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Abstract: Urbanization processes greatly change urban landscape patterns and the urban thermal
environment. Significant multi-scale correlation exists between the land surface temperature (LST)
and landscape pattern. Compared with traditional linear regression methods, the regression model
based on random forest has the advantages of higher accuracy and better learning ability, and can
remove the linear correlation between regression features. Taking Beijing’s metropolitan area as an
example, this paper conducted multi-scale relationship analysis between 3D landscape patterns and
LST using Pearson Correlation Coefficient (PCC), Multiple Linear Regression and Random Forest
Regression (RFR). The results indicated that LST was relatively high in the central area of Beijing, and
decreased from the center to the surrounding areas. The interpretation effect of 3D landscape metrics
on LST was more obvious than that of the 2D landscape metrics, and 3D landscape diversity and
evenness played more important roles than the other metrics in the change of LST. The multi-scale
relationship between LST and the landscape pattern was discovered in the fourth ring road of Beijing,
the effect of the extent of change on the landscape pattern is greater than that of the grain size change,
and the interpretation effect and correlation of landscape metrics on LST increase with the increase in
the rectangle size. Impervious surfaces significantly increased the LST, while the impervious surfaces
located at low building areas were more likely to increase LST than those located at tall building
areas. It seems that increasing the distance between buildings to improve the rate of energy exchange
between urban and rural areas can effectively decrease LST. Vegetation and water can effectively
reduce LST, but large, clustered and irregularly shaped patches have a better effect on land surface
cooling than small and discrete patches. The Coefficients of Rectangle Variation (CORV) power
function fitting results of landscape metrics showed that the optimal rectangle size for studying the
relationship between the 3D landscape pattern and LST is about 700 m. Our study is useful for future
urban planning and provides references to mitigate the daytime urban heat island (UHI) effect.

Keywords: land surface temperature; 3D landscape pattern; random forest regression; multi-scale
analysis

1. Introduction

Urbanization has become one of the most important human activities since the 21st
century, with people’s living environments requiring continuous improvement [1]. The
transformation of natural or semi natural landscapes, such as vegetation, rivers, and crop-
land, to urban impervious surfaces weakens the surface evapotranspiration and increases
the amount of conversion from latent heat to sensible heat, which greatly changes the urban
thermal environment and leads to the increase of urban LST [2]. Heat accumulates in urban
areas due to urban buildings and human activities, and makes the urban temperature
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higher than that of surrounding suburbs; this is called an urban heat island (UHI) [3].
In the past decades, researchers have found that factors, including population density,
anthropogenic heat release, building distribution, and the 2D and 3D landscape pattern
of the city were validated as highly related factors for UHI [4–7]. The affection of UHI to
the urban atmospheric environment, living environment and material circulation usually
negatively affects human physical and mental health in urban areas [8–11]. From 2001
to 2018, China’s newly added urban area accounted for 47.5% of the total, ranking first
in the world [12]. As the capital city of China, Beijing has a significant UHI effect, with
an average summer heat island intensity of about 2.3–3.4 K [13]. Zhao et al. used the
Kriging method with monitoring summer data and proved that high temperatures in the
center of Beijing can deteriorate air quality [14]. He et al. demonstrated that synergistic
interactions between UHI and heatwaves presents heat-related risks for urban society and
residents using observation and a numerical model [15]. Cui et al. indicated that UHI led
to the increase of the urban heating and cooling load by statistical analysis of the 50-year
17-station weather data [16]. In summary, high LST in Beijing obviously showed negative
effects on living conditions and human health.

Landscape patterns are usually characterized by landscape metrics and spatial statis-
tical methods [17–19], and component and spatial configuration are the two major facets
delineated by landscape metrics [20]. Traditional 2D landscape metrics depict landscape
information in the horizontal projection plane without consideration of the vertical direc-
tion [21]. Urban 3D characteristics affect the urban climate and environment in terms of sky
visibility, urban canyon air flow, light intensity, and energy accumulation [22–25], and they
also have a significant impact on UHI [26]. The application of 3D landscape metrics can
measure the 3D characteristics of the landscape, especially in the urban center with dense
buildings and complex vertical landscape structures.

The time scale and spatial scale are the two major scale effects that are considered in
landscape ecology [27]. The spatial multi-scale effect in this study included extent and grain
sized; the spatial extent was defined by the size of rectangle used to calculated the metrics
values at each pixel, and the grain size was defined as the sampling pixel size of the raster
image [28]. The spatial heterogeneity of the urban landscape pattern strongly depends
on scale. Wu et al.’s analysis of how landscape metrics respond to the change of grain
size, extent and direction of the analysis found that the scale effect of landscape metrics
could be divided into three kinds, including the predictable response, the more difficult to
predict step response and the irregular unpredictable response [27]. Yuan et al. studied the
influence of the grain size change on the LST pattern, and discovered the obvious spatial
autocorrelation of the distribution of LST and obvious scale correlation of the pattern of
LST [29]. These studies mainly consider the 2D characteristics of landscape patterns and
ignore the multi-scale dependence between the landscape pattern and UHI in 3D space.

The main methods to study the multi-scale relationship between LST and urban
landscape patterns include linear regression, geographically weighted regression, the multi-
parameter method, and spatial analysis, etc. [30,31]. Huang et al. [32] and Gage et al. [33]
both studied the relationship between LST (retrieved by Landsat 8 images) and urban 3D
characteristics; Lai et al. proved that building height, sky view factor and building density
significantly effect LST (retrieved by Landsat 8 and Landsat 5 images) [34]. Guo et al.
analyzed the effect of 3D building configuration on diurnal and nocturnal LST (retrieved
by Landsat 8 and ASTER images) [35]. However, most of these methods are based on linear
models that describe the correlation between multiple pattern independent variables and
LST by the process of regression. Correlations usually exist among different independent
variables in the process of regression, which inevitably causes over-fitting of the regression
model. A machine learning-based regression model trains the model using the same data
of regression, and analyzes and predicts the relationship between the landscape pattern
and LST by the trained model [36]. Compared with the traditional linear regression model,
the machine learning regression model, based on the tree model, has the advantages
of higher accuracy, better learning ability and strong generalization ability, which can
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better describe the nonlinear relationship between the pattern and LST, and can remove
the multicollinearity problem between landscape metrics in the regression process. Yu
et al. used an extreme gradient boosting tree (XGBR) model and the Sharpley Additive
Explained (SHAP) method to study the relationship between 3D landscape patterns and
LST in Shanghai, and obtained information on the effect of different building heights on LST
and the mitigation effect of vegetation on UHI [37]. Cristobal Pais et al. constructed a deep
fire framework based on convolutional neural network (CNN) and conducted landscape
topology analysis in southeastern Chile, proving that topological relations among different
land types are the key cause of wildfires [38]. Lin et al. analyzed the influence of a 3D
building structure on CO2 emissions based on random forest regression, and found that the
building coverage rate, average building number and space crowding degree are the main
factors affecting changes in CO2 emissions, and that emissions are positively proportional
to building density and population density [39]. Most of the above studies were conducted
on a single scale, and lack the analysis of multi scale dependence between landscape
patterns and LST.

Taking Beijing’s metropolitan area as an example, this article combined 3D landscape
metrics with the regression model of machine learning, to study 3D multi-scale effects
between the landscape pattern and UHI. The concrete content includes: (1) establishing the
regression model of landscape metrics and LST based on random forest regression to com-
pare the response effects of 2D and 3D landscape metrics on LST; (2) explore the response
of landscape metrics to LST at different grain sizes and extents in order to determine the
multi-scale relationship between the LST and landscape pattern. Our results can provide
reference for urban planning and construction in decreasing LST.

2. Materials and Methods
2.1. Study Area

Beijing is located at 115.7◦–117.4◦E and 39.4◦–41.6◦N, with an area of 16,410.54 km2

(Figure 1). Beijing is the political, cultural, scientific and technological, and innovation
center of China [40]. The spatial pattern of Beijing takes the old city as the center and
gradually expands outward, showing a concentric circle development pattern. We chose
the inner region of the fourth ring road and the second ring road as our two research areas.
The total area within the second ring road is about 62 km2, and this is the old city. Buildings
in the center part along the south to north of this region are mainly traditional dwellings
with courtyards, with a lower building height and higher density, and higher buildings
are mainly distributed along Chang’an Street and the second ring road. The fourth ring
road covers an area of approximately 302 km2 and is comprised of a highly built-up urban
landscape.
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2.2. Data and Preprocessing

We gave radiative calibration and atmospheric correction to the Landsat 8 OLI (Opera-
tional Land Imager) and TIRS (Thermal Infrared Sensor) Level-1 (Landsat 8) image, which
was used to retrieve LST. Landsat 8 is the eighth satellite in the U.S. Landsat program. It
was developed by National Aeronautics and Space Administration (NASA) in collaboration
with the United States Geological Survey (USGS) and built by Orbital Science Corporation.
Since the UHI effect of summertime testified more significantly than other seasons [41], we
chose an image which was taken on 14 June 2019 at 02:53:04 (Greenwich Mean Time) which
was the most suitable image in the summer of 2019 with sunny weather and no clouds in
our research area. The image has a spatial resolution of 30 m and the land cloud cover of
1.42%. The atmosphere temperature on 14 June 2019 was between 308.2 K and 293.2 K, and
it was about 304.6 K at the time of image acquisition with relative humidity of 24%.

Land cover data (forest, grassland, water and impervious surface) with 10 m resolution
was downloaded from Finer Resolution Observation and Monitoring-Global Land Cover
(FROM-GLC10) data set (http://data.ess.tsinghua.edu.cn/ accessed on 12 April 2020),
which was produced from the Landsat Thematic Mapper (TM) and Enhanced Thematic
Mapper Plus (ETM+). The building height data was obtained from Baidu, Inc. with a
resolution of 3 m.

We defined 10 m and 30 m two grain sizes in order to study the scale effect on LST
and the landscape pattern. We resampled 30 m LST into 10 m resolution by the cubic
convolution method, resampled 10 m land cover data and 3 m building height data into
30 m by the nearest neighbor method. All the data (Figure 2) and preprocessing were
completed under the WGS1984 coordinate system and UTM projection.
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Figure 2. Landsat 8 image, land cover map and building height of two study areas. (a) Landsat
8 image; (b) land cover map; (c) building height.

2.3. Method

As Figure 3 shows, our research comprises the following steps: (1) LST was retrieved
from Landsat 8 image using the mono-window algorithm; (2) 2D/3D landscape metrics
were calculated using land cover data and building height data; (3) the PCC was calculated
between LST and 2D/3D landscape metrics; (4) multiple linear regression and RFR were
used to analyze the multi-scale relationship between the LST and 2D/3D landscape pattern;

http://data.ess.tsinghua.edu.cn/
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(5) the Coefficients of Rectangle Variation (CORV) was introduced to obtain the optimal
calculation rectangle size in analyzing the 3D landscape pattern in the fourth ring road of
Beijing.
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2.3.1. Land Surface Temperature Retrieval

LST of the study area was retrieved by thermal infrared band 10 (TIRS10) using the
mono-window algorithm [42,43] after radiometric calibration and atmospheric correc-
tion. The TIRS10 band can be converted to brightness temperature using the following
Equation [44]:

T =
K2

ln
(

K1
M10Qcal+AL+1

) , (1)

where T is the brightness temperature of TIRS10, ML is the adjusted factor of TIRS10,
Qcal is the digital number of Landsat 8 image, AL is the tuning parameter of TIRS10,
K1 = 774.89 W/

(
m2·sr·µm

)
, and K2 = 1321.08 K [30]. Finally, LST can be obtained by

Equation (2):

LST = γ

[
ε−1

(
1
τ

L +

(
−L↓ − L↑

τ

))
+ L↓

]
+ δ, (2)

γ =
T2

b10L
, (3)

δ = T − T2

b10
, (4)

where ε is the land surface emissivity calculated according to the normalized difference
vegetation index (NDVI) [45], τ is atmospheric transmissivity, L↑ and L↓ are the atmospheric
upward radiation intensity and atmospheric downward radiation intensity, respectively,
obtained by the official website of Meteomanz (http://www.meteomanz.com/ accessed
on 6 November 2019) and Atmospheric Correction Parameter Calculator (https://atmcorr.
gsfc.nasa.gov/ accessed on 6 November 2019).

http://www.meteomanz.com/
https://atmcorr.gsfc.nasa.gov/
https://atmcorr.gsfc.nasa.gov/
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2.3.2. Landscape Metrics

Landscape metrics measure landscape patterns by describing characteristics of the
component and spatial configuration of different patches [20]. In this paper, component
metrics, configuration metrics and roughness metrics were calculated respectively at differ-
ent scales [17]. The component metrics generally describe the land cover types and relative
abundance of various types within the landscape, while the configuration metrics focused
on the spatial location, distribution characteristics and spatial relations of different types of
landscape pixels or patches [20]. Roughness metrics as 3D landscape metrics are generally
used to describe the surface features of landscapes. In this paper, roughness metrics are
used to quantify the spatial form and undulation characteristics of urban buildings. We
read relative articles and sorted some commonly used landscape metrics for quantitative
description of the landscape pattern in our study [21,32,46–49]. The detailed description of
all metrics used in this article is given in Table 1.

Table 1. Landscape metrics used in this paper and their ecological significances.

Metrics Index Calculation Formula Description

Component Metrics

Largest Patch Index (%) LPI =
max

(
aij
)

A ∗ 100

aij is the 2D/3D area of patch ij, A is the total 2D/3D area of a
rectangle. LPI measures the proportion of the largest patch in
a rectangle.

Edge Density (m/ha) ED = E
A 106

E is the total 2D/3D length of all patches’ edges. ED measures
the total side length of all patches divided by the 2D/3D area
of a rectangle.

Number of Patches NP = n NP measures the total number of patches in a rectangle.

Patches Cohesion Index COHESION =

[
1−

∑n
j=1 pij

∑n
j=1 pij

√
aij

][
1− 1√

A

]−1
∗ 100

pij is the 2D/3D perimeter of patch ij, aij is the 2D/3D surface
area of patch ij. COHESION measures the aggregation and
dispersion of patches in a rectangle.

Effective Mesh Size (ha) MESH =
∑m

i=1 ∑n
j=1 a2

ij
A

MESH measures the sum of squares of patch area divided by
the total rectangle area.

Configuration Metrics

Landscape Shape Index LSI =
0.25EAsur f√

AAprj

Asur f represents the 3D area and Aprj is the projected plane
area of Asur f . E is the total 3D edge length of all patches.

Landscape Division Index DIVISION = 1−
m
∑

i=1

n
∑

j=1

( aij
A

)2

DIVISION measures the degree of division of a rectangle.
DIVISION equals 0 when the landscape consists of single
patch. DIVISION achieves its maximum value (1) when the
landscape is maximally subdivided.

Euclidean Nearest-Neighbor Distance (m) ENN−MN =
∑n

j=1 xij
ni

xij is the 2D/3D closest distance between the same patch ij,
and ni represents the total number of class i. ENN-MN
measures the distance to the nearest neighboring patch of the
same type.

Shannon’s Diversity Index SHDI = −
n
∑

k=1
Pk ln(Pk)

Pk equals the 2D/3D area of class k, divided by the area of
2D/3D surface. SHDI measures the diversity of a rectangle.

Shannon’s Evenness Index SHEI =
−∑m

i=1(Pi lnPi)
lnm

Pi equals the 2D/3D area of class i, divided by the area of
2D/3D surface. SHEI measures the evenness of a rectangle.

Roughness Metrics

Root Mean Square Deviation of a Surface SQ =
√

1
N ∑N

i=1[hi − u]2
hi is the pixel height of class i, N is the total number of pixels
in a rectangle, u is the mean height of all pixels. SQ measures
the degree to the building deviates from the plane of a
rectangle.

Skewness of Surface Height Distribution SKU = 1
NS3

q

N
∑

i=1
[hi − u]3 SKU measures the skewness of the buildings in a rectangle.

Mean Height (m) MEAN = H
A

H is the sum of all pixels in a rectangle. MEAN is the mean
height of a rectangle.

Maximum Height (m) MAX = hmax MAX is the maximum height of a rectangle.

Sky View Factor SVF = 1− ∑n
i=1 sin γi

n

n stands for the number of directions used to estimate the
vertical elevation angle of the relief horizon. The vertical
elevation angle γi can be computed from the horizontal
distance and the elevation difference between the horizon and
the vantage point. SVF measures the sky visibility.
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2.3.3. Pearson Correlation Coefficient

PCC can evaluate the linear correlation between two variables with a value between
−1 and 1 [50–52] which can be calculated by Equation (5):

PCC =
∑N

i=1 xiyi√
∑N

i=1 x2
i ·∑

N
i=1 y2

i

, (5)

where x represented LST, y represented 2D/3D landscape metrics. When the two variables
are distributed on a straight line, PCC is equal to 1 or−1; when there is no linear relationship
between the two, the value of PCC is 0.

2.3.4. Multiple Linear Regression

Regression analysis is a statistical process used to evaluate the relationship between
variables and explain the relationship between independent and dependent variables. The
linear regression model is one of the regression analysis methods [53]. When the number
of independent variables evaluated is greater than 1, it is called multiple linear regression.
In our research, it was used at first to evaluate the relationship between LST and landscape
pattern as a comparison for random forest regression. The fitting image of multiple linear
regression is a straight line, and the highest degree of each independent variable is 1. The
multivariate linear relationship between the dependent variable ŷ (LST) and independent
variable x (landscape metrics) can be calculated as follows:

ŷ = a1x1 + a2x2 + · · ·+ anxn + b, (6)

where ai is the parameter of each 2D/3D landscape metrics in regression, b is the constant
parameter, and n is the number of metrics.

2.3.5. Random Forest Regression

Random forest is a bagging ensemble machine learning algorithm [54], which is mainly
applied in classification and regression. It has been widely used in economics, statistics, the
medical field, environmental studies and many other fields [55–58]. One of the advantages
of the tree model is that it can remove the multicollinearity between independent variables
in the regression process. It also has a strong ability to learn data sets, and so is suitable for
the regression task with a large sample [59]. Random forest regression (RFR) is a kind of
integration algorithm based on a regression tree model [54]. Compared with a traditional
linear regression model, RFR has higher accuracy with the same data set and can handle
higher dimensional feature sets because of its low sensitivity to the outliers in the data set
with a lower risk of over fitting, especially for the absence of some characteristics in the data
set [60]. The RFR algorithm establishes several parallel regression trees during regression
and obtains the regression accuracy of each parallel tree, and the regression accuracy of the
whole forest is given by the average accuracy of all regression trees (Figure 4). In this study,
surface temperature was used as a label, and different landscape metrics (15) were used
as regression features. The results on each scale in the two study areas were made into 16
columns and several rows (sample number) of data sets which were input into the RFR
model for regression. The training set used 70% of the randomly established tree model,
and the remaining 30% was used as the test set to test the regression accuracy of the model.
Finally, the RFR accuracy of the landscape metrics and LST at various scales in the two
study areas were obtained with the feature importance of each metric.

The RFR model calculates the contribution of different metrics in the regression process
based on the Gini coefficient, which can be obtained from the following formula [54]:

Gini(p) = ∑n
i=1 pi(1− pi) = 1−∑n

i=1 pi
2, (7)
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where i is the number of metrics, pi is the sample weight of metric i, and the importance
of metric Xj on node m is the variation of the Gini coefficient before and after the node m
branches:

VIM(Gini)
jm = GIM − GIl − GIr, (8)

where GIl and GIr are the Gini coefficients of the two new nodes after branching, respec-
tively. If the nodes of metric Xj appear in regression tree and i is in set M, the variable
importance measure (VIM) of Xj in this tree is:

VIM(Gini)
ij = ∑m∈M VIM(Gini)

jm , (9)

If there are n trees in the random forest, then:

VIM(Gini)
j = ∑n

i=1 VIM(Gini)
ij , (10)

Finally, all obtained importance scores are normalized as:

VIMj =
VIMj

∑c
i=1 VIMi

, (11)

where VIMj is the Gini coefficient of metric j, ∑c
i=1 VIMi is the sum of the information gain

of all metrics.
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2.3.6. Coefficient of Rectangle Variation

The metrics at each pixel were calculated in a rectangular area to analyze the distri-
bution of component and configuration characteristics [61,62]. The size of the rectangular
area was usually manually selected by the sensitivity to calculate the value of the metrics
centered at each pixel of the study area [63], which may generally affect the results of
the landscape pattern. When the rectangles are too small, the local characteristics of the
landscape will be stronger than the overall characteristics, and it is difficult to obtain the
general landscape pattern information within the whole range. If the rectangles are too
large, the resolution of the result will be reduced, and the local landscape pattern informa-
tion inside the rectangle will be lost. In order to obtain the optimal calculation rectangle size
suitable for studying the multi-scale relationship between LST and 3D landscape pattern,
the Coefficients of Rectangle Variation (CORV) is introduced in this paper, which can be
obtained from the following formula:

CORV =

√
1

n−1 ∑n
i=1(yi − y)2

y
. (12)

where n is the total number of pixels in a rectangle, yi is the metrics value of rectangle i,
and y is the average metrics value of rectangle i. CORV reflects the changes in the law of
the metrics in a different rectangle. The larger the value is, the greater the difference of the
metrics in different rectangles is, and a single rectangle tends to reflect the local information
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of the landscape. The smaller the value is, the smaller the change of the metrics is at the
rectangle size, and the more it can reflect the overall landscape pattern of the study area.

3. Results
3.1. LST Distribution in the Second and the Fourth Ring Road of Beijing

We classified LST into three levels: high temperature (318–330.6 K), medium temper-
ature (312.8–318 K) and low temperature (296.2–312.8 K) by natural discontinuity point
classification. Figure 5 shows LST distribution in the study area and the proportion of
land types at different levels of LST. It can be seen that LST in Beijing was relatively high
in summer; the highest, average, and lowest temperature in the fourth ring road and the
second ring road were 330 K, 316.8 K, and 269.1 K and 330.6 K, 317.3 K, and 296.1 K, re-
spectively. The proportion of grassland in the medium temperature decreased from 10.06%
to 7.57%, and in the low temperature decreased from 5.88% to 2.76%. The proportion
of water in the whole research area is small, but during the low temperature the water
increased from 1.05% to 2.47%. The proportion of impervious water surface at this time
was the highest in the research area, up to 75%. The overall proportion of impervious water
surface in the fourth ring road is less than that of the second ring road, but in the middle
and the low temperatures, there was the opposite result, and the proportion of the low
temperature decreased from 3.24% to 1.45%. The proportion of the medium temperature
region decreased from 32.63% to 30.42%, and during the high temperatures the region
increased from 36.86% to 44.21%. The results indicate that, in the area within the second
ring road, the impervious surface positively contributed to the LST more significantly than
it did in the area within the fourth ring road. In addition, it can also be seen from the
LST distribution figure that the LST on the edge of the fourth ring road—especially in
the northern margin region—is relatively low, and the overall surface temperature has a
decreasing trend from the center to the periphery. The maximum temperature of the area
within the second ring road was lower than that of the area in the fourth ring road, while
the average temperature was slightly higher than that of the fourth ring road. There was
an obvious high temperature gathering area in the middle of the second ring road, as well
as in the north, except for in the water area.

3.2. Pearson Correlation Coefficient between Landscape Metrics and LST
3.2.1. Pearson Correlation Coefficient between Landscape Metrics and LST at 10 m
Grain Size

Figure 6 shows the PCC between the LST and 2D/3D landscape metrics at the 10 m
grain size. All of the results were calculated under the significance of 0.05. In general, the
correlation between the 3D landscape metrics and LST is generally higher than that of the
2D. Among the three types of metrics, the correlation between the configuration metrics
and LST is the highest, the correlation between the component metrics and LST is the
second highest, and the correlation between the roughness metrics and LST is the weakest.
These results indicate that both in 2D and 3D landscapes, the proportion and configuration
of different land types are the most important factors affecting LST. Among the 15 metrics,
SHDI and SHEI had the highest correlation with LST. In terms of 3D landscape metrics, the
composition metrics and configuration metrics in the second ring road and the fourth ring
road were the same. Among the component metrics, LPI, MESH and COHESION were
positively correlated with LST, and ED and NP were negatively correlated with LST. LPI and
COHESION had a strong correlation with LST, while MESH was the weakest. The results
showed that the increasing proportion of the dominant land type (impervious surface)
in the study area would lead to the increase of LST. All five configuration metrics were
negatively correlated with LST, in which SHDI and SHEI have the strongest correlation with
LST, and LSI has the weakest correlation with LST. The correlation between the component
metrics and configuration metrics and LST increases with the increase of rectangular size.
When the size increased to 700 m or so, the increase rate slowed down and tended to be
stable.
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The correlation between roughness metrics and the LST was relatively weak, and
there are some differences between the results in two study areas. Within the second ring
road, the SQ, SKU and MAX were positively correlated with LST, the MEAN and SVF
were negatively correlated with LST, and SVF showed the strongest correlation. In the
fourth ring road, SQ, MEAN, MAX and SVF were negatively correlated with LST, while
SKU was positively correlated with LST. The mean height of the rectangle decrease refers
to the reduction in the number of buildings and building density. The results showed
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that increasing the height and decreasing the density of urban buildings can decrease the
daytime LST. This result is similar to those of previous studies: in daytime, urban planning
should meet the daylight standard, which means that the distance between buildings
generally increases with the building height [34]. High density traditional dwellings and
courtyards with a low height have almost the highest LST and the largest high temperature
aggregation of the whole study area (Figure 5). For the regions between the fourth ring
road and the second ring road, the higher LST were mainly distributed in the south area
with high height and density residential land, which was relatively cooler compared to the
lower buildings in the second ring road. The correlation between the roughness metrics
and LST was greatly affected by the rectangle variation, and the correlation between SVF
and LST was higher in the second ring road.

The correlation between the 2D landscape metrics and LST was similar to that of 3D
landscape metrics, except for ENN-MN. The correlation between ENN-MN and LST was
positively in the 2D surface, and negatively in the 3D space, which can be attributed to the
giant distance value difference between the mean of the minimum patch distance in the 2D
space and 3D space. This was because when calculating the nearest Euclidean distance of
the building patches, the value of the fluctuation of the 3D surface was much larger than
that of the 2D surface, which played a dominant role in calculating the average ENN of the
four land types. The positive correlation between ENN-MN and LST in 2D indicated that
the more dispersed the vegetation and water patches were, the worse the cooling effect
was, while the negative correlation between the ENN-MN and LST in 3D indicated that the
LST increased with the accumulation of impervious surfaces.

3.2.2. Pearson Correlation Coefficient between Landscape Metrics and LST at 30 m
Grain Size

The PCC of 30 m grain-size landscape metrics and LST (Figure 7) were highly consis-
tent with the 10 m grain-size results. The correlation of the metrics of 30 m grain size was
slightly lower than that of the 10 m grain size, and the correlation between component and
configuration metrics and LST was high, while the correlation between roughness metrics
and LST was low. The correlation between the 3D landscape metrics and LST increased
with the increase of rectangle size, and tended to be stable when the rectangle size reached
700 m. In general, the change of grain size showed little effect on the overall landscape
pattern in the study area, while the improvement of the resolution could improve the
correlation between the landscape metrics and LST.

3.3. Multiple Linear Regression between Landscape Metrics and LST
3.3.1. Multiple Linear Regression between Landscape Metrics and LST at 10 m Grain Size

In this paper, the data set made at the initial stage of the experiment was first input into
the multiple linear regression model to compare with the RFR model. The results showed
that the interpretation effect of the 3D landscape metrics on LST was better than that of the
2D landscape metrics in both study areas from the view of regression accuracy (Figure 8)
which was already proved by some previous studies [21,37]. The linear regression accuracy
between 3D metrics and LST increased steadily with the increase of rectangle size, and
the increase slowed down when the rectangle size reached 700 m. The linear regression
accuracy in the second ring road is higher than that in the fourth ring road. The linear
regression accuracy of the 3D landscape metrics and LST in the second ring road increased
from 0.76 to 0.90, and in the fourth ring road increased from 0.63 to 0.83. The accuracy of
the linear regression between the 2D landscape metrics and LST fluctuated and decreased
with the increase of the rectangle size. The multiple linear regression accuracy of the 2D
landscape metrics and LST decreased from 0.60 to 0.41 in the second ring road, and from
0.58 to 0.40 in the fourth ring road. In addition, the multiple linear regression accuracy was
higher in the second ring road. This is because the proportion of impervious surfaces of the
second ring road is higher than that of the fourth ring road, which means more buildings
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(3D landscape features) in the area which make the value differences more significant
between the 3D and 2D landscape metrics.
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3.3.2. Multiple Linear Regression between Landscape Metrics and LST at 30 m Grain Size

The linear regression accuracy of landscape metrics and LST at 30 m grain size
(Figure 9) is also very similar to that of the 10 m grain size. The accuracy of the 3D
landscape metrics and LST linear regression increases with the increase of the rectangle
size, while the accuracy of the 2D landscape metrics and LST decreased with the increase of
the rectangle size, and the accuracy of the second ring road was slightly higher than that of
the fourth ring road. The linear regression accuracy of 3D in the second ring area increased
from 0.72 to 0.85, and in the fourth ring road increased from 0.60 to 0.83. This phenomenon
was similar to the results obtained in Section 3.2.2, indicating that, although the change of
research granularity cannot change the overall landscape pattern of the study area, it can
describe the landscape pattern of the study area more accurately.
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3.4. Random Forest Regression between Landscape Metrics and LST

The R2 of the RFR model between the landscape metrics and LST (Figure 10) were
similar to the multiple linear regression results. The RFR accuracy between the 3D land-
scape metrics and LST was still higher than that of the 2D metrics, and the 3D accuracy
showed an upward trend with the increase of the rectangle size, while the 2D accuracy
shows a downward trend. At the 10 m grain size, the R2 of the RFR model between the 3D
landscape metrics and LST increased from 0.81 to 0.93 in the second ring road, and 0.70 to
0.80 in the fourth ring road. The R2 of the RFR model of the 2D landscape metrics and LST
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in the second ring road decreased from 0.70 to 0.02, and from 0.6 to 0.1 in the fourth ring
road. At the 30 m grain size, the R2 of the RFR model between the 3D landscape metrics
and LST in the second ring road increased from 0.78 to 0.82, and increased from 0.68 to 0.80
in the fourth ring road. The R2 of the RFR model of the 2D landscape metrics and LST in the
second ring road decreased from 0.72 to 0.04, and in the fourth ring road decreased from
0.58 to 0.45. In addition, the RFR regression accuracy at the small rectangle size (300–600 m)
was generally higher than the multiple linear regression accuracy, while the RFR regression
at a large rectangle (700–1000 m) showed slightly lower accuracy. Compared with the RFR
results of the second ring road, the RFR accuracy of the fourth ring road was significantly
more stable, which was related to the number of samples involved in the regression. The
30 m grain size with the 300 m rectangle size in the fourth ring road has the largest data set,
which contains 3219 samples, and the 1000 m rectangle size in the second ring road has the
smallest data set, which contains 44 samples. This indicates that the RFR results were better
than the multiple linear regression in the case of large sample sizes. Logan et al. used seven
different models to regress a large sample of multiple variables and LST, and the results
also showed that the accuracy of RFR was higher than that of the linear model [64]. The
regression between the 2D landscape metrics and LST showed a weak interpretation of the
2D landscape metrics on LST. At the same time, a poor learning effect existed in RFR on
small data sets due to the small number of calculated results in a large rectangle, resulting
in extremely low regression accuracy of RFR when the rectangle size was 1000 m.

Remote Sens. 2022, 14, 279 16 of 24 
 

 

 
Figure 10. The 𝑅  of the RFR model between LST and landscape metrics. 

 

Figure 10. The R2 of the RFR model between LST and landscape metrics.

Figure 11 shows the feature importance of different metrics in RFR; the metrics in each
row are ranked by the sum of the contribution of different rectangle sizes. The result of the
landscape metrics’ contribution was similar to that of PCC, which meant that the metrics
with higher contribution in the regression have a higher correlation coefficient. Overall,
SHDI and SHEI had the highest feature importance and NP had the lowest. Among
the three types of landscape metrics, the importance of configuration metrics was the
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highest. The importance of roughness metrics in the fourth ring road was higher than that
of the component metrics, and the importance of the second ring road had an opposite
result. The contribution of the five metrics, except NP, decreased with the increase of the
rectangle size, and the sensitivity of the component metrics to the rectangle size in the
30 m grain size was lower than that in the 10 m grain size. Except SHDI and SHEI, the
importance of configuration metrics was slightly lower at all scales. Roughness metrics
had a high importance in the fourth ring road, and the importance decreased with the
increase of rectangle size. In the second ring road, the importance of the component metrics,
such as MESH, LPI and COHESION, was relatively high. The importance of MESH, LPI,
COHESION and NP in the 30 m grain size increased with the increase of the rectangle size.
The roughness metrics MEAN and SVF were of high importance, and their importance
decreased with the increase of the rectangle size. The regularity of feature importance is not
strong at the 10 m grain size, but the results still conform to the overall law of this study:
SHEI and SHDI have the highest contribution, and this is also very close to the calculation
results of the 30 m grain size in the second ring road area.
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3.5. The CORV of 3D Landscape Metrics
3.5.1. The CORV of 3D Landscape Metrics at 10 m Grain Size

The CORV of different 3D landscape metrics fitted by the power function obtained the
optimal rectangle size for analyzing the relationship between LST and the 3D landscape
pattern. The results of each metric varied at a great magnitude, and normalization was
conducted before the fitting to homogenize the CORV of metrics with significant differences.
Figure 12 shows the CORV of each 3D landscape metric at the 10 m grain size. The abscissa
is the size of different rectangles (m), and the R2 of each power function fitting is displayed
below each figure. It can be seen that the fitting accuracy of the CORV of most metrics
was high, and the CORV decreased with the increase of the rectangle size. The CORV
decreased rapidly when the rectangle size was between 300 m to 500 m. They approached
the minimum value and tended to be stable when the rectangle size reached 700 m. Among
the 15 metrics in the second ring road, the R2 of the CORV power function fitting of nine
metrics, such as COHESION, was higher than 0.8; the fitting R2 of DIVISION was between
0.6–0.8 (0.66); and the fitting R2 of the remaining five landscape metrics, such as LPI and
ED, was less than 0.3. The fitting accuracy of CORV in the fourth ring road was lower than
that in the second ring road. The fitting R2 of MESH and COHESION was higher than 0.8,
the LPI and MEAN was between 0.6–0.8, the SHDI and other three metrics were between
0.4–0.6, and the ED and other four metrics were less than 0.3.
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3.5.2. The CORV of 3D Landscape Metrics at 30 m Grain Size

Figure 13 is the power fitting of the normalized CORV of each 3D landscape metric at
the 30 m grain size. In the second ring road, the power fitting R2 of MESH and the other
six metrics was higher than 0.8; the fitting R2 of SHDI and SHEI was between 0.6 and 0.8;
the R2 of LPI, COHESION and LSI was between 0.4 and 0.6; and the ED and the other four
metrics had an extremely low R2. The fitting accuracy of CORV in the fourth ring road was
lower than in the second ring road at the 30 m grain size as well. The R2 of MESH and
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COHESION was higher than 0.8; the R2 of LPI, DIVISION and MEAN was between 0.6
and 0.8; the R2 of SHDI and the other four metrics was between 0.4 and 0.6; and the R2 of
ED and other six metrics were hard to reach, at 0.3.

By comparing the PCC between landscape metrics and LST in Section 3.2 and the
feature importance of RFR in Section 3.4, most of the PCC between landscape pattern
metrics and LST, accuracy of RFR, characteristic importance of RFR and power function
fitting curves of CORV tended to be stable at 700 m. This indicated that the results of
most landscape metrics calculated under the 700 m rectangle could better describe the
overall 3D landscape pattern of the study area. Although the correlation and regression
accuracy between the 3D landscape metrics and LST keep increasing with the increase of
rectangle size, the increase of the calculation rectangle inevitably leads to the increase of
the calculation time. In the calculation process of our study, especially in the fourth ring
road area, the calculation time of all metrics by the 1000 m rectangle is much longer than by
300 m rectangle. Considering all factors comprehensively, the 700 m rectangle is considered
as the optimal rectangle size to study the relationship between the urban 3D landscape
pattern and LST.
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4. Discussion
4.1. Multi-Scale Relationship between 3D Landscape Pattern and LST in the Fourth Ring Road
of Beijing

In order to mitigate UHI in Beijing and improve residents’ living conditions, our
research used Landsat 8 remote sensing images to retrieve LST, combined with land cover
and building height data to calculate the 2D and 3D landscape metrics of Beijing’s fourth
road and second ring road at different scales. We used the RFR model to evaluate the
effect of the 3D landscape pattern on LST. The 3D metrics can quantify the fluctuation
characteristics of the urban surface and the difference between it and the projection plane,
which can explain the densely built-up landscape in the urban center effectively.
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The UHI effect exists obviously in Beijing, and the effect of 3D landscape metrics on
LST is significantly higher than that of 2D metrics [37,65]. About 80% of the surface in
the study area is impervious surface with buildings over a large proportion. The height
character of buildings may be more strongly related to the spatial distribution of LST
and impacted by the shadowing area of tall buildings; the heat accumulation from dense
buildings can slow down the air and energy flow in urban canyons [32]. The regression
accuracy of land landscape metrics and LST for the volume of high-rise buildings shows
that the more information in the larger size of rectangle, the better the response effect
of 3D landscape metrics to LST, the better the interpretability. The relationship between
3D landscape patterns and LST is highly related, and the composition and configuration
information of the landscape by the 2D landscape showed a significantly worse performance
for delineating the relationship between the pattern and LST.

Vegetation and water bodies usually decrease LST effectively [66], and our results
showed that the increase of patch diversity and evenness in the rectangle—that is, the
increase in vegetation and water patches—could significantly weaken daytime UHI. How-
ever, the number of patches in the landscape did not directly affect LST, and the spatial
relationship between different patches and the shape and size of individual patches were
the main factors influencing LST. During the day time, the urban impervious surface ab-
sorbs a lot of energy by solar radiation, which is the main heat source that raises its surface
temperature. Vegetation and water can cool down the surface through transpiration and
evaporation. Figure 14a,b show the area with the higher LST in the study area. There
are more vegetation patches in area (a) than in area (b), but the overall temperature in
(a) is still very high. By contrast, in Figure 14c,d, the LST of the area around the fourth
ring road, which has a large proportion of vegetation and water, decreased significantly,
indicating that increasing the proportion of vegetation and water has a powerful result
in weakening UHI. The cooling effect of water and vegetation in the landscape is related
to the patch size and shape. Vegetation patches in the second ring road are small and
scattered, especially grasslands. Grassland is usually distributed more dispersedly with
small patches, and the cooling effect of these small patches is more easily affected by the
high temperature of the surrounding large impervious surface patches, resulting in a poor
cooling effect. It cannot significantly regulate the LST, and may effectively decrease the LST
only when it accumulates into large patches. For a single large patch, the more irregular
shape and the increase of the number of other land types on the edge can make the edge
effect become more obvious between different patches, accelerate the material and energy
exchange capacity between patches and different land types, and decrease the LST within a
certain range.

The negative correlation between the average height and LST suggested that tall
buildings with low density in cities could reduce the summer daytime temperature. The
underlying surface absorption of solar energy is the main source of urban surface energy
in the summer day, and the shading effect of tall buildings directly reduces the area of
direct sunlight [35]. The aerodynamics of low-rise and high-rise buildings are significantly
different, with the increase of wind speed; the aerodynamic conductivity of high-rise
buildings is higher than that of low-rise buildings, which takes more energy away from
its surface and lowers its surface temperature [67]. In addition, the negative correlation
between SVF and LST and its high ranking in feature importance explain the influence
of building density on LST to a certain extent. For cities, generally, the smaller the SVF
value is, the denser the buildings are [68]. In addition to the cooling effect of water and
vegetation, the energy exchange between the city and the surrounding suburbs is the main
method to reduce LST. The urban structure with high dense buildings tends to slow down
the air flow speed of urban canyons, weaken the rate of energy transfer, and make more
heat accumulate in the inner city, leading to the rise of LST. Widening urban roads is an
important way to improve the SVF and weaken the density of buildings. On this basis,
vegetation on both sides of roads and isolated zones can further reduce the LST rises caused
by solar radiation.
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In general, the change of grain size has little effect on the overall landscape character-
istics in the study area as only the accuracy of RFR was improved, while the contribution
of different metrics to LST did not change significantly. The change of extent not only
causes the change of regression accuracy, but also the regulation of the contribution of
metrics. Landscape composition metrics and configuration metrics have a better response
effect under large rectangles, while the roughness metrics calculated for buildings had a
better interpretation effect under the small rectangle. The larger the research rectangles are,
the more stable the dominant land type in the rectangle is, and the calculated landscape
composition metrics and configuration metrics can more generally describe the landscape
pattern. For our study, the target of the 3D landscape pattern was buildings and the larger
rectangle weakened the characteristics of a single building and its influence on the local
area, resulting in a lower contribution. However, the result became opposite in the second
ring road, especially at the 10 m grain size. It showed that under the high resolution, the
purity of each cell increased, and the small study area of the second ring road led to more
variation of the factors influencing LST, and each factor had a certain impact on the LST.
Meanwhile the overall regulation in the second ring road is similar to other scales, such
as SHDI and SHEI, with the highest influence, which also indicated that our study could
not only describe the global characteristics of the relationship between the 3D landscape
pattern and LST, but also proved that there was a special multi-scale relationship between
the two.

Based on our study, combined with the experimental results of landscape metrics and
roughness metrics, in order to improve daytime urban thermal environment, we suggest
that the distance between urban residential community buildings should be appropriately
increased to promote air circulation in future planning. Vegetation area expansion and
widening urban roads may absorb radiation and improve the air flow between buildings,
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respectively. Increasing water and green space can improve inhabitability and benefit
residents’ physical and mental health [35].

4.2. Advantages and Limitations

The advantages of our study lie in that 3D landscape metrics were used to study the
relationship between LST and the landscape pattern in urban areas, and the calculation size
of the rectangle was selected by the spatial variance. However, the resolution of LST based
on the remote sensing image is lower than the building target in the study area. In future
research, the unmanned aerial vehicle (UAV) monitoring method with thermal infrared
band can be considered to obtain a more accurate urban thermal model, urban greening
model, 3D surface model and 3D urban model, which can more accurately analyze the
relationship between urban landscape and LST. The RFR model is used to regression the
3D landscape metrics and LST, and the regression model based on the tree model shows
higher accuracy under large sample conditions and can obtain the feature importance of
each metric compared with the ordinary linear regression model. Fifteen landscape metrics
were applied to quantitatively describe the landscape pattern of the study area, while more
landscape metrics may be selected to describe landscape patterns according to different
research conditions and research environments in the future. We studied the multi-scale
relationship between LST and landscape patterns under spatial scales, which refers to the
change of rectangle sizes and grain sizes. In addition, since the scale-effect includes the
spatial scale and time scale, we plan to continue our study in different seasons, year traces
and diurnal and nocturnal analysis. We believe that it is of great significance to obtain the
effects of 3D landscape characteristics on LST in a series of time changes as well.

5. Conclusions

This paper analyzed the multi-scale relationship between the 3D landscape pattern
and LST using random forest regression. According to the experimental results, we indicate
that the UHI effect is obvious in the fourth ring road region of Beijing, and the phenomenon
of UHI in the central second ring road is stronger than in the fourth ring road, showing an
overall trend of diffusion from the center to the surrounding areas. The interpretation effect
of 3D landscape metrics on LST was more obvious than that of 2D land-scape metrics, and
3D landscape diversity and evenness played more important roles than the other metrics
in the change of LST. The multi-scale relationship between LST and the landscape pattern
was discovered in the fourth ring road of Beijing, the effect of the extent change on the
landscape pattern is greater than that of the grain size change, and the interpretation effect
and correlation of landscape metrics on the LST increases with the increase of rectangle size.
The feature importance of the landscape composition and configuration metrics to LST
generally increases with the increase of the rectangle, while the contribution of roughness
metrics to LST decreases with the increase of the rectangle size. Large areas of vegetation
and water are conducive to reducing LST, while small and scattered cooling land types
make it difficult to regulate LST. In the summer daytime, tall buildings with a certain
distance have a positive impact on decreasing LST because of the shadowing effect, and
increasing the distance between buildings helps to increase the heat exchange capacity
between the city and the surrounding area, thereby reducing LST.
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