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Abstract: Mesoscale eddies occur frequently in the Luzon Strait and its adjacent area, and accurate
prediction of eddy structure changes is of great significance. In recent years, artificial neural network
(ANN) has been widely applied in the study of physical oceanography with the continuous accumu-
lation of satellite remote sensing data. This study adopted an ANN approach to predict the evolution
of eddies around the Luzon Strait, based on 25 years of sea level anomaly (SLA) data, 85% of which
are used for training and the remaining 15% are reserved for testing. The original SLA data were
firstly decomposed into spatial modes (EOFs) and time-dependent principal components (PCs) by
the empirical orthogonal function (EOF) analysis. In order to calculate faster and save costs, only
the first 35 PCs were selected as predictors, whereas their variance contribution rate reached 96%.
The results of predicted reconstruction indicated that the neural network-based model can reliably
predict eddy structure evaluations for about 15 days. Importantly, the position and variation of four
typical eddy events were reconstructed, and included a cyclone eddy event, an eddy shedding event,
an anticyclone eddy event, and an abnormal anticyclone eddy event.

Keywords: eddy structure; ANN; prediction; Luzon Strait

1. Introduction

The Luzon Strait is located between Taiwan Island and Luzon Island in the Philippines,
an important channel connecting the South China Sea (SCS) and the Northwest Pacific,
where water exchange, energy and material transport occurs (Figure 1). The Luzon Strait
is a significant area with many mesoscale eddy activities under the influence of complex
topography, seasonal monsoon and Kuroshio intrusion, and the circulation around the
Luzon Strait has obvious seasonal variation [1–4]. The general circulation pattern around
the Luzon Strait is predominantly anticyclonic in summer, and is mainly cyclonic in win-
ter [5,6]. Circulation variation and the distribution of nutrients and energy around Luzon
Strait is significantly impacted by eddies [7,8]. Therefore, prediction of the changeable eddy
structure around the Luzon Strait is greatly significant to military activities, production,
and environmental protection in the SCS.

Extensive studies have been conducted on the eddy activity around the Luzon Strait
based on different research methods, and many mesoscale eddies have been discov-
ered [9–11]. In 2015, He et al. found that there are two cyclonic eddies in the north-western
part of Luzon Island based on a variable gridded global ocean circulation model [10]. The
upper layer cyclonic eddy is mainly caused by wind stress curl, but it is weakened by
Kuroshio intrusion [10]. In 2002, Su et al. found an anticyclonic eddy in south-western
Taiwan between October and November 1993 based on satellite-tracked drifting buoys [12].
In 1998, Li et al. showed that an anticyclonic eddy appeared in the north-eastern SCS from
August to September 1994 by in situ observation data, and believed that the anticyclonic
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eddy was induced by the Kuroshio [9]. In 2006, Yuan et al. found that anticyclonic eddies
shed from Kuroshio can occur in any season, especially in winter [13]. It can be seen that the
Kuroshio intrusion has an important influence on the eddy activity around the Luzon Strait.
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Figure 1. Topography of the study area. The color contours denote bathymetry (m). The solid and
dashed lines represent five main paths of Kuroshio. Purple solid line represents leaping across. Yellow
solid line represents branch intruding. Red solid line represents an anticyclonic loop current that
penetrates into SCS before returning to the main axis of the Kuroshio. Yellow dashed line represents
eddy shedding. White dashed line represents a cyclonic loop current that penetrates into SCS before
returning to the main axis of the Kuroshio.

The Kuroshio is a typical western boundary current with high-temperature and high-
salinity in the Northwest Pacific, which originates from the North Equatorial Current
(NEC). When the Kuroshio intrudes into the SCS, the water mass, momentum, and heat are
transported to the SCS, affecting the temperature, salinity, and circulation in the SCS [14–17].
In the last few decades, extensive research has been conducted on the Kuroshio intrusion
in the SCS via the Luzon Strait based on different methods. Among them, numerical
simulation [14,18,19], in situ observation [20,21] and satellite remote sensing [22] are three
traditional methods used to study the Kuroshio intrusion in the SCS. The characteristics
of the Kuroshio intrusion in the SCS are depicted based on these methods. The Kuroshio
intrusion in the SCS has obvious seasonal variation, the intrusion is stronger in winter and
weaker in summer [1,23]. In addition to seasonal variation, the Kuroshio intrusion also has
inter-annual variability. However, due to the limited observational data, it is difficult to
study the long-term variation of the Kuroshio [24,25].

Many studies have also been conducted on the variation in the spatial pattern of
Kuroshio intrusion in the SCS, though there is no unified final verdict. At present, there are
three main paths of the Kuroshio, i.e., the leaping path, the leaking path, and the looping
path [14,16,17]. The leaping path shows that Kuroshio bends clockwise to the Luzon Strait
rather than directly intruding into the SCS [14]. The leaking path shows that a branch of the
Kuroshio directly intrudes into the SCS and penetrates into the SCS basin [26,27]. In 2006,
Yuan et al. used satellite sea color, sea surface temperature, and altimeter data to show that
the direct path (leaking path) is the main form of surface Kuroshio intrusion in the Luzon
Strait in winter [13]. In 2008, Liang et al. confirmed the existence of the SCS branch of the
Kuroshio via in situ observations [28]. The looping path appears as an anticyclonic current,
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which enters the SCS from the southern part of the Luzon Strait and returns to the Pacific
Ocean from its northern part [25]. Generally, the looping path is accompanied by eddy
shedding events and produces an anticyclonic eddy [25,29,30]. In 2021, Sun et al. used
multiple remote sensing datasets to analyze the Kuroshio intrusion in the SCS, indicating
that a strong Kuroshio loop current and accompanying anticyclonic eddy existed in winter
2020–2021 [31].

In recent years, some deep learning models have attracted the attention of scholars with
the rise of big data. In 2015, Zeng et al. adopted artificial neural networks (ANN) to predict
the loop current variation in the Gulf of Mexico and obtained good prediction results [32].
In 2019, Wang et al. used the divide-and-conquer machine learning method to predict the
loop current system SSH evolution in the Gulf of Mexico 9 weeks ahead [33]. These studies
have made it possible for us to predict the changeable eddy structure around the Luzon
Strait based on deep learning. In this paper, the changeable eddy structure in the Luzon
Strait was predicted based on ANN. Evaluation methods, such as correlation coefficient
(CC), root-mean-square-error (RMSE) and prediction skill score (SS) were applied to assess
the model’s ability to predict the changeable eddy structure around the Luzon Strait.

The structure of the paper is as follows. Section 2 applies EOF analysis to process SLA
data, and then adopts ANN to predict the processed data. Section 3 presents the results
and analysis. The last section presents a discussion and a summary.

2. Materials and Methods
2.1. Datasets

The gridded altimeter-based SLA data from 1 January 1993 to 31 December 2017
around the Luzon Strait (115◦E–125◦E, 15◦N–25◦N) were used to study the SLA data
provided by the French Archiving, Validation and Interpretation of Satellite Oceanographic
Data (AVISO; Available online: http://www.aviso.altimetry.fr/en/home.html/ (accessed
on 2 August 2021)). The merged data comes from the combination of Topex/Poseidon,
Jason-1, OSTM/Jason-2, Jason-3. The initial SLA data are in the form of a time-dependent
three-dimensional matrix, which is a time series composed of two-dimensional matrices.
The latitude and longitude of the study area are represented by the rows and columns of the
two-dimensional matrix, respectively. The time span of SLA data is 9129 days, the spatial
span is 10◦ × 10◦. The spatial resolution and temporal resolution of the data are 0.25◦

and 1 day, respectively. Therefore, the initial data are composed of 9129 two-dimensional
matrices of 40 × 40.

In order to quantify control, only the data deeper than 200 m were selected for research.
The ETOP01, released by the National Oceanic and Atmospheric Administration (NOAA)
National Geophysical Data Center, was interpolated to the SSH grid (Available online:
https://www.ngdc.noaa.gov/mgg/global/global.html (accessed on on 6 September 2021)).
The resolution of ETOP01 data is 1′. The geostrophic velocities used to show variation of
geostrophic current were collected from AVISO. The tracks of the typhoon were obtained
from the Tropical Cyclone Data Center of China Meteorological Administration (Available
online: http://tcdata.typhoon.org.cn (accessed on 6 September 2021)) [34,35].

2.2. EOF Analysis

EOF analysis is a multivariate data processing method, which can convert multiple
indicators into a few indicators [36]. It is widely applied in various fields, such as oceanog-
raphy and meteorology. The wide application of EOF analysis benefits from an important
feature: the ability to decompose the original data into a series of orthogonal vectors which
are independent form each other, so that the initial data can be reconstructed by part of
the vector [37]. That is to say, EOF analysis extracts the main information in the data and
reconstructs the initial data with the main information. It can greatly reduce the amount of
processed data to realize the compression of the datasets under the premise of considering
the maximum correlation. The realization of EOF analysis is mainly through singular value
decomposition (SVD) [38].

http://www.aviso.altimetry.fr/en/home.html/
https://www.ngdc.noaa.gov/mgg/global/global.html
http://tcdata.typhoon.org.cn
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Let S be an m× n matrix with rows and columns representing the time series and
spatial data points, respectively. EOF analysis is used to decompose the matrix S:

S = PΣQT (1)

where matrix P, Q are orthogonal matrices, and matrix Σ is diagonal matrix. Matrix PΣ is
time-dependent principal component (PC), and matrix QT is spatial mode (EOF), T is the
transpose operation of the vector.

The variance contribution rate of the kth mode (kth PC) can be obtained:

fk =
λk
r
∑

i=1
λi

(2)

where r ≤ min(m, n) is the rank of matrix S, λi is the singular value of matrix S, and
λi(i = 1, 2, · · · , r) is arranged in descending order.

The variance contribution rate of the PC can be used to determine the PC and the
number of PCs used for data reconstruction. The larger the variance contribution rate is,
the more important this PC is. The PC with the smaller variance contribution rate will
be discarded [37]. According to Equation (2), the variance contribution rate is decreasing.
Therefore, the first few PCs can be used to reconstruct the data, and the reconstructed data
does not lose too much information.

2.3. ANN

ANN, a new type of large-scale computing system, can perform multi-factor analysis,
which is derived from biological neural networks [39]. However, ANN does not simply
model the operation of biological systems, which solves complex problems through known
biological network functions [40]. In 1943, the artificial neuron was first introduced, and the
earliest computational neural network was developed in 1960. Although neural networks
appeared earlier, the development of ANN was relatively slow for a long time. Until the
emergence of the back propagation algorithm (BP), ANN developed rapidly [41]. The
goal of back propagation is to minimize the error between the output values and the
actual values.

ANN is composed of interconnected neurons or nodes (the basic unit of ANN, see
Figure 2) that receive input signals from external input or other neurons. Then, the input
signals are weighted and passed to the activation function to obtain the output signal [42].
The activation function executed by nodes i is:

neui = fi(
N

∑
j=1

wijxj − θi) (3)

where, neui represents the output of nodes i, fi denotes the activation function. Generally,
the activation function is nonlinear, such as Sigmoid, Heaviside and Rule functions. wij is
the weight between node i and node j, xj indicates input data, and θi represents bias.

The basic structure of ANN includes input layer, hidden layer and output layer. A five-
layer neural network is shown in Figure 3. Among them, the number of hidden layers needs
to be determined according to specific problems. Generally, one hidden layer can make
ANN approximate any nonlinear function at any desired precision. The hidden layer is to
detect the characteristics of the data through the hidden nodes, so as to perform complex
nonlinear mapping [42]. Fewer hidden nodes can avoid some over-fitting problems, but
ANN may not be able to effectively learn data. The choice of the number of hidden nodes
is a key and complex issue; the widely adopted method to determine the number of hidden
nodes is to perform repeated experiments [42]. The detailed introduction to ANN refers to
Jain et al. [40].
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As a computing tool, ANN has significant advantages in control, forecasting, function
approximation, optimization and so on [43]. Among them, forecasting is the most important
function of ANN. Additionally, as a prediction method, ANN is widely used in various
fields, such as medicine, water resources and oceanography. The back propagation neural
network (BPNN) is the most common method. The back propagation neural network with
three hidden layers is adopted in this paper and the number of nodes for each hidden layer
is 10, 5, 1. The sigmoid and linear functions are chosen as active functions for three hidden
layers, and sigmoid active function is defined as:

f (x) =
1

1 + e−x (4)

The back propagation neural network is trained and tested with SLA PCs vectors. 85%
of the datasets is used for training back propagation neural network, and the remaining
15% is used for testing. The initial learning rate of the model is set to 0.001, the momentum
factor is 0.9, the number of iterations is 1000, and the number of intervals is 125.

2.4. Forecasting Process

The SLA data around the Luzon Strait from 1 January 1993 to 31 December 2017
(25 years) is selected as the research data. Because the spatial span and time span of the
SLA data are very large, it is difficult to directly predict SLA by ANN. In order to avoid the
difficulty of forecasting caused by too large data dimension, the EOF analysis is used to
compress the initial SLA data. The SLA data is decomposed to spatial modal (EOF) and
time-dependent principal component (PC). The forecasting process is shown in Figure 4.
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The initial data is a time-dependent three-dimensional matrix which cannot be decom-
posed directly, so it needs to be reduced in dimensionality. The initial 9129 two-dimensional
40× 40 matrices expanded in rows (or columns). Then, the 9129 vectors are reorganized to
form a two-dimensional 9129× 1600 matrix S, in which rows represent the time series, and
the columns represent the spatial data point. Using EOF analysis to decompose the matrix
S can be expressed as:

s =


s1,1 s1,2 · · · s1,n
s2,1 s2,2 · · · s2,n

...
...

. . .
...

sm,1 sm,2 · · · sm,n

 =


p1,1 p1,2 · · · p1,n
p2,1 p2,2 · · · p2,n

...
...

. . .
...

pm,1 pm,2 · · · pm,n




e1,1 e1,2 · · · e1,n
e2,1 e2,2 · · · e2,n

...
...

. . .
...

en,1 en,2 · · · en,n

 (5)

where, S is the SLA data, si,j(i = 1, 2, · · · , m, j = 1, 2, · · · , n) is the jth spatial SLA data point
at time i, m represents the time index, and n represents the number of SLA spatial points.
(p1,i, p2,i, · · · , pm,i)

T means the ith PC, T is the transpose operation of the vector.
From Table 1, it is clear that the first few main PCs are used to reconstruct and can

make the reconstructed SLA data restore the information well. Therefore, the first k PCs
can be used to reconstruct SLA data. The SLA data at time m + 1 can be reconstructed ap-
proximately:

(pm+1,1, pm+1,2, · · · , pm+1,k)


e1,1 e1,2 · · · e1,n
e2,1 e2,2 · · · e2,n

...
...

. . .
...

ek,1 ek,2 · · · ek,n

 .
= (sm+1,1, sm+1,2, · · · sm+1,n) (6)

It can be seen that if we predict the SLA data at time m + 1, we only need to predict the
PCs at time m + 1.

The back propagation neural network with three hidden layers is used to predict the
PCs. Above, it can be seen that the PCs decomposed by EOF analysis are independent of
each other, so the value of the jth PC at time m + 1 can be obtained:

Pm+1,j = f (pm,j, pm−1,j, . . . , pn−l,j) (7)
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where pm,j is the jth PC of the SLA at the mth record and l is time delay. The greater the time
delay is, the longer the training time is. The jth PC of the SLA at the time m + 1 obtained by
the ANN can be substituted into Equation (7) to predict pm+2,j (see Figure 5).

Table 1. Time-averaged correlation coefficient (blue numbers) and RMSE (m) of different quantities
of PCs of the SCS SLA between predicted and observed from 18 April 2014 to 31 December 2017.
The first column is the number of PCs. The second column is the variance contribution rate for
different PCs.

PC No. PC Percentage (%) Day 1 Day 5 Day 10 Day 15 Day 16 Day 20 Day 30

7 75 0.7481 0.7418 0.7021 0.6220 0.6030 0.5230 0.3214
0.0575 0.0583 0.0630 0.0709 0.0725 0.0785 0.0896

10 80 0.8035 0.7948 0.7441 0.6532 0.6326 0.5474 0.3432
0.0747 0.0752 0.0798 0.0866 0.0880 0.0930 0.1017

14 85 0.8730 0.8620 0.8016 0.6941 0.6699 0.5724 0.3479
0.0421 0.0441 0.0533 0.0654 0.0677 0.0753 0.0878

20 90 0.9106 0.8971 0.8260 0.7078 0.6823 0.5813 0.3534
0.0354 0.0383 0.0502 0.0643 0.0668 0.0752 0.0886

35 95 0.9545 0.9349 0.8452 0.7120 0.6847 0.5783 0.3444
0.0254 0.0308 0.0478 0.0640 0.0667 0.0755 0.0889

40 96 0.9629 0.9415 0.8453 0.7060 0.6777 0.5944 0.3329
0.0230 0.0293 0.0477 0.0643 0.0670 0.0759 0.0888

PC percentage represents the variance contribution rate.
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Figure 5. The comparison of the first PCs of the observed (red) and predicted (blue) SLA of the study
area from 18 April 2014 to 31 December 2017. The upper left of the figures shows the number of
forecast days. The correlation coefficient is at the top right of the figures.

2.5. The Method of Evaluation

First, the prediction system is evaluated by calculating the correlation coefficient (the
larger the correlation coefficient is, the higher the accuracy is) and RMSE (the smaller the
correlation coefficient is, the higher the accuracy is) between the predicted and observed
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SLA values. The correlation coefficient is directly obtained through the program. The RMSE
of each grid point at day n is defined as:

RMSEpre =

√√√√√ m
∑

i=1
(SLAPi,n − SLAOi,n)

2

m
(8)

where, m represents the total number of SLA data points in the study area, SLAPi,n represents
the ith predicted SLA data point at day n, and SLAOi,n represents the ith observed SLA data
point at day n.

Due to the slow variation in SLA, we made a persistence forecast [44]. Persistence
represents that the observed SLA data at day 0 is selected as the predicted SLA data for each
prediction window. In order to verify the accuracy of the prediction model, the prediction
system is evaluated by comparing the RMSE of prediction and persistence. The RMSE
between persisted and observed SLA of each grid point at day n is defined as:

RMSEper =

√√√√√ m
∑

i=1
(SLAOi,0 − SLAOi,n)

2

m
(9)

where, SLAOi,0 represents the ith observed SLA data point at week 0 for each prediction window.
Finally, the skill score (the larger the skill score is, the higher the accuracy is) [45] is

used to verify the model. The predicted skill score of the SLA at each grid point at day n is
defined as:

SSPre = 1−

m
∑

i=1
(SLAPi,n − SLAOi,n)

2

m
∑

i=1
(SLAOi,n − SLAOi,n)

2
(10)

where, SLAOi,n represents the arithmetic mean of the observed SLA. The persisted skill
score of the SLA at each grid point at day n is defined as:

SSper = 1−

m
∑

i=1
(SLAOi,0 − SLAOi,n)

2

m
∑

i=1
(SLAOi,n − SLAOi,n)

2
(11)

3. Results
3.1. SLA Prediction

Figure 5 shows the correlation coefficient of the first PCs of the observed and predicted
SCS SLA for different prediction days from 18 April 2014 to 31 December 2017. The
predicted value is consistent with the observed value for the 1-day prediction, and the
correlation coefficient reaches 1. It indicates that ANN can predict the first PCs values of the
SLA almost exactly. The correlation coefficient decreases from 1.0000 to 0.9597 from day 1
to day 15, which indicates that the accuracy of the prediction decreases. According to the
prediction method, the possible reason is that the error generated in each prediction step will
propagate downward. Additionally, as the prediction time increases, error accumulation
will occur. Although the correlation coefficient decreases with the increase in prediction
time, the correlation coefficient can still reach 0.9597 at day 15. This indicates that the
reliability of the prediction model is high.

The predicted SLA can be reconstructed by multiplying the predicted PCs and EOFs,
as in Equation (6). Table 1 shows the time-averaged correlation coefficient and RMSE
between the predicted and observed SCS SLA from 2 April 2014 to 31 December 2017 in
different quantities of PCs. It can be obtained from Table 1 that the number of PCs are set
to 7, 10, 14, 20, 35 and 40, the corresponding variance contribution rates are 75%, 80%, 85%,
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90%, 95% and 96%, respectively. From Table 1, the correlation coefficient decreases and the
RMSE increases with the increase in prediction time, which indicates that the accuracy of
prediction is decreasing. The correlation coefficient increases and RMSE decreases with
the increase in the number of PCs. However, for the prediction of 15 days, the correlation
coefficient of 35 PCs is larger than that of 40 PCs, and RMSE of 35 PCs is smaller than
that of 40 PCs. This shows that when the number of PCs increases to a certain extent, the
performance of the model does not increase significantly or even maybe decreases. This
is because PCs with a small variance contribution rate are noisier and more difficult to
predict. From the prediction of 16 days to 30 days, even the number of PCs reaches 40,
the correlation coefficient does not exceed 0.7. This indicates that the performance of the
prediction model is not very good for long-term prediction.

3.2. SLA Evaluation

According to Equation (6) and Table 1, using the first 35 PCs to construct predicted
SLA will have the largest correlation coefficient and the smallest RMSE at day 15 among
the six cases (Table 1). The large correlation coefficient and the small RMSE represent
good prediction performance, so the first 35 PCs are selected to reconstruct SLA. Figure 6
shows the correlation coefficient and RMSE between the observed and predicted SLA in
the study area from 18 April 2014 to 31 December 2017 with a 15-day ahead daily sliding
prediction window using 35 PCs. From Figure 6, the correlation coefficients are all greater
than 0.8 at day 1, day 3 and day 5. There are few time periods when correlation coefficients
are lower than 0.8 at day 7 and day 9. The correlation coefficients oscillate around 0.8 at
day 11. For the prediction of day 13 and day 15, correlation coefficients are lower than 0.8
at most of the time periods. The results show that the oscillation of correlation coefficient is
becoming more and more obvious with the increase in prediction time. This reason may
be the error generated in each prediction step will propagate downward. For example,
there was obvious oscillation in September 2015, April 2016, and April 2017; the oscillation
became more and more obvious with the increase in prediction time. The RMSEs are lower
than 0.2 m overall, even they are lower than 0.1 m at day 1, day 3, day 5, and day 7. In
summary, the accuracy of the forecast is decreasing with the increase in prediction time.
Even if the performance of the model decreases with the increase in prediction time, all
correlation coefficients of day 1, day 3, day 5, day 7 are not less than 0.7, which indicates
that the eddy variation can be captured at least 7 days in advance. Additionally, some
correlation coefficients are higher than 0.7 in some time periods at day 9, day 11, day 13,
and day 15, indicating the eddy variation can be captured even 9 days, 11 days, 13 days,
and 15 days ahead in some time periods.

In addition to the propagation and accumulation of errors, the oscillation of prediction
performance may be caused by the non-linear variation of the eddy, and the temporary sea
level variation is caused by a sudden change in atmospheric condition (such as typhoons).
For example, the correlation coefficient is small in August 2015 at day 15 when Typhoon
Soudelor and Goni pass through the study area.

To further quantify the prediction performance of the model, the SLA RMSEs for
prediction and persistence from 18 April 2014 to 31 December 2017 are compared (Figure 7).
As the prediction time increases (from day 1 to day 15), the RMSEs of prediction and
persistence are increasing. The growth rate in each prediction step is different, but the
increase in prediction is slower than that of persistence at most time periods. When making
short-term (no more than 3 days) forecast, the RMSEs of persistence are smaller than those of
prediction. The small RMSE represents high accuracy. Therefore, the accuracy of persistence
is higher than that of prediction for short-term forecast, which means the performance of
persistence is better. However, the prediction model has obvious advantages when making
a medium-term (higher than 3 days and no more than 15 days) forecast. The RMSEs of
prediction are smaller than those of persistence for a medium-term prediction. It shows
that the prediction outperforms the persistence for a medium-term forecast.
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In addition, we also compared the averaged RMSE of SLA for prediction and persis-
tence from 18 April 2014 to 31 December 2017 (Figure 8). Whether it is the average RMSEs
of 15 days or 3 years, the average RMSEs of prediction are higher than those of persistence
for short-term forecast, which means the accuracy of persistence is higher. It shows that
the performance of persistence is better than that of prediction for short-term forecast.
However, whether it is the average RMSE of 15 days or 3 years, the average RMSEs of
persistence are higher than those of prediction for medium-term forecast, which means the
accuracy of prediction is higher. This indicates that the performance of prediction is better
than that of persistence. From Figure 8, the average RMSE of prediction and persistence
from 1 day to 15 days gradually increases. At day 15, the 3-year average RMSE of prediction
is 0.06 m, while the persistence one reaches 0.08 m. This indicates that skill of prediction is
better than persistence.
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Figure 7. RMSE Comparison of SLA between prediction (red) and persistence (black) from 18 April
2014 to 31 December 2017. The circle represents the position of day 1. The prediction time is 15 days.
Circles are plotted every 15 days.
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Similarly, skill score is a way to evaluate prediction performance. Therefore, the
skill scores of predictions and persistence are compared to evaluate the prediction model.
Contrary to RMSE, the higher the skill score is, the higher the accuracy is and the better
the performance is. Figure 9 shows skill scores comparison between the prediction and
persistence from 18 April 2014 to 31 December 2017. As the prediction time increases (from
1 day to 15 days), the skill scores of predictions and persistence gradually decrease. While
the descent rate is different in each prediction step. Generally, the skill score of prediction
is higher than that of persistence, indicating that the performance of prediction is better
than that of persistence. According to Figure 9, the skill score of persistence is lower than 0
in many time periods, which is caused by the accumulation of errors.
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Figure 9. Skill score comparison of SLA between prediction (red) and persistence (black). The circle
represents the position of day 1. The prediction time is 15 days. Circles are plotted every 15 days.

Figure 10 shows the averaged skill scores of SLA for prediction and persistence from
18 April 2014 to 31 December 2017. As the time increases (from 1 day to 15 days), averaged
skill scores of predictions and persistence gradually decrease. The 3-year average skill score
of the prediction is 0.4764 at day 15, while the persistence one is only −0.1767. Whether it is
the averaged skill score of 15 days or 3 years, the skill scores of predictions are lower than
those of persistence for short-term forecasts, indicating that the accuracy of persistence
is higher than prediction. However, the averaged skill scores of 15 days and 3-year of
prediction are higher than those of persistence for medium-term forecasts, indicating that
the performance of the prediction model is better than that of persistence.
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3.3. Four Eddy Event Examples

In order to further verify the accuracy of the prediction model, we made a 15-day
prediction of four eddy events that occurred in the study area from 3 April 2014 to
31 December 2017 and compared those with the observed eddy events (see Figures 11–14).
The four eddy events are: cyclone eddy event, eddy shedding event, anticyclone eddy
event, and abnormal anticyclone eddy event, respectively. In fact, approximately 7 cyclonic
eddy events, 7 anticyclonic eddy events and 2 eddy shedding events occurred in this
area, but only 4 representative eddy events were selected for detailed introduction. The
performance of the prediction model is verified by comparing the observed and predicted
SLA for the eddy event. Due to the statistical characteristics of EOF analysis, the intensity of
the predicted eddy is weaker than that of the observed eddy, which makes it very difficult
to find an optimal contour to represent both the predicted and observed eddy boundaries.
After numerous experiments, the contours of −0.13 m and 0.15 m are selected to represent
the boundaries of the cyclone eddy and abnormal anticyclone eddy, respectively. The
counters of 0.2 m and 0.165 m are chosen as the eddy edges for observation and prediction
to demonstrate the ring of Kuroshio in Figure 12, respectively. The counters of 0.19 m and
0.17 m are chosen as the eddy edges for observation and prediction to show the anticyclone
eddy in Figure 13, respectively.

To better understand the evolution of eddies, the variation in the geostrophic cur-
rent around the Luzon Strait provided by long-term satellite observations is shown in
Figures 11–14. In the following, the four eddy events and the variation of geostrophic
current will be discussed in detail to verify the ability of the prediction model to track the
evolution of eddies.
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Figure 11. Comparison between observed and predicted SLA at (a) day 1, (b) day 5, (c) day 10,
(d) day 15. The white dashed line represents the −0.13 m contour, and the blue area around the white
dashed line is the cyclone eddy. The left column shows the results from observation, the middle
column shows the results from the prediction, and the right column shows the difference between
the observed and predicted SLA. Black vectors are the variation of geostrophic current.
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Figure 12. Comparison between observed and predicted SLA at (a) day 1, (b) day 5, (c) day 10,
(d) day 15. The white dashed line represents the counters of 0.2 m and 0.165 m for observation and
prediction, respectively. The red area around the white dashed line are Kuroshio loop current and
anticyclone eddies which detach from Kuroshio loop current. The left column shows the results
from observation, the middle column shows the results from the prediction, and the right column
shows the difference between the observed and predicted SLA. Black vectors are the variation of
geostrophic current.
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Figure 13. Comparison between observed and predicted SLA at (a) day 1, (b) day 5, (c) day 10,
(d) day 15. The white dashed line represents the counters of 0.19 m and 0.17 m for observation and
prediction, respectively. The red area around the white dashed line is the anticyclone eddy. The left
column shows the results from observation, the middle column shows the results from the prediction
model, and the right column shows the difference between the observed and predicted SLA. Black
vectors are the variation of geostrophic current.
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Figure 14. Comparison between observed and predicted SLA at (a) day 1, (b) day 5, (c) day 10,
(d) day 15. The white dashed line represents the 0.15 m contour, and the red area around the white
dashed line are the eddy shedding and the abnormal anticyclone eddy. The left column shows the
results from observation, the middle column shows the results from the prediction, and the right
column shows the difference between the observed and predicted SLA. Black vectors are the variation
of geostrophic current.

3.3.1. A Cyclone Eddy and the Loop Path of Kuroshio in Winter

Figure 11 shows the comparison of observed and predicted SLA for a cyclone eddy
event occurred in the study area from 27 December 2014 to 10 January 2015. According
to the results from the observations, the main axis of the Kuroshio bent westward in
the Luzon Strait at 27 December 2014, the Kuroshio loop current started to form. From
31 December 2014 to 10 January 2015, the Kuroshio loop current was fully established. The
results of our observations show that there was a cyclone eddy in north-western Luzon
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Island from 27 December 2014 to 10 January 2015. At the corresponding time, results of the
prediction also show that there was a cyclone eddy at the same location. This indicates that
our prediction model can predict the existence and location of the cyclone eddy.

3.3.2. Rings of Kuroshio

Figure 12 shows the comparison of observed and predicted SLA for an eddy shedding
event occurred in the study area from 1 November 2015 to 15 November 2015. According
to results from observation, the main axis of the Kuroshio bent clockwise into SCS in the
middle of Luzon Strait from 1 November 2015 to 5 November 2015, and then flowed out
from the northern part of Luzon Strait. The Kuroshio loop current was formed in the study
area. An anticyclone eddy shed from the Kuroshio loop current and slowly propagated to
the southwest from 10 November 2015 to 15 November 2015. According to results from
observation and prediction, the variation of the Kuroshio loop current and the anticyclone
eddy occurred at the same time in both observation and prediction, which shows that the
anticyclone eddy gradually propagates to the southwest. This indicates that the prediction
model can capture the shedding and movement process of the anticyclone eddy.

3.3.3. An Anticyclone Eddy and the Leaping Path of Kuroshio in Summer

Figure 13 shows the comparison of the observed and predicted SLA for an anticyclone
eddy event which occurred in the study area from 7 August 2016 to 21 August 2016.
According to the results from observation, the main axis of the Kuroshio bent westward,
but did not intrude into the SCS from 7 August 2016 to 21 August 2016. According to
results from observation and prediction, there was an anticyclone eddy in the southwest of
Taiwan. This indicates that our prediction model can predict the existence and location of
the anticyclone eddy.

3.3.4. An Abnormal Anticyclonic Eddy and the Strong Loop Path of Kuroshio

Figure 14 shows a comparison between the observed and predicted SLA for an eddy
shedding event and an abnormal anticyclone eddy event which occurred in the study
area from 1 February 2017 to 15 February 2017. In 2021, Sun et al. [31] indicated that a
strong Kuroshio loop current occurred in the Luzon Strait from 24 November 2016 to 10
February 2017. According to observation results, from 1 February 2017 to 5 February 2017,
the abnormal anticyclone eddy started to detach from the Kuroshio loop current. From
10 February 2017 to 15 February 2017, the abnormal anticyclone eddy was completely
detached from the Kuroshio loop current. According to results from observation and
prediction, the variation of the Kuroshio loop current and the abnormal anticyclone eddy
occurred at the same time in both observation and prediction. It shows that the prediction
model can capture the process of the eddy shedding and westward propagation of the
abnormal anticyclone eddy.

From Figures 11–14, it is clearly found that for the prediction of the four eddy events,
the predicted value of SLA is lower than the observed value, which is meant in an absolute
sense. That is, predicted SLA underestimates the intensity of the eddies and mesoscale
fronts. As the prediction time increases, the difference between predicted and observed SLA
becomes larger, and the difference mainly occurs in the area of eddy events. The possible
reason is error propagation and the non-linear variation of the eddy. Although there are
small differences between the predicted value and the observed value, the position and
evolution of the eddy can still be captured. It shows that the performance of prediction
model is good.

4. Discussions about the Influence of Extreme Weather to Prediction Model

From Figure 6, the performance of the prediction model is not very good in several time
periods, such as May 2015, August 2015, April 2016, April 2017 and September 2017. The
errors potentially come from prediction of the PCs by ANN and the construction process of
the predicted SLA. In addition, the temporary sea level variation caused by sudden change
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of atmospheric condition (such as typhoons) may decrease the accuracy of prediction.
Typhoons, a tropical cyclone in the eastern Pacific and Atlantic oceans, can cause strong
winds, rainstorms, storm surges and huge wave heights [46,47]. When a typhoon occurs,
the sea surface height will change drastically in a short time. This is a challenge for deep
learning, because it cannot react quickly to rapid and short-lived changes. For example,
when the Typhoon Soudelor and Goni passed the study area in August 2015, correlation
coefficients were relatively lower than other periods at day 15 (see Figure 6). It can be
seen from Figures 15 and 16 that the difference between the predicted and observed SLA
becomes more and more obvious with the increase in prediction time, and the difference
mainly occurs near the typhoon trajectory. This indicates that the prediction performance
of the model will be reduced under the influence of extreme weather (such as typhoons).
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Figure 15. Comparison between observed and predicted SLA at (a) day 1, (b) day 5, (c) day 10,
(d) day 15. The left column shows the results from observation, the middle column shows the results
from the prediction, and the right column shows the difference between the observed and predicted
SLA. Black vectors are the variation of geostrophic current. Blue line is track of Typhoon Soudelor
from 30 July 2015 to 13 August 2015.
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Figure 16. Comparison between observed and predicted SLA at (a) day 1, (b) day 5, (c) day 10,
(d) day 15. The left column shows the results from observation, the middle column shows the results
from the prediction, and the right column shows the difference between the observed and predicted
SLA. Black vectors are the variation of geostrophic current. Blue line is track of Typhoon Goni from
15 August 2015 to 29 August 2015.

5. Conclusions

SLA data obtained from satellite altimeter observations around the Luzon Strait from
1 January 1993 to 31 December 2017 were used for this study. A total of 85% of the data is
used to train ANN for building a prediction model, and the remaining 15% is used to test
the model. Because the dimension of data is too large, it is difficult and costly to directly
predict by ANN. Therefore, the initial data was compressed by EOF analysis to reduce the
data dimension.

A 15-day daily sliding prediction window was used to predict the SLA data from
3 April 2014 to 31 December 2017. Then, several methods were adopted to evaluate
the performance of the model. First, the model was evaluated by calculating the spatial
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correlation coefficients and RMSEs between the predicted and observed SLA data. The
results showed that even if there are some performance oscillations in the later days of the
prediction window, there are still higher correlation coefficients and lower RMSEs in most
time periods. This indicated that the accuracy of prediction model is higher. In addition,
the prediction system was evaluated by comparing the RMSE and skill score of prediction
and persistence. The results show that for short-term forecast, the RMSE of persistence
is lower than that of prediction, and the skill score of persistence is higher than that of
prediction. This indicated that the performance of the persistence is better than that of
prediction for short-term forecasts. On the contrary, the RMSE of prediction is lower than
that of persistence and the skill score of prediction is higher than that of persistence for
medium-term forecasts. Moreover, the 3-yr mean RMSEs of prediction and persistence are
0.06 m and 0.08 m at day 15, respectively. The 3-yr mean skill scores of predictions and
persistence are 0.4764 and −0.1767 at day 15, respectively. It shows that the performance
of prediction is better than that of persistence for medium-term forecasts. Finally, the
prediction model is evaluated by comparing the SLA of the eddy and eddy shedding events
occurred in the study area. It shows that the model can capture the location, propagation
and evolution of eddy events and eddy shedding events well.

Although the accuracy of the prediction model is higher most of the time, the accuracy
of the prediction decreases when extreme weather occurs near the study area. The possible
reason is that air–sea interaction is not built into the prediction model. Therefore, the
air–sea interaction will be considered to improve the performance of the prediction model
in future research. At the same time, the algorithm will be optimized to reduce errors
and improve the accuracy of prediction. In addition, the prediction model can be used to
determine other ocean physical quantities, such as sea surface temperature (SST), and sea
surface salinity (SSS), and applied in other sea areas.
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