landsat 5/7/8,
Sentinel-2, and so on). More than 100 crop type categories are contained in the CDL, and
it has a high accuracy for major crop types [40]. Moreover, in recent years, the reliability
of the CDL has been proven by some scholars, who have used the datasets to carry out
research on crop mapping [41–43].

3. Methodology
3.1. Global Search of Optimal Multi-Temporal Datasets for Rice Mapping

Based on a DCNN model and multi-temporal Sentinel-1 datasets with different time
series lengths from the reference region (i.e., Arkansas River Basin), global search was
performed to find the optimal multi-temporal datasets, which were suitable for local rice
mapping and model transfer between different regions. Specifically, each observation time
point was taken as the start observation date, and sequence length of the input observation
date gradually increased until the last observation date was included (i.e., 13th observation

https://nassgeodata.gmu.edu/CropScape/
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date). Take, as an example, the first observation date that was used as the start date, as
shown in Figure 2; this process can also be used when other observation dates were used
as start dates. Consequently, the optimal rice recognition period for local rice mapping
could be found through this type of method. Additionally, the multi-temporal datasets
containing the intersection of the rice growth cycle between different regions were screened,
to be used in reducing the negative impact of model transfer caused by the difference in
growth cycles between the two regions.

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 23 
 

 

performed to find the optimal multi-temporal datasets, which were suitable for local rice 
mapping and model transfer between different regions. Specifically, each observation 
time point was taken as the start observation date, and sequence length of the input ob-
servation date gradually increased until the last observation date was included (i.e., 13th 
observation date). Take, as an example, the first observation date that was used as the start 
date, as shown in Figure 2; this process can also be used when other observation dates 
were used as start dates. Consequently, the optimal rice recognition period for local rice 
mapping could be found through this type of method. Additionally, the multi-temporal 
datasets containing the intersection of the rice growth cycle between different regions 
were screened, to be used in reducing the negative impact of model transfer caused by the 
difference in growth cycles between the two regions. 

 
Figure 2. Based on the reference region, global search of optimal multi-temporal datasets for rice 
mapping. Take, as an example, the first observation date that was used as the start date; this process 
could also be used when other observation dates were used as the start dates. 

As for DCNN model selection, among various DCNN model structures, the U-Net 
has been widely applied in the remote sensing community in recent years [18,22,23], since 
it has achieved outstanding performance and needed fewer samples [44]. Hence, the U-
Net model was used to find the optimal multi-temporal datasets for local rice mapping to 
perform the model transfer. 

3.2. Optimal Time Series Analysis for Rice Mapping 
(RQ1) The datasets acquired from 2017, 2018, and 2019 in the reference region were 

used to construct the U-Net model. The specific model structure and parameter setting 
were the same as those in [18]. In order to avoid overlap between training, validation and 
test datasets, based on the CDL datasets covering the reference region (i.e., about 412 km 
× 142 km, ≈ 58,504 km2), the corresponding Sentinel-1 images were partitioned into a set 
of small non-overlapping images (i.e., a sliding window with the size of 256 × 256 pixels 
was moved across the entire image, with intervals of both 256 pixels in rows and columns, 
as shown in Figure 3), and a total of 2649 256 × 256 pixel non-overlapping images were 

Figure 2. Based on the reference region, global search of optimal multi-temporal datasets for rice
mapping. Take, as an example, the first observation date that was used as the start date; this process
could also be used when other observation dates were used as the start dates.

As for DCNN model selection, among various DCNN model structures, the U-Net has
been widely applied in the remote sensing community in recent years [18,22,23], since it
has achieved outstanding performance and needed fewer samples [44]. Hence, the U-Net
model was used to find the optimal multi-temporal datasets for local rice mapping to
perform the model transfer.

3.2. Optimal Time Series Analysis for Rice Mapping

(RQ1) The datasets acquired from 2017, 2018, and 2019 in the reference region were
used to construct the U-Net model. The specific model structure and parameter set-
ting were the same as those in [18]. In order to avoid overlap between training, vali-
dation and test datasets, based on the CDL datasets covering the reference region (i.e.,
about 412 km × 142 km, ≈58,504 km2), the corresponding Sentinel-1 images were parti-
tioned into a set of small non-overlapping images (i.e., a sliding window with the size
of 256 × 256 pixels was moved across the entire image, with intervals of both 256 pixels
in rows and columns, as shown in Figure 3), and a total of 2649 256 × 256 pixel non-
overlapping images were generated for the three-year Sentinel-1 images. Then, 70% (1854)
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of the image blocks were randomly selected from each year as the training datasets, 10%
(264) from each year as the validation datasets, and 20% (531) from each year as the test
datasets. The images in test datasets were only used for the final evaluation, which means
that they were not involved in training or tuning. For the accuracy assessment of the results
generated by the model, the scores, including the user’s accuracy, producer’s accuracy,
Kappa coefficient, and F1 score, were calculated from a pixel-by-pixel comparison between
the mapping results and CDL maps. Please refer to [45] for details about the mathematical
expression of these parameters. The specific evaluation results of the model trained on
different multi-temporal datasets in the reference region are listed in Figure 4.
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As reported in Figure 4, for local rice mapping in the reference region, when obser-
vation dates contained in multi-temporal datasets were started before the tillering period
(i.e., observation dates before the 6th point of Figure 4) and ended in the mature period
(i.e., observation dates after the 10th point of Figure 4), the corresponding extraction results
of the U-Net could basically reach a stable state (i.e., both kappa and F1 were close to
0.85). This means that multi-temporal datasets that corresponded to the middle and late
rice-growth stages were more important for rice mapping, and only the datasets containing
middle and late rice-growth stages (i.e., tillering to maturity) could also achieve acceptable
mapping results.

Specifically, the optimal rice mapping result could be achieved (i.e., result with the
highest F1) when the multi-temporal datasets acquired from the 2nd observation date to the
13th observation date were used as input for the U-Net model; that is, when the result of
the last point of the crimson curve in Figure 4 (i.e., the end of April to the end of September
that corresponds to the rice sowing period to the mature period of the reference region),
and its rice producer’s accuracy, user’s accuracy, kappa and F1 were 84.63%, 94.98%, 0.84,
and 0.90, respectively. In addition, the mapping result comparable to the optimal result
could be achieved (i.e., both kappa and F1 were close to 0.85), when the datasets acquired
from the 5th observation date to the 11th observation date were used as input of the U-Net
model; that is, the result of the 7th point of blue curve in Figure 4 (i.e., the middle of June to
the end of August that corresponds to the rice tillering period to the mature period of the
reference region). Its rice producer’s accuracy, user’s accuracy, kappa and F1 were 83.71%,
86.24%, 0.84, and 0.85, respectively. Moreover, among the several acceptable results based
on different multi-temporal datasets (i.e., both the kappa and F1 were close to 0.85), its time
series length was the shortest. Theoretically, when phenological characteristics for the same
crops between target and reference regions were significantly different (e.g., growth cycle),
compared with the multi-temporal datasets containing a full rice-growth cycle, it is more
reliable to use the datasets that only contain key growth stages of rice for model transfer,
which will be validated in Section 4.

3.3. The Process of K–RF

Based on multi-temporal Sentinel-1 images covering the whole rice-growth stages
of the target region (i.e., the optimal rice recognition period for local rice mapping, for
which the corresponding data acquisition dates were from 5 May to 26 September 2019, as
listed in Table 1), a pseudo-label generation workflow was constructed by combining the
K-Means algorithm and RF classifier (i.e., K–RF). The workflow was composed of two parts:
(1) homogeneous pseudo-label construction based on the K-Means algorithm; (2) final fine
pseudo-label construction based on the RF classifier (i.e., the samples required for U-Net
model training). The specific process is shown in Figure 5.

The details of the process and specific parameter settings are described as follows.

(1) Masks for water bodies, buildings and parts of dryland vegetation. It is well known
that the backscattering temporal signal of a water body always keeps a lower value,
and therefore the threshold was set to VHmax ≤ −20 after experimental compari-
son. Similarly, buildings could be masked out by using a higher minimum value of
backscattering coefficient, since their backscattering temporal signal always keeps a
higher value. In addition, the minimum backscattering characteristics of rice are close
to that of water bodies, due to the existence of rice transplanting periods (i.e., the
specular scattering of water is dominant). During the rice-growth cycle, for the part
of dryland vegetation, its backscattering coefficient is always higher than that of a
water body, since there are no obvious water bodies in the growing environment (i.e.,
volume scattering is dominant). Consequently, during the whole rice-growth stages,
an appropriate minimum value of the backscattering coefficient could be used to mask
out the building and part of dryland vegetation at the same time. After experimental
comparison, the threshold was set to VHmin ≥ −17.
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(2) The difference calculation of pixel points between adjacent acquisition time images.
Due to a larger fluctuation of rice in backscattering characteristics, caused by the flood-
ing phenomenon (i.e., before and after rice transplanting period), the backscattering
coefficient of the previous observation time was subtracted from the next observation
time, to highlight the relative changes of backscattering characteristics of rice during
its growth cycle. The specific mathematical expression is formulated as follows:

Vrelative= [V 2 −V1, V3 −V2, . . . , Vn −Vn−1] (1)

where Vrealtive represents the vector of relative change of backscattering characteristics;
Vn represents the original backscattering characteristics at the nth observation time.

(3) Clustering for the time series difference images. The time series difference images
generated in step 2 were clustered into four classes (the value was determined after
testing three, four and five) using the K-means algorithm based on Euclidean distance.
Then, the standard deviation of each centroid vector was calculated. The centroid
vector with the largest standard deviation was defined as the centroid of rice; the
centroid vector with the smallest standard deviation was defined as the centroid of
water and buildings (i.e., non-vegetation); the rest were defined as the centroid of
non-rice vegetation.

(4) Homogeneous sample construction. Based on current samples (the samples gener-
ated the first time were collected from step 3), 10,000 non-vegetation pixels were
randomly selected from the current samples as non-vegetation training samples. For
the construction of rice and non-rice vegetation training samples, on the basis of
a homogeneous window, when all pixels in the window were classified as rice (or
non-rice vegetation), the center pixel point of the window was selected as the rice (or
non-rice vegetation) training point. After experimental comparison, the homogeneous
window size was set to 11 × 11.

(5) Loop-based training. The RF classifier was trained based on the homogeneous samples
generated in step 4, and then the well-trained RF classifier could be used to further
extract the potential rice points with unobvious features as the current samples. The
overlap between the current samples extracted by RF and the previous samples was
calculated. If it was higher than the set threshold, then the sample construction process
could jump out of the loop, otherwise, based on samples extracted by the current RF,
the 4th to 5th steps were repeated. After experimental comparison, the threshold of
the overlap was set to 0.9.

(6) Final fine training sample generation. After jumping out of the loop, the last produced
result was taken as the final fine training sample (i.e., pseudo-label) required for U-Net
model training.

The pseudo-labels generated by different methods (i.e., the K–RF and transfer models)
in the target region were compared, and further used as training samples to construct a
U-Net model, which was more suitable for rice mapping in the target region. The process
of automatically constructing samples (i.e., K–RF) could save a lot of manpower and time
compared with visual interpretation. This could provide an important foundation for the
practical application of the DCNN model.

3.4. Evaluation Parameters for Quantitative Analysis

For rice mapping results of the target region, based on each county, the root mean
square error (RMSE) and relative root mean square error (RRMSE) between the rice area de-
rived from Sentinel-1 images and the statistical data were calculated to verify the reliability
of the rice mapping results [36,46]. The specific formulations are expressed as follows:

RMSE =

√
1
m

m

∑
i=1

(Ŝi − Si)
2 (2)



Remote Sens. 2022, 14, 328 10 of 23

RRMSE =

√√√√ 1
m

m

∑
i=1

(
Ŝi − Si

Ŝi
)

2

(3)

where m represents the number of counties; Ŝi and Si are the rice areas of the ith county
recorded in the statistical yearbook and rice areas derived from Sentinel-1 images, respectively.
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In order to further evaluate the reliability of the pseudo-labels, the Intersection over
Union (IoU) was introduced to calculate the differences between the pseudo-labels and the
extraction results (i.e., the rice mapping results of DCNN trained on the pseudo-labels) [23],
the specific formulation is expressed as follows:

IoU =
Apseudo ∩Apredict

N
(4)

where N represents the pixel number of a label image; Apseudo represents the pseudo-labels,
Apredict represents the extraction result of the DCNN model trained on the pseudo-labels,
∩ represents the pixel number statistics with the same category and the same position
between the two results.

4. Experimental Results and Discussion
4.1. Pseudo-Labels Generated by Different Methods

Pseudo-labels generated by the K–RF and by the optimal transfer model were com-
pared to construct the optimal pseudo-labels required for DCNN model training in the
target region. Among them, the transfer model was directly applied to the target region
(i.e., Jiangsu) after being well trained in the reference region (i.e., the Arkansas River Basin).
Then, the rice planting area collected from the prefectural statistical yearbook was used to
validate the reliability of the pseudo-labels.
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4.1.1. Pseudo-Labels Generated by the K–RF

(RQ2) Following the steps described in Section 3.3, the rice pseudo-label construction
was carried out in the three parts of the target region with different rice planting patterns
to verify the robustness of the K–RF (i.e., northern and central Jiangsu where rice planting
is dense, and southern Jiangsu where rice planting is sparse). The specific clustering results
generated by the K-Means algorithm are shown in first row of Figure 6. Pseudo-labels
generated by the K–RF method are shown in the third row of Figure 6. The difference
between the clustering results and results of the K–RF are shown in second row of Figure 6.
In addition, the final pseudo-labels generated by the K–RF method in the northern, central,
and southern target regions were summarized as rice and non-rice, as shown in the fourth
row of Figure 6. The specific rice area of each county contained in the pseudo-labels are
shown in Figure 7 and Table 2.

Table 2. Rice area extraction results in different parts of the target region based on different methods.

Region County
Name S1/Saa S1/103

Hectares
S2/103

Hectares
S3/103

Hectares
S4/103

Hectares

Northern part

Ganyu 18% 27.76 7.41 17.82 26.21
Donghai 31% 65.07 34.31 58.81 66.26

Xinyi 17% 28.10 14.72 21.72 30.38
Guanyun 31% 48.16 48.97 64.79 46.97

RMSE / / 19.62 10.66 1.61
RRMSE / / 49.70% 27.76% 5.16%

Central part

Jinhu 27% 38.29 30.58 38.43 36.73
Gaoyou 27% 53.48 46.03 45.57 46.48
Baoying 36% 54.34 52.75 59.71 53.44
Hongze 22% 31.66 31.62 34.76 39.09
Jianhu 40% 47.08 37.97 44.09 48.87
RMSE / / 6.33 4.68 4.70

RRMSE / / 14.02% 9.52% 12.30%

Southern part

Gaochun 16% 6.04 8.17 6.56 6.12
Lishui 20% 17.10 10.51 7.87 9.24
Liyang 12% 31.37 22.42 21.09 31.47
Yixing 4% 24.98 20.49 20.09 23.44
Wujin 13% 4.40 17.95 4.65 1.11
Jintan 28% 12.73 26.03 13.93 10.33

Danyang 16% 29.60 30.34 24.67 28.62
RMSE / / 8.52 5.86 3.41

RRMSE / / 125.14% 26.30% 34.04%

The three parts RMSETotal / / 11.85 7.09 3.56
RRMSETotal / / 86.78% 22.88% 23.68%

Note: S1, rice planting area in statistical yearbook; Saa, county-level administrative district area; S2, rice area
extraction of pseudo-labels generated by K-Means; S3, rice extraction results of pseudo-labels generated by K–RF
method; S4, the optimal rice extraction results of the transfer model.

From Figure 6 it can be seen that, based on the time series difference images, the K-
Means algorithm could cluster the rice pixel points. However, there were still some errors in
the clustering results, which were caused by other non-rice pixels with the temporal signals
similar to rice. Consequently, a supervised RF classifier trained on homogeneous sample
sets (i.e., the K–RF) was used to extract the potential rice pixel points in Sentinel-1 images,
and suppress the misclassification in the results of K-Means algorithm; as we expected,
based on the K–RF classifier, categories of some points in the results of the K-Means
algorithm were reassigned, as reported in second row of Figure 6. Moreover, for the results
of the regions with different rice planting patterns, from the rice area extraction results
shown in Figure 7 and Table 2, it could be also verified that some incorrectly clustered
pixel points had been re-classified and corrected by the K–RF classifier, since the RMSETotal
(RRMSETotal) was improved from 11.58 × 103 hectares to 7.09 × 103 hectares (86.78% to
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22.88%). Among the results of the three parts of the target region, the improvement of result
in the southern part was the most obvious, and the corresponding RRMSE was improved
from 125.14% to 26.36%.
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Figure 6. Pseudo-label extraction in the different parts of the target region. The first row is the results
of the K-Means algorithm. The third row is the results of the K–RF. The second row is the variations
between the points in the same spatial positions as the first and third rows. The fourth row contains
the final pseudo-labels generated by the K–RF, which were summarized as rice and non-rice. The
first to third columns represent the northern, central and southern target regions, respectively.
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In general, the K–RF could effectively extract rice-distribution information in the target
region with different rice planting patterns (i.e., dense and sparse planting patterns).

4.1.2. Pseudo-Labels Generated by the Transfer Model

(RQ2) Hao et al. [29] have verified that transfer model could be used to extract similar
crops in different regions. Consequently, pseudo-labels generated by the K–RF were
compared with the optimal pseudo-labels generated by transfer models to further verify
the effectiveness of the K–RF. In order to obtain the optimal pseudo-labels generated by
transfer model, based on different multi-temporal datasets in the target regions, all of
the well-trained transfer models, which are presented in Section 3.2, were directly used
to extract rice-distribution information in the three parts of the target region. Accuracy
assessments of the pseudo-labels generated by different transfer models are shown in
Figure 8. The specific rice area extraction results of each county contained in the optimal
pseudo-labels are listed in Table 2.

As reported in Figure 8, in the target region, for the pseudo-labels generated by
different transfer models, the reliability of the rice pseudo-labels in the northern part of the
target region were always higher than those of the central part. Specifically, in the northern
part of the target region, for most accuracies of the pseudo-labels generated by transfer
models, when the observation dates contained in multi-temporal datasets were started from
the sowing period (i.e., observation dates between the first and fourth points of Figure 8a)
and ended in the heading or mature period (i.e., observation dates between 8th and 13th
point of Figure 8a), the RMSE values could basically reach a stable state (i.e., the RMSE was
close to 5 × 103 hectares). However, in the central and southern parts of the target region,
for most accuracies of the pseudo-labels generated by the transfer model, RMSE values
were better when observation dates contained in multi-temporal datasets were started
from the tillering or heading period (i.e., observation dates between 6th and 8th points of
Figure 8b,c) and ended in the mature period (i.e., the 11th and 12th observation points of
Figure 8b,c.

Consequently, in the following contents, we only compared the optimal results of the
transfer model with the results of K–RF to analyze the differences of the pseudo-labels
generated by different methods.
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Figure 8. Based on different multi-temporal datasets, RMSE of pseudo-labels in the different parts
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classification results of the transfer model using temporal input to the corresponding time steps.

4.1.3. Comparison between the Two Types of Pseudo Labels

As reported in Table 2, in the northern part of the target region, for accuracy of the
optimal pseudo-labels generated by the transfer model (i.e., the TF pseudo-labels), the
RMSE (RRMSE) was 1.61 × 103 hectares (5.16%). The multi-temporal datasets in the
target region acquired from the first observation date to the ninth observation date were
used as input of the transfer model; that is, the result of ninth point of the blue curve in
Figure 8a, which was improved by 9.05 × 103 hectares (22.60%) compared with that of
the pseudo-labels generated by the K–RF (i.e., the K–RF pseudo-labels). In the central
part of the target region, for accuracy of the optimal TF pseudo-labels, its RMSE was
4.7 × 103 hectares (i.e., the result of fourth point of the crimson curve in Figure 8b), which
was slightly lower than that of the K–RF pseudo-labels. The difference was amplified in
RRMSE, which was decreased by 2.78% compared with that of the K–RF pseudo-labels.
In the southern part of the target region, for accuracy of the optimal TF pseudo-labels,
its RMSE was 3.41 × 103 hectares (i.e., the result of fifth point of the navy-blue curve in
Figure 8c), which was improved by 2.45 × 103 hectares compared with that of the K–RF
pseudo-labels. However, its RRMSE was decreased by 7.74% compared with that of the
K–RF pseudo-labels. In addition, local differences between the two types of pseudo-labels
are shown in Figure 9, from which it can be seen that differences between the two types of
pseudo-labels were mainly reflected in the boundaries between different fields.

4.2. Rice Mapping Results of U-Net Trained on Different Pseudo-Labels

(RQ3) The time saved in annotation of training samples could provide an important
foundation for the practical application of the DCNN model. Consequently, in order to
verify feasibility of using the pseudo-labels to construct a DCNN model, the two types of
pseudo-labels (i.e., the TF pseudo-labels and K–RF pseudo-labels) were used to further
retrain the U-Net model. Moreover, the rice area statistics were used to validate reliabilities
of the results generated by U-Net trained on the pseudo-labels.
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Similarly, based on the pseudo-label sets, the training image sets were made using the
method presented in Section 3.2; this resulted in 1152 256× 256 pixel small non-overlapping
images for Sentinel-1 images, covering the three parts of the target region: 70% (806) of the
image blocks were randomly selected as the training datasets, 10% (115) as the validation
datasets, and 20% (231) as the test datasets. The specific network structure and parameter
settings were the same as described in Section 3.2. IoU values (IoUs) between the pseudo-
labels and extraction results (i.e., rice mapping results of U-Net trained on pseudo-labels)
were calculated, as listed in Table 3. In addition, the comparison of the rice area extraction
results generated by the U-Net models trained on different pseudo-labels are shown in
Table 3 and Figure 10.

Table 3. Consistency of pseudo-labels and extraction results.

Pseudo-Label
Generation Method Datasets IoU/% RMSE/103

Hectares
RRMSE

K–RF
(K–RF pseudo-labels)

Training 94.46 / /
Validation 93.79 / /

Test 95.02 / /
Northern 96.73 8.80 25.34%
Central 93.16 4.25 8.39%

Southern 95.20 4.23 29.82%

Transfer model
(TF pseudo-labels)

Training 92.41 / /
Validation 92.20 / /

Test 93.25 / /
Northern 94.15 4.21 14.06%
Central 86.86 5.64 13.51%

Southern 96.66 3.74 35.87%
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Figure 10. The comparison of rice areas between the statistics data and the extraction results of the
model trained on pseudo-labels; (a,b) are the rice area of extraction results of the model trained on
the K–RF and TF pseudo-labels. RMSE represents the rice area extraction errors of the U-Net trained
on the pseudo-labels, RMSE represents the rice area extraction errors of the pseudo-labels.

For U-Net models trained on the two types of pseudo-labels, it can be seen from Table 3
that both models had achieved ideal IoUs between the extraction results and pseudo-labels.
This means that both models were not over fitted. Specifically, for U-Net trained on the
K–RF pseudo-labels, IoUs of the three datasets were from 93.79% to 95.02%, and IoUs
of the three parts were from 93.16% to 96.73%. The errors of these IoUs mainly came
from two parts: (1) the model trained on pseudo-labels could further correct the false
information in the pseudo-labels while reducing the errors of extracted rice area (as shown
in Figure 10), and thus the difference between the extraction result and pseudo-labels was
increased; (2) errors were caused by incorrectly marked points during the training process.
For the U-Net model trained on the TF pseudo-labels, IoUs of the three datasets were from
92.20% to 93.25%, which were slightly lower than those of U-Net trained on the K–RF
pseudo-labels. The fluctuation ranges of IoUs corresponded to the three parts that were
from 86.86% to 96.66%, which were significantly higher than those of the U-Net trained
on the K–RF pseudo-labels. The reasons for the errors of IoUs were the same as those of
U-Net trained on the K–RF pseudo-labels. More importantly, compared with the rice area
extraction errors of the pseudo-labels, the extracted area errors of the U-Net trained on the
TF pseudo-labels were increased for all of these three parts of the target region. On the
contrary, the U-Net trained on the K–RF pseudo-labels reduced these errors, as reported
in Figure 10. In addition, except for the northern part of the target region, RRMSE values
of the rice extraction results of U-Net trained on the TF pseudo-labels in other parts were
worse than those of U-Net trained on the K–RF pseudo-labels.

In summary, from the experiment that U-Net trained on different pseudo-labels, it
could be concluded that the K–RF was more reliable for pseudo-label construction than the
transfer model.

4.3. Comparison of Rice Mapping Performance with Other Rice Mapping Methods

(RQ3) Table 4 and Figure 11 report the comparison between the U-Net trained on
the K–RF pseudo-labels and the two-rule-based rice mapping methods (i.e., the methods
proposed by Nguyen et al. [47] and the method proposed by Zhan et al. [48]). For the
three parts of the target region with different rice planting patterns (i.e., sparse and dense
planting patterns), the RMSE (RRMSE) of the U-Net trained on the K–RF pseudo-labels
was always the smallest, compared with that of the other two methods. For the method
proposed by Nguyen et al. [47], RMSE values of the three parts of the target region were
from 13.86 × 103 hectares to 37.52× 103 hectares, which were higher by 5.06× 103 hectares,
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33.27 × 103 hectares, and 15.22 × 103 hectares, compared with those of the U-Net trained
on the K–RF pseudo-labels. For the method proposed by Zhan et al. [48], RMSE values of
the three parts of the target region were from 9.66 × 103 hectares to 33.91 × 103 hectares,
which were higher by 25.11 × 103 hectares, 5.41 × 103 hectares, and 16.45 × 103 hectares
compared with those of the U-Net trained on the K–RF pseudo-labels. Advantages of
U-Net trained on the K–RF pseudo-labels were more obvious in the RRMSE indexes for the
three parts of the target region. Similarly, these differences were significantly obvious in
the extracted rice spatial distribution information, as shown in Figure 11.

Table 4. The comparison with rule-based rice mapping methods.

Method Region RMSE/103

Hectares
RRMSE

Nguyen et al. [47]
Northern

13.86 31.97%
Zhan et al. [48] 33.91 68.57%

U-Net trained on the K–RF pseudo-labels 8.80 25.34%
Nguyen et al. [47]

Central
37.52 80.14%

Zhan et al. [48] 9.66 26.31%
U-Net trained on the K–RF pseudo-labels 4.25 8.39%

Nguyen et al. [47]
Southern

19.45 90.65%
Zhan et al. [48] 20.68 257.34%

U-Net trained on the K–RF pseudo-labels 4.23 29.82%

In conclusion, at the rice area extraction level, compared with the two-rule-based
methods, the U-Net trained on the K–RF pseudo-labels could robustly extract rice spatial
distribution information in the regions with different rice planting patterns.

4.4. Discussion

Through the analysis of temporal signals based on backscattering or spectral char-
acteristics [47,49], it could be concluded that the transplanting period was essential to
discriminate rice from other land covers (i.e., the mixing of volume scattering from rice
and the specular reflection from water). However, only considering the temporal signals of
backscattering characteristics would ignore the potential features contained in different
multi-temporal dataset combinations (e.g., spatial characteristics). Consequently, from
the perspective of mapping results, instead of just taking sowing period as the start date
and gradually increasing to the maturity period [29,30], this study explored the influence
of different multi-temporal datasets (i.e., data that covered each growth stage of rice) on
rice mapping more comprehensively through the global search method. This could be
used to find the optimal multi-temporal datasets for local rice mapping and the model
transfer between different regions. Then, under the condition that no training sample sets
existed in the target region (i.e., manually annotated training sample sets), based on the
optimal multi-temporal datasets, this study combined the K-Means and RF classifier (i.e.,
K–RF) to construct reliable pseudo-labels, and compared it with the optimal pseudo-labels
generated by the transfer model. Furthermore, in the different parts of the target region
(i.e., training sample shortage regions in Jiangsu Province, China), this study combined the
K–RF pseudo-labels and the DCNN model (i.e., U-Net) to extract rice spatial distribution
information in the target region, instead of the traditional machine learning algorithm.

For the process of constructing the K–RF pseudo-labels in the different parts of the
target region, errors in the initial clustering results of the K-Means algorithm could be
effectively suppressed by using the K–RF based method, especially for the southern part of
the target region (as shown in Figure 7 and Table 2). The main reason was that compared
with the northern and central parts of the target region, the southern part is a region where
rice is sparsely planted. In the initial clustering results of the southern part, there were
more independent and scattered pixel points. Based on the homogeneous window, while
collecting pure samples, it could also avoid collecting independent and wrong sample sets.
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Therefore, more scattered error information in the initial clustering results of the southern
part could be further corrected by the K–RF classifier trained on the pure samples.
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Figure 11. Extraction results in the different parts of the target region based on different meth-
ods. The first row to third row represent the rice extraction results using the method based on
Nguyen et al. [47], and Zhan et al. [48], and the U-Net model trained on the K–RF pseudo-labels,
respectively. The first to third columns represent the rice extraction results in the northern, central
and southern parts of the target region, respectively.

For the process of constructing the TF pseudo-labels, there was an interesting phe-
nomenon; when latitudes between the target and reference regions were significantly
different, the accuracy of the pseudo-labels generated by the transfer model trained on
multi-temporal datasets that only contained middle to late rice-growth stages were higher
than those of the pseudo-labels generated by transfer model trained on multi-temporal
datasets that contained the whole rice-growth stages (i.e., results of the central and southern
parts of the target region). The main reason for this phenomenon was that, compared with
the northern part of the target region, latitudes of the central and southern parts were
significantly different from the latitude of the reference region (as shown in Figure 1), which
further caused differences of phenological characteristics for the same crops between differ-
ent regions (e.g., growth cycle). Consequently, the transfer ability of the model had been
weakened in the central and southern parts of the target region when the multi-temporal
datasets that contained the whole growth stages were used.

For the comparison between the K–RF pseudo-labels and TF pseudo-labels at the level
of rice planting area verification, the results showed that both the optimal transfer model
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and the K–RF could effectively extract rice distribution information in the target region as
pseudo-labels. Moreover, compared with the TF pseudo-labels, the K–RF pseudo-labels
had obvious advantages in the RRMSE index, especially for the southern part of the target
region. The main reason was that the relative error of rice area extraction results based on
K–RF in rice cultivation in the sparsest counties (i.e., Wujin) was much smaller than that of
the transfer model, whereas the relative errors of other counties between the two methods
were similar to each other. Therefore, RRMSE of the K–RF pseudo-labels was much better
than that of the optimal TF pseudo-labels in the southern part of the target region.

For the U-Net model trained on different pseudo-labels, the results showed that,
compared with the rice area extraction errors of the pseudo-labels, the U-Net trained on the
TF pseudo-labels increased these errors, whereas they were reduced by using the U-Net
trained on the K–RF pseudo-labels (as shown in Figure 10). The main reason for this
phenomenon is that even if a transfer model was constructed based on the multi-temporal
datasets suitable for transfer between different regions, the model would be inevitably
affected by phenological differences between different regions. Therefore, although the
accuracy of the TF pseudo-labels in the evaluated counties was higher than that of the K–RF
pseudo-labels, more rice misrecognition may exist in these regions that were outside of
the assessed counties for the TF pseudo-labels. Consequently, when the TF pseudo-labels
were used to train the U-Net model, rice and other land covers would be mixed, and the
errors would be further amplified. The process of constructing K–RF pseudo-labels using
local data would not be affected by crop phenological differences. Under the condition
where training samples were effective, compared with the traditional machine learning
model (i.e., RF), the U-Net model learnt global spatial features more easily, including the
temporal signature of the rice in the multi-temporal Sentinel-1 datasets, which could be
used to further suppress errors in the pseudo-labels.

Finally, for comparison between the U-Net trained on the K–RF pseudo-labels and
the two-rule-based rice mapping methods, from the perspective of RMSE and RRMSE,
the method proposed by Nguyen et al. [47] and the method proposed by Zhan et al. [48]
could extract rice distribution information in the target region. However, from the per-
spective of extracted rice spatial distribution, there were actually a large number of rice
over-identifications in the results of the two methods. As reported in Figure 11, for the
northern part of the target region, according to actual experience and statistical year-
books, some counties of Shandong Province that are close to northern Jiangsu only have
a small number of rice planting areas. For instance, the total rice area in Junan and Lin-
shu (i.e., the region covered by the red circle in the first column of Figure 11) was only
0.23 × 103 hectares in 2019 (i.e., as reported in http://tjj.linyi.gov.cn/info/1061/9883.htm
(accessed on 20 October 2021)). However, the corresponding results extracted by using
the method proposed by Nguyen et al. [47] and the method proposed by Zhan et al. [48]
were significantly higher than this value. For the central part of the target region, based
on the method proposed by Zhan et al. [48], the result showed that dense rice areas were
extracted in the bottom right corner of the central part. In fact, this region is not suitable
for rice cultivation, since it is located in the mountainous district (i.e., the region covered
by the red circle in the second column of Figure 11). Additionally, the plain in the central
part of the target region belongs to an area where rice is intensively planted, and the rice
spatial distribution of this location should have a strong regional concentration, such as
the results of the U-Net trained on the K–RF pseudo-labels. However, the corresponding
results, extracted by using the method proposed by Nguyen et al. [47] and the method
proposed by Zhan et al. [48], were shown as irregular scattered rice pixel points. For the
southern part of the target region, compared with the northern and central parts of the
target region, the rice planting area in the southern part was relatively small. However, the
results showed that dense rice planting areas were extracted in this region by using the
method proposed by Zhan et al. [48]. On the contrary, the result extracted by using the
method proposed by Nguyen et al. [47] went to the other extreme: almost no rice planting
information in this region could be extracted.

http://tjj.linyi.gov.cn/info/1061/9883.htm
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Although this study could provide new options for applying the deep semantic
segmentation model to training sample shortage regions, there were still some drawbacks
of the proposed workflow.

Since county-level coverage of the target region in the Sentinel-1 image is small,
this study mainly used county-level rice area statistics to verify the reliability of the rice
mapping results. However, when the unit to be verified covers a large area in the remote
sensing image, the area verification-based method may be inferior to the ground survey
verification-based method.

In order to avoid isolated noise points being selected as samples, this study used the
homogenization window to construct homogeneous samples in the first part of the K–RF.
However, if rice points in the initial clustering results are very sparse, this will result in
only a small number of rice points, or even no points being collected in the sample sets.

For the construction of pseudo-labels, since the backscattering temporal signals and
rice flooding phenomenon has contributed to rice mapping [48,50,51], this study directly
used the difference of backscattering characteristics between adjacent observation points
to highlight the relative changes of rice backscattering characteristics during the growth
cycle. However, if more observation time points are missing, the span of the backscattering
coefficients corresponding to different crops at adjacent observation points will be close.
Consequently, this may cause confusion between rice and non-rice extracted by the K–RF,
when discontinuous multi-temporal datasets are used.

5. Conclusions

This study proposed a workflow that could apply a DCNN model to training sample
shortage regions. Based on the optimal multi-temporal Sentinel-1 images summarized by
using the global search method, pseudo-labels were collected from rice mapping results
of the K–RF (i.e., the combination of K-Means and RF classifier). As a comparison, the
optimal well-trained transfer model constructed from the reference region was used to
generate pseudo-labels. Moreover, the two types of pseudo-labels were used for U-Net
model-training to extract rice-planting information in the three parts of the target region
(i.e., the training sample shortage regions of Jiangsu Province). Rice area statistics were
used to validate the effectiveness of DCNN model trained on the pseudo-labels, and a
comparison with a rule-based method was used to validate the advantages of the DCNN
model trained on the pseudo-labels. The main conclusions are described as follows:

(1) Based on the CDL data and the multi-temporal Sentinel-1 images, through global
search, it can be concluded that multi-temporal datasets acquired from the sowing
period to the mature period were the optimal datasets for local rice mapping, when
the rice mapping accuracy, user accuracy, kappa and F1 were 84.63%, 94.98%, 0.84,
and 0.90, respectively;

(2) When the latitudes between the target and reference regions were significantly dif-
ferent, compared with multi-temporal datasets containing the whole rice-growth
stages, the datasets that only contained middle to late growth stages shared by rice in
different regions were more suitable for the transfer model;

(3) For the U-Net model trained on pseudo-labels, compared with the U-Net trained on
the TF pseudo-labels, the model trained on the K–RF pseudo-labels could further
correct the errors contained in the pseudo-labels;

(4) Compared with the two-rule-based methods, whether from the perspective of ex-
tracted rice area error or the perspective of extracted rice spatial distribution informa-
tion, the U-Net trained on the K–RF pseudo-labels had obvious advantages.

In future work, new features—which are more stable to describe rice phenological char-
acteristics in different regions and the differences between rice and other land covers—need
to be constructed, so that enough high-confidence pseudo-labels can be easily collected,
and the process of applying the DCNN model to actual large-scale rice mapping can
be simplified.
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