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Abstract: Satellites offer a way of estimating rainfall away from rain gauges which can be utilised to
overcome the limitations imposed by gauge density on traditional rain gauge analyses. In this study,
Australian station data along with the Japan Aerospace Exploration Agency’s (JAXA) Global Satellite
Mapping of Precipitation (GSMaP) and the Bureau of Meteorology’s (BOM) Australian Gridded
Climate Dataset (AGCD) rainfall analysis are combined to develop an improved satellite-gauge
rainfall analysis over Australia that uses the strengths of the respective data sources. We investigated
a variety of correction and blending methods with the aim of identifying the optimal blended dataset.
The correction methods investigated were linear corrections to totals and anomalies, in addition to
quantile-to-quantile matching. The blending methods tested used weights based on the error variance
to MSWEP (Multi-Source Weighted Ensemble Product), distance to the closest gauge, and the error
from a triple collocation analysis to ERA5 and Soil Moisture to Rain. A trade-off between away-from-
and at-station performances was found, meaning there was a complementary nature between specific
correction and blending methods. The most high-performance dataset was one corrected linearly to
totals and subsequently blended to AGCD using an inverse error variance technique. This dataset
demonstrated improved accuracy over its previous version, largely rectifying erroneous patches of
excessive rainfall. Its modular use of individual datasets leads to potential applicability in other
regions of the world.

Keywords: satellite precipitation estimates; rainfall blending; satellite rainfall; gauge analysis

1. Introduction

Rainfall is a fundamental part of the water cycle that brings freshwater to Earth’s
surface. The estimation of the amount of rainfall that has fallen is crucial for quantifications
of water availability. This is important for many facets of society, including population
health [1], disaster risk management [2], economic decisions [3], scientific modelling [4],
and the protection of ecosystems [5]. Rain gauges offer a direct way of measuring rainfall
that reaches the surface. Although gauges are considered the most accurate of rainfall
estimates [6], they are still subject to their own biases, such as those from wind, evaporation,
wetting and splashing effects, as well as those induced from the instrument and observer [7].

Another crucial limitation of rain gauges is that they offer a point-based measurement,
whereas a gridded product is valuable for climate monitoring over large scales as well
as for use in scientific models [8]. Point-based observations can be converted into a grid
via objective analysis methods but there can be significant deficiencies where rain gauge
density is low [9] and when short time scales are concerned [10]. This is because rainfall is
a variable that can exhibit high spatiotemporal variation. In [11], the correlation of adjacent
rain gauges in the USA was evaluated, finding that at distances of 5 km the correlation was

Remote Sens. 2022, 14, 261. https://doi.org/10.3390/rs14020261 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14020261
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs14020261
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14020261?type=check_update&version=2


Remote Sens. 2022, 14, 261 2 of 21

already less than 0.5. Using this observation, in [12] it was estimated that less than 1% of
the Earth’s surface could be reliably represented daily by rain gauges.

Expansion of the current rain gauge network is difficult due to both economical and
physical constraints, with much of the remaining unobserved area in the world being either
remote or over oceans [12]. There are also issues with how well gridded datasets can
represent variability. In [13] it was found that although gridded annual totals were close
to the rain gauge values, the frequency of low-precipitation events was greatly increased,
while both the amount and frequency of heavy precipitation were significantly reduced.
These effects are natural given that the rainfall is being spread over an area, and have
implications for the representation of extreme events.

To utilise the superior performance of gauge data where spatial density is adequate [8]
whilst giving more credence to non-gauge datasets in poorly observed areas, numerous
corrected and blended datasets have been developed which have better performance over
that of their comprising datasets, e.g., [6,14,15]. Correction refers to the calibration of a
non-gauge dataset to gauge data while blending refers to the merging of a gauge dataset
with one or more datasets.

However, none of these blended datasets are being used operationally in Australia.
This is because existing blended datasets do not utilise a more complete set of stations that
are used in the current operational dataset AGCD (Australian Gridded Climate Dataset),
leading to AGCD having superior performance in well-observed areas which also cor-
respond to areas of high population in Australia. Figure 1 (adapted from our previous
study [16]) shows the typical coverage of the rain gauge network in Australia, as employed
by AGCD. The exact number of stations varies due to factors such as discontinuities in
operation as well as reporting time lags.
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Figure 1. Typical rain gauge network coverage in Australia. Rain gauge locations are depicted by
the blue dots while topography is represented by the shading. The main topographical feature is the
Great Dividing Range along the east coast of the country.

In our previous study [16], we created a blended dataset that performed well over
these well-observed areas, as well as possessing a more realistic representation of rainfall
over gauge-sparse regions. However, the potential for significant improvement was also
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identified, especially regarding the correction process used, which occasionally generated
substantial positive bias.

This paper aims to develop an optimal configuration for the correction and blending
of satellite data with gauge data on a monthly timescale, improving upon a previous
dataset [16]. The term ‘correction’ will be used instead of ‘adjustment’ to align with
convention as well as to reflect the idea that the corrected dataset is of greater quality than
the original version. To achieve this, the following objectives are set:

1. Several new methods of correction and blending of satellite data to gauge data will
be explored. The correction techniques evaluated will be linear correction- to-totals
and correction-to-anomalies methods (the former being the original technique), as
well as the use of quantile-to-quantile matching. The use of Empirical Bayesian
Kriging (EBK) and Empirical Bayesian Kriging Regression Prediction (EBKRP) will
also be investigated to find if they offer improvements on Ordinary Kriging (OK).
These corrected datasets will be blended with the gauge analysis using the original
method of inverse error variance (IEV), in addition to a method that explicitly includes
distance and another where the weights come from a triple collocation analysis (TCA);

2. The efficacy of datasets built from a combination of all these techniques will be
evaluated, along with an analysis of their respective advantages and disadvantages.
Performance close to stations will be determined through comparison to station data,
while a comparison to MSWEP along with a triple collocation analysis (TCA) will
establish performance away from stations.

2. Materials and Methods
2.1. Validation

Traditional validation compares datasets against a known reference, typically one
based on rain gauges. However, rain gauges (and more generally, any dataset) are subject
to their own biases which conflate validation. Additionally, large parts of the world have
poor coverage where the use of rain gauges as a reference would bear a great deal of
uncertainty [12]. Triple collocation analysis (TCA) provides an alternative method of
validation where the error [17] and correlation statistics [18] of three independent datasets
(known as the triplet) can be estimated against an ‘unknown’ truth.

It was first utilised to estimate the error characteristics of wind data [17]; subsequently,
it was first adapted for rainfall in [19]. Following [19], later studies (e.g., [20,21]) have
demonstrated the technique is capable of providing realistic error estimates for rainfall,
being especially valuable over gauge-sparse areas.

A short overview of the technique is presented below, for full details refer to [21].
The proper use of TCA relies on the key assumptions of: (1) stationarity of the data (no
autocorrelation); (2) orthogonality of errors (their expected sum is zero); (3) the datasets
used are linearly related; and (4) there is no correlation amongst the errors of the datasets,
as well as with the truth [21].

First, the datasets in the triplets can be related to the truth using an additive model
(Equation (1)):

Xi = X′i + εi = αi + βit + εi (1)

where t is the truth, Xi (i = 1, 2, 3) are the triplet data which can be linearly related to the truth
using the ordinary least squares intercepts αi and slopes βi, and εi are their random errors.
Using one of the datasets as a reference along with the assumptions stated, the equations
can be rearranged to provide an estimation of the residual errors, σε ,i (Equation (2)), as well
as the correlation of the datasets to the truth, ρt,Xi (Equation (3)).

σε,1 =
√

Q11 − Q12Q13
Q23

σε,2 =
√

Q22 − Q12Q23
Q13

σε,3 =
√

Q33 − Q13Q23
Q12

(2)
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ρt,X1 =
√

Q12Q13
Q11Q23

ρt,X2 = sign(Q13Q23)
√

Q12Q23
Q13Q22

ρt,X3 = sign(Q12Q23)
√

Q13Q23
Q12Q33

(3)

Qij denotes the covariances of the datasets with each other and there is a sign ambiguity
for ρt,X; however, in practice, the datasets can be assumed to be positively correlated to the
truth in almost all cases [18]. Intuitively, the equations depict the error for a dataset being
smaller if it possesses a smaller variance and when it has strong correlations to the other
datasets. The degree to which the required assumptions are satisfied by the datasets used
in this study, and hence the appropriateness of this technique for this study, is explored
in Appendix A. For validation, the triplet is comprised of the dataset to be verified, Soil
Moisture to Rain (SM2R), and ERA5.

Three validation methods are used in this study. Performance at rain gauges was
captured by validation against point station data. TCA and a gridded comparison against
MSWEP (Multi-Source Weighted-Ensemble Precipitation) [6] provided additional methods
of ranking the datasets, with a particular focus on performance away from rain gauges.
All data were bilinearly interpolated to a resolution of 0.1 degrees (the native resolution
for the blended datasets), with any negative values from the interpolation process set to
zero. In the case of the point station comparison, the station value is compared to a gridded
average centred at the location of the station. Consequently, a spatial representative error is
expected but as it would be constant amongst the datasets, a comparison can still be made.

For the gauge and MSWEP comparisons, the mean bias (MB), root-mean-squared-error
(RMSE) and Pearson correlation coefficient (R) were computed for each dataset while the
TCA yielded the aforementioned error variance (σ) and correlation (ρ). These metrics were
averaged over the Australian domain and a study period of 2001 to 2020.

For each verification, a dataset’s ranking was determined through ranking the mean
ranking of its error and correlation statistics. This meant equal rankings could occur (such
as when two datasets had the same rankings but for opposite metrics). These individual
verification rankings were then averaged with the mean forming a summary statistic. This
facilitated an easy-to-understand summary statistic with a focus on the relative ranking of
the datasets.

2.2. Datasets

Datasets used for the development of the blended satellite datasets or its subsequent
validation are described briefly below in Table 1.

Table 1. Details on datasets used in this study for creation of the blended dataset, as well as
fo validation.

Dataset and Data Source Explanation Biases Resolution and Domain

Global Satellite Mapping
of Precipitation (GSMaP)
from Japan Aerospace
Exploration Agency
(JAXA), microwave-based
estimates from
satellites [22].

A rain rate is estimated from the
emission and change in the scattering of
microwaves due to precipitation. These
microwave estimates are advected using
cloud motion vectors to increase their
spatiotemporal coverage.

Measurement error from the sensors and the
reliance on algorithms to obtain a rain rate.
The algorithms are known to have a
deficiency over topography and coastal
boundaries. The detection of light rain from
warm clouds [23] and sub-cloud
evaporation of rainfall in arid
environments [24] are also known problems.

0.1◦ × 0.1◦ global from
60◦ S to 60◦ N, hourly

ERA5 from the European
Centre for
Medium-Range Forecast
(ECMWF), model
reanalysis [25].

Created using 4D-Var assimilation of
observations into their weather forecast
model, the Integrated Forecast System
(IFS). Assimilation does not include
rainfall from gauges but
gauge-corrected radar over the United
States of America (US) as well as
satellite radiances and atmospheric
motion vectors are ingested.

Biases arise from the observations ingested,
as well as from the assimilation and
modelling processes with reduced
observations leading to a deterioration in
quality [26]. In line with other reanalyses,
ERA5 has reduced variability, with spurious
low-end rainfall being a contributing
factor [6].

0.1◦ × 0.1◦ global, hourly
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Table 1. Cont.

Dataset and Data Source Explanation Biases Resolution and Domain

Multi-Source Weighted
Ensemble Product
(MSWEP) from GloH2O,
gauge-reanalysis-
satellite-blended
dataset [6].

Formed from a blend of gauge, satellite,
and reanalysis data. The weights for
each dataset are based on their
correlation to rain gauge data.

Inherent biases from source datasets as well
as that introduced from the
blending algorithm.

0.1◦ × 0.1◦ global,
3 hourly

Australian Gridded
Climate Dataset (AGCD)
from Bureau of
Meteorology (BOM),
gauge analysis [27].

Created using optimal interpolation.
Station climatology is used to form the
background field onto which
incremental adjustments are made using
monthly observations.

The density of rain gauges presents the
largest control on the quality of the analysis,
with the interpolation method generally
having a much less significant effect [9].
Quality of the gauge data is also a factor,
though quality control is performed on
input stations prior to and during
interpolation [27].

0.01◦ × 0.01◦ over
Australia, monthly

Australian Data Archive
for Meteorology (ADAM)
rain gauges from BOM.

Contains the data of over 6700 rain
gauges across the country. Only stations
which had a quality flag of less than six
(i.e., checked as not being suspect) were
used in this study.

As described in Section 1.

Number of stations
ranged from 4346 to 6664
over the study
period, daily

Soil Moisture to Rain
(SM2R) from ESA
Climate Change Initiative
(CCI), rainfall analysis
derived from satellite soil
moisture data [28].

Based on soil moisture estimates from
scatterometers on board the MetOp
satellites to infer accumulated rainfall.
This ‘bottom-up’ approach contrasts
with the ‘top-down’ approach of
microwave estimates which estimate
instantaneous rain rates from
upwelling radiation.

Performance degrades over arid areas,
frozen soils, tropical rainforests, and
topography as the algorithm cannot directly
account for the changes in backscatter
caused by these surfaces [29]. S2MR has
known biases with spurious rainfall due to
high-frequency soil moisture fluctuations
and underestimation of high-end
rainfall [28]. A triple collocation study
performed globally demonstrated the
performance of SM2R was similar and at
times superior to ERA5 and IMERG
(Integrated Multi-satellite Retrievals for
GPM; see [30] for details) over gauge-sparse
regions of the world, including parts of
Australia [28].

0.25◦ × 0.25◦ global, daily

2.3. Correction and Blending Methods

The performance of the existing correction and blending methods of linear correction
to totals and inverse error variance weighting were evaluated against new techniques
developed in this study. For detail on the existing methods, refer to [16]. In this study,
there were a total of seven corrected datasets. Each corrected dataset was trialled in each
blending method in case there were non-linear improvements from the blending process.
The final blended datasets are created on a 0.1 × 0.1 grid to match the GSMaP data. A
schematic outlining the datasets, along with their input into the various correction and
blending processes, is shown in Figure 2.

The schematic also denotes the names of a dataset with a corresponding suffix being
appended for each relevant process. For example, the original corrected dataset formed
from a linear correction-to-totals method that was gridded using Ordinary Kriging (OK) is
denoted GSMaP-total-OK. If this dataset was then blended using the original technique
of IEV, the final blended dataset is denoted as GSMaP-total-OK-IEV. The ‘old’ suffix for
the total-OK technique differentiates between the existing method and the refined method
introduced in this study.

2.3.1. Linear Correction to Totals

The original correction technique developed was based on a linear correction-to-totals
method; readers are referred to our previous study for details [16]. The presence of localised
over-inflated regions of rainfall, referred to as ‘bullseyes’ hereafter, from this technique
inspired some modifications. A correction to AGCD data rather than the actual point
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data was trialled. This reduced the mismatch in spatial sampling as the gridded values
of GSMaP were corrected against corresponding gridded averages rather than to point
values. At each gauge location, the value for AGCD and GSMaP was obtained through
bilinear interpolation. The quotients from dividing the AGCD totals by the GSMaP totals
formed a set of correction factors which was converted to a correction grid through kriging.
Multiplication of GSMaP by the correction grid yielded the corrected GSMaP dataset.

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 22 
 

 

were a total of seven corrected datasets. Each corrected dataset was trialled in each blend-

ing method in case there were non-linear improvements from the blending process. The 

final blended datasets are created on a 0.1 × 0.1 grid to match the GSMaP data. A schematic 

outlining the datasets, along with their input into the various correction and blending 

processes, is shown in Figure 2. 

The schematic also denotes the names of a dataset with a corresponding suffix being 

appended for each relevant process. For example, the original corrected dataset formed 

from a linear correction-to-totals method that was gridded using Ordinary Kriging (OK) 

is denoted GSMaP-total-OK. If this dataset was then blended using the original technique 

of IEV, the final blended dataset is denoted as GSMaP-total-OK-IEV. The ‘old’ suffix for 

the total-OK technique differentiates between the existing method and the refined method 

introduced in this study. 

 

Figure 2. Datasets and processes involved in creating the corrected and blended datasets. 

2.3.1. Linear Correction to Totals 

The original correction technique developed was based on a linear correction-to-to-

tals method; readers are referred to our previous study for details [16]. The presence of 

localised over-inflated regions of rainfall, referred to as ‘bullseyes’ hereafter, from this 

technique inspired some modifications. A correction to AGCD data rather than the actual 

point data was trialled. This reduced the mismatch in spatial sampling as the gridded 

values of GSMaP were corrected against corresponding gridded averages rather than to 

point values. At each gauge location, the value for AGCD and GSMaP was obtained 

through bilinear interpolation. The quotients from dividing the AGCD totals by the 

GSMaP totals formed a set of correction factors which was converted to a correction grid 

through kriging. Multiplication of GSMaP by the correction grid yielded the corrected 

GSMaP dataset. 

Additionally, a lower threshold, for which clipping occurs if exceeded, was tested. 

This was to further reduce the occurrence of ‘bullseyes’, with the original threshold of ten 

being identified as possibly too large [16]. A variety of thresholds between two and ten 

were trialled, with a threshold of four providing the greatest performance. The amount of 

Figure 2. Datasets and processes involved in creating the corrected and blended datasets.

Additionally, a lower threshold, for which clipping occurs if exceeded, was tested.
This was to further reduce the occurrence of ‘bullseyes’, with the original threshold of ten
being identified as possibly too large [16]. A variety of thresholds between two and ten
were trialled, with a threshold of four providing the greatest performance. The amount
of data being clipped was not significantly increased (increased from 12.3% to 15.4%),
providing confidence that this new threshold was not excessively low.

A validation against MSWEP was performed to evaluate the overall performance of
each of these refinements and both yielded slight improvements across all metrics. A larger
reduction in RMSE compared to MAE was found, alluding to how the improvement was
most significant for gross overestimations. Visual inspection also confirmed the severity
of ‘bullseyes’ was considerably reduced, and although there were still occurrences, their
frequency was also reduced.

2.3.2. Linear Correction to Anomalies

The value of correcting anomalies to the climatological field rather than to the actual
totals was analysed. This utilised the fact that the number of stations making up the
climatology field is typically much greater than those which make up the individual
months, allowing spatial variability in the mean climate to be maximised [10]. Monthly
anomalies tend to be driven by large-scale features and hence may be able to be sufficiently
represented by a comparatively less dense network [10]. In [31] it was found that the
correction to totals resulted in the problematic extrapolation of gradients over unobserved
areas, leading to the generation of unrealistic extremes, an issue which was resolved by
using the anomalies instead. The use of anomalies for interpolation has become a common
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technique and is employed in other datasets, such as the Precipitation Reconstruction
(PREC) [32] and AGCD [27].

In this study, the anomaly method involved finding the ratio between the anomalies
(in contrast to totals as in Section 2.3.1) of both the satellite data and the station data at each
station, with respect to their own climatology. As in Section 2.3.1, this was converted into a
grid through kriging, which was then applied to the original data to correct the satellite
anomalies. The anomalies were then added back onto the climatology to obtain the value
for each month. Clip values between ±3 and ±15 were trialled with ±8 providing the
best performance.

2.3.3. Quantile to Quantile Matching

An alternative to linear correction using ratios is the use of quantile-to-quantile match-
ing, with cumulative distribution frequency (CDF) matching being a common technique,
e.g., [33,34]. CDF matching involves fitting the data from the two sources to a statistical
distribution. This yields CDFs from which a transfer function can be generated to rescale
the values from the original distribution to the target distribution [35]. The best-fitting
distribution can be highly dependent on the spatiotemporal domain and so it was perti-
nent for this study to perform its own fitting. A gamma distribution has seen traditional
usage, e.g., [35,36], though more contemporary studies have noted the superiority of other
distributions, such as the Pearson III, e.g., [37,38], log-Pearson III, e.g., [39], generalised
extreme value (GEV), e.g., [40], and even non-parametric distributions [41].

In this study, the gamma distribution was revealed to be most appropriate (see
Appendix B). Thus, both the satellite and gauge observations (using AGCD as a proxy) at
each grid point were fitted to gamma distributions, allowing their CDFs to be determined.
Using the CDFs, the satellite observations were rescaled so that their percentile matched
that of AGCD.

Two methods were trialled, basing the CDF on the last 30 months, as well as on the
climatology for each month for the maximum record of the satellite data (20 years). The
latter yielded better results and so was chosen for this study.

2.3.4. Distance-Based Weighting Methods

Distance-based weighting methods vary the influence of gauge data based on the
distance to the closest rain gauge. It is a common technique with contemporary examples
including the Global Precipitation Climatology Project’s (GPCP) rain gauge analysis [42]
and the Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) dataset [43].
Typically, the influence of gauge data decreases until it ceases to influence at a point where
the correlation to rain gauges is considered to be negligible. In [27], it was noted the
correlation of stations decreased below a significant level at around an order of 300 to
500 km. The Multi-Source Weighted-Ensemble Precipitation (MSWEP) Version 2 dataset
uses an empirical function based on an exponential function where the weight given to
stations in the blended dataset is less than 0.1 after distances greater than 93 km [6].

In this study, a blended dataset was formed through a weighted average of corrected
GSMaP and AGCD, with the weights being based on the distance of that grid cell from the
closest station. The equation used was:

w = exp
(
− D

D0

)
(4)

D denotes the distance of a grid cell from the closest station in kilometres, while
D0 represents how quickly the influence diminishes with greater values, resulting in the
gauge possessing greater influence for a given distance. There is an exponential decrease
of influence away from a gauge. By testing a range of D0 values between 50 and 400
incremented by 50, a D0 of 100 was identified to be optimal in terms of providing the
highest correlation for an extremely dry and wet month. For this D0, the weighting for the
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gauge data reduces to 0.1 at around 230 km, which is in line with the correlation length
scales obtained in [27].

2.3.5. Kriging Variants

Kriging methods rely on forming an estimate based on the weighted average of known
values in the neighbourhood, which minimises the estimation variance [44]. The original
method employed Ordinary Kriging (OK) assumed a constant mean and variogram across
the entire domain. Numerous other more complex kriging techniques exist based on
what assumptions of the stationarity and stochastic properties of the field are made [45].
However, the added complexity does not always result in better performance. Various
studies have compared OK to other kriging methods and results have not been conclusive.
For example, Ref. [46] compared OK to ordinary cokriging (OCK) and kriging with an
external drift (KED) over the Hawaiian Islands and found that OK performed best, while
Ref. [47] compared the same three methods over two Victorian catchments and found
that OCK was the superior technique. OCK aims to create a better spatial relationship
by utilising additional covariates, while KED uses an external trend to account for non-
stationarity [46].

Empirical Bayesian Kriging (EBK) attempts to overcome some limitations of classical
kriging by using an ensemble of variograms that are applied to subsets of the data. For
each subset, a variogram ensemble is iteratively generated by using the original estimated
variogram to produce new data values which are then used to produce new variograms [48].
EBK allows non-stationarity as well as uncertainty in the variogram estimation to be
better accounted for [48]. EBK Regression Prediction (EBKRP) builds on EBK by using
information provided by additional explanatory variables. In [49], it was found a rainfall
analysis created using EBK was able to outperform OK over Northwest India, while EBKRP
followed closely by EBK yielded the best performance in a study over Pakistan [45].

In this study, an exponential variogram was used, along with the default parameters
for EBK and EBKRP (maximum local points of 100, an overlap factor of 1, and number of
semivariograms of 100). For the EBK method, an empirical transformation was applied to
the data.

2.3.6. TCA Blend

The error statistics from the TCA can also be used as a basis for blending. Two
techniques were used. The first merged corrected GSMaP and AGCD, while the second
merged corrected GSMaP, AGCD, and ERA5. Inverse error variance blending was used
again, with the weights being derived from the fractional RMSEs obtained from TCA.
The fractional RMSE (fRMSE) is obtained by dividing σε by the standard deviation to
standardise the RMSEs between the datasets.

For AGCD to be used in the blended product, the TCA employed to obtain the weights
comprised of uncorrected GSMaP, AGCD, and ERA5. Even though corrected GSMaP is
used in the blended product, it could not be used to derive the weights given that its
dependency on AGCD violates the assumption of independence amongst the TCA triplet.

3. Results
3.1. Corrected Datasets

The results for the corrected datasets are shown in Table 2. Examining the average
RMSE and R across the corrected datasets, it was evident that the linear correction-to-totals
methods performed the best with average RMSEs between 0.69 to 0.72 and average R
values of 0.91. This was followed by the linear correction-to-anomaly methods, with the
EBK and EBKRP having a larger edge over OK than what was obtained with a correction
to totals. The CDF method was last, but it still outperformed the uncorrected GSMaP.

Using stations as truth, the original method obtained the highest performance. This is
expected as this was the only dataset that was corrected to the actual point stations values
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whereas all the other datasets were corrected to a gridded average. Of note is how the EBK
and EBKRP displayed performance that was close despite being corrected to areal averages.

Table 2. Verification statistics for the corrected datasets with GSMaP included as a reference.

Station MSWEP TCA Overall

RMSE R Rank RMSE R Rank σε R Rank Mean Rank

GSMaP 1.56 0.7 9 1.01 0.82 8 0.78 0.79 9 8.5
GSMaP-total-OK-old 0.81 0.92 1 1.11 0.87 7 0.74 0.87 6 4.8

GSMaP-total-OK 0.91 0.89 4 0.72 0.91 1 0.54 0.91 3 2.8
GSMaP-anom-OK 1.24 0.81 7 0.88 0.86 6 0.63 0.84 7 7
GSMaP-total-EBK 0.81 0.91 2 0.72 0.92 1 0.53 0.92 1 1.5

GSMaP-anom-EBK 1.09 0.85 5 0.82 0.87 4 0.56 0.88 4 4.5
GSMaP-total-EBKRP 0.83 0.91 3 0.74 0.9 3 0.54 0.91 2 2.7

GSMaP-anom-EBKRP 1.1 0.85 6 0.86 0.86 5 0.59 0.88 4 5.3
GSMaP-CDF 1.32 0.81 7 1.08 0.82 8 0.88 0.85 8 7.8

AGCD 0.44 0.98 1 0.62 0.92 19 0.42 0.93 9 11.2

Both the TCA and using MSWEP as truth facilitated a better assessment of performance
away from gauges, as well as allowing a comparison to AGCD to be made. Spatial
representative errors were also greatly reduced. All the datasets showed reduced biases
except for the original dataset, which now had the worst performance. The methods based
on the correction to totals performed the best, with the EBK and EBKRP routines being the
best. The next best method was anom-EBK, followed by the anom-OK and anom-EBKRP,
and lastly by the CDF method.

With MSWEP, AGCD performed the best but there was considerable improvement
in the corrected datasets with the RMSE now being only around 15% greater than that of
AGCD compared to previously being 80% greater. The correlation also improved with the
best R increasing from 0.87 to 0.92, a value only slightly worse than that of AGCD.

The general ranking of the datasets remained the same between the TCA and
MSWEP verifications.

The values of σε and correlations obtained from TCA were better, especially the
former, which was expected as TCA assumes no error in the truth along with inflation
in accuracy due to non-zero correlation between the errors of the datasets. Still, the
values were relatively close to each other indicating the appropriateness of TCA as a
verification method.

In line with the statistical analysis, the total-OK, total-EBKRP, and total-EBK had
similar spatial representations, especially the latter two. Compared to total-OK-old, total-
OK was more spatially consistent, had less ‘spotty’ artifacts, and had a more controlled
representation of high rainfall areas. This resulted in a noticeably improved representation
which was not obviously captured in the statistical analysis, as the artifacts were generally
a small fraction of the overall domain.

The anom-OK method looked different to anom-EBKRP and anom-EBK, with a
similarity between the latter two existing but to a degree less than that in their corre-
sponding totals versions. The inclusion of elevation data in the EBKRP method did not
seem to have a noticeable impact, even around the Great Dividing Range, Australia’s key
topographical feature.

Figure 3 depicts the rainfall totals from each method for an example month of February
2020 with MSWEP included as a reference. This month displays a number of points which
are evident across the study period.

The anomaly methods could alleviate overinflation for high totals (with anom-EBK
and anom-EBKRP being more effective) but introduced spurious rainfall in low-rainfall
situations. The rectification of overinflation was not guaranteed with the anomaly methods
sometimes producing overinflations of their own. The anomaly methods for EBK and
EBKRP were not afflicted by spurious rainfall as often but seemed to have unrealistic
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missing regions of rainfall, especially over western Tasmania. All the anomaly methods
underrepresented rainfall over western Tasmania. The slight negative MB of the anomaly
methods suggested that the magnitude of spurious rainfall was offset by the underestima-
tion of high-end totals.
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Figure 3. Corrected rainfall analyses for February 2020.

CDF correction appeared to have the most spatially consistent rainfall patterns, in-
cluding having the least artifacts, but it had problems depicting the correct magnitudes.
Underestimation over western Tasmania was again an issue. The EBK and EBKRP methods
had slightly fewer artifacts than the OK methods.
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3.2. Blended Datasets

A key result was that the ranking of the corrected datasets could change after the
blending process and between blending processes, justifying the decision to trial each
blending method with all the corrected datasets, rather than just the best-performing ones.

Importantly, even though the total-EBK had the best overall ranking out of the cor-
rected datasets, the best blended dataset was total-OK-IEV, with total-EBK-IEV coming
second. Total-OK-IEV had the best ranking in the MSWEP and the TCA verifications. In the
station verification, it was outperformed by the DW-blended datasets as well as by total-
EBK-IEV and total-EBKRP-IEV. This suggests it demonstrated the best away-from-station
performance in addition to having strong at-station accuracy.

The inverse error variance method yielded the best results, followed by the DW
method and then the TCA method. For brevity, only the subset of results for the datasets
based on the OK-total and/or IEV methods is shown in Table 3—the full configuration
can be found in Appendix C, Table A3. This subset was chosen based on the result of
the total-OK-IEV method being the best, along with the variance between the blending
techniques and the input-corrected dataset largely being unsubstantial. There is an indirect
inclusion of MSWEP in the IEV datasets which would lead to some degree of skill inflation
in the MSWEP validation; however, the substitution of MSWEP for ERA5 in the IEV method
did not change the result of IEV datasets performing the best in the MSWEP validation.

Table 3. Verification statistics for blended datasets with AGCD included as a reference.

Station MSWEP TCA Overall

RMSE R Rank RMSE R Rank σε R Rank Rank (Mean)

GSMaP-total-OK-IEV-old 0.62 0.96 9 0.57 0.94 7 0.44 0.93 16 10.3
GSMaP-total-OK-IEV 0.66 0.95 12 0.54 0.95 2 0.40 0.94 1 6.2

GSMaP-anom-OK-IEV 0.69 0.95 13 0.54 0.95 1 0.40 0.94 2 6.7
GSMaP-total-EBK-IEV 0.64 0.95 10 0.55 0.94 3 0.42 0.94 3 6.8

GSMaP-anom-EBK-IEV 0.72 0.94 18 0.57 0.94 4 0.40 0.93 6 10.5
GSMaP-total-EBKRP-IEV 0.64 0.95 11 0.56 0.94 5 0.41 0.94 3 8.2

GSMaP-anom-EBKRP-IEV 0.72 0.94 17 0.57 0.94 8 0.40 0.93 3 10.7
GSMaP-total-OK-DW 0.60 0.96 4 0.60 0.94 9 0.45 0.93 9 9.3
GSMaP-total-OK-TC 0.72 0.94 18 0.60 0.94 10 0.44 0.93 7 13.2

GSMaP-total-OK-TC-ERA5 1.28 0.76 26 1.23 0.68 24 0.32 0.92 8 21.0
AGCD 0.44 0.98 1 0.62 0.92 19 0.42 0.93 9 11.2

The various blending techniques all had a harmonising effect on the corrected datasets,
with the similarity in the blended products for each technique being relatively high. The
degree of harmonisation was less for the TCA blending.

In terms of similarity based on the input dataset, the CDF-corrected dataset yielded
the greatest dissimilarity to the others with other methods being fairly similar. The kriging
technique matters less than whether correction to totals or anomalies was used.

Figure 4 provides a visual example of the summarised set of blended products, along
with AGCD as a reference. Readers are referred back to Figure 3 for the MSWEP totals.

The characteristics of the corrected datasets were transferred to blended products
though the harmonisation process meant that the blended products were more similar
to each other. For example, the finding that correction via anomaly ratios and by CDF-
matching led to smoother representations, but also less accurate magnitudes, also held
after the blending process, but the difference to the blended dataset using a ratio to totals
was less marked. Nonetheless, it remained as the main point of differentiation, albeit a
slight one.

The IEV method was the most effective in reducing spurious rainfall, while TCA was
the least effective. For reducing positive bias ‘bullseyes’, both the IEV and DW methods
were effective while the TCA method had difficulties. The addition of ERA5 in the TCA-
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blended method did not necessarily improve results. Only the σε metric from the TCA
validation was improved.
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Figure 5 shows the period-averaged correlations obtained from the TCA for all the
corrected datasets, and the total-OK- and/or IEV-blended variants. GSMaP and AGCD
are included for reference. It allows identification of where the correction and blending
methods were most effective.
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The anom-OK and CDF correction methods were not so effective in the interior of
Western Australia, where the gauge network is sparse. The CDF method also did not
perform well over central parts of the eastern coastline. The improvement of total-OK over
total-OK-old is also clear, especially over the northern coastline. The regions where the
method is the weakest appears to be towards the centre of Western Australia, as well as
around East Arnhem in Northern Territory.

The similarity of the blending methods is evident. From a glance, only the total-OK-
TC-ERA5 method displayed noticeable differences, having slightly weaker correlations
across the country than the other blended products. The blending methods improved
correlations to a level that was similar to AGCD, with the patch of lower correlation in the
centre of Western Australia present in both AGCD and the blended satellite datasets. This
is a region of very low gauge density, alluding to the possibility that the blended satellite
dataset is still limited, at least to some extent, by the quality of the gauge analysis and its
underlying network.

4. Discussion
4.1. Correction Techniques

The use of cell-to-cell correction instead of point-to-cell correction was important in
removing stray bullseye artifacts that were a result of large discrepancies due to inconsistent
spatial sampling. This was especially true for cases where a gauge value was much higher
than its gridded average.

Correction to totals was generally the best at creating a product where the satellite
totals were most similar to the observed ones. However, it was also the most prone to
artifacts. As described in [16], if GSMaP contained isolated patches of elevated rainfall
that were not also present in AGCD, over areas with low rain gauge densities this could
lead to incorrect adjustment. If GSMaP totals were less than what were observed at
the closest, albeit still faraway gauges, the elevated rainfall patch would end up being
greatly exaggerated.

The correction to anomalies dealt better with high totals and also resulted in less
artifacts. However, this method struggled with low rainfall totals, generating the greatest
amount of spurious light rainfall. This was likely because the final product still contained
rainfall from the climatological background. Furthermore, the representation of extreme
anomalies could be lost when these anomalies were over poorly observed areas. In these
cases, the adjustment was again based on faraway stations where GSMaP and station data
were more aligned, resulting in some little adjustments so that the final product resembled
the climatology rather than the anomaly.

The CDF method has proved to be effective in past studies, e.g., [50,51]. It created
the most realistic-looking representations and was least prone to the incorrect adjustment
of isolated anomalies over gauge-sparse areas. This can be attributed to how under this
scenario, the other two methods would utilise a faraway station-based adjustment while
the CDF method was matched based on the local distributions. Even though the datasets
may have been quite different locally in an absolute sense, they could be similar in their
relative frequency, reducing the susceptibility of extreme adjustment errors.

However, the CDF method underestimated rainfall during very-low-total scenarios.
For dry areas where many totals are zero, the gamma distribution may not be appropriate
as zero values have to be excluded during fitting. Sometimes, a lack of adjustment also
occurred, including underrepresentation of elevated totals over western Tasmania. It
is possible that this was due to the satellite value having a very similar position in its
distribution to its station equivalent, resulting in little adjustment. If there was a longer
record, this method would likely perform better, as having only 20 years of data can
constrain the robustness of the fit, especially for extremes. In [33], the authors increased
the amount of data available for fitting by utilising daily data as well as considering
surrounding grid cells, likely improving the accuracy derived from this method. However,



Remote Sens. 2022, 14, 261 15 of 21

the method being developed in this study is intended to be limited to monthly data,
reducing the resource requirement, and increasing simplicity of use.

The CDF method does not have to rely on the gauge analysis having correct totals, but
rather on the frequency of the gauges being more correct. Considering that the representa-
tion was relatively similar to that obtained from the linear correction methods, the CDF
method could be advantageous for regions with sparser rain gauge networks where the
ability to create an accurate rain gauge analysis is more difficult.

The result of a linear correction performing the best has been observed in the literature,
including contemporary studies, e.g., [52]. There appears to be a trade-off between better
matching at stations and an increased likelihood of artifacts away from stations.

The small amount of variance between the different kriging techniques suggests the
assumption of a constant variogram used across the whole domain in OK was generally
acceptable. There was not a clear superior variant, with a dependence on the validation
dataset used. This can be reconciled with [45], which found EBKRP to be the superior
dataset, albeit with only a slight difference to EBK and OK. The differences between EBK
and EBKRP did not tend to occur over topography, which was unexpected given elevation
was the extra parameter used in EBKRP.

4.2. Blending Techniques

An important result is that the three blending techniques produced a similar repre-
sentation of rainfall. Considering that all three were derived from considerably different
methods (error variance from MSWEP, error variance from a TCA using AGCD and ERA5,
and adjustment using distance from stations), this provides confidence that an optimal
result (particularly within the technique but also across techniques) was being achieved. It
also suggests that obtaining a marked improvement via the use of other blending techniques
may be difficult.

The scenario where there was the most difference in the blending techniques was when
there was a strong difference in the underlying corrected dataset over a region with sparse
rain gauge coverage. The DW-blended method retained this difference, while the other two
blended techniques would adjust this difference towards AGCD. The DW method functions
as intended in this sense as AGCD should be considered less dependable in these areas
and thus weighed less, but at times the corrected satellite dataset contained its own biases
which outweighed the effect of reduced reliance on AGCD. As described in Section 4.1,
the most problematic scenario for the most performant-corrected dataset (total-OK-IEV)
was over-adjusted bullseyes in gauge-sparse regions. The DW method would incorrectly
amplify or retain these artifacts, while the other two techniques were able to resolve them.

It was also not a guarantee that the best corrected dataset would result in the best
blended dataset—the effect of blending was non-linear. In general, the corrected datasets
using a linear correction to totals yielded the best blended dataset with the choice of kriging
technique between OK, EBK, and EBKRP not having much effect in this study.

The inclusion of ERA5 data in the TCA-blended dataset did not generally improve
performance. The only metric that improved was the σε from the TCA validation, which
was expected as the weights were formed from the optimisation of fRMSE. It should also be
noted that the TC-ERA5 datasets are more likely to violate the assumption of independence
required for TCA, and so the fact that they yielded the lowest TCA error statistics, but
worse statistics otherwise, suggests that their TCA results are suspect. A possible reason
why performance was not improved could be the introduction of spurious minute rainfall
from the use of a greater number of component rainfall datasets, which has a more adverse
impact on the correlation metrics than the error ones. The use of additional datasets does
not necessarily improve accuracy and requires greater nuance, including the use of a
sensible method for determining rain/no-rain cells.

As seen amongst the correction techniques, there was also a trade-off of performance
at stations and away from stations among the blending techniques. This is reflected in the
validation technique used as well. The station-based verification favoured the DW method
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due to its explicit inclusion of station data. The MSWEP and TCA validations indicated
that the IEV method was the best. Considering that the MSWEP and TCA validations
are more generalised and evaluate performance both at and away from stations, they
are likely a better indicator of the overall performance of datasets. The IEV-blending
method also performed relatively well in the station validation, being the best non-DW
method evaluated.

5. Conclusions

Gauge analyses possess high uncertainty in gauge-sparse regions and while alterna-
tive data sources like satellites can provide estimates for these areas, their indirect form
of estimation means their accuracy is less than gauge analyses where stations exist. By
combining satellite and gauge data, a better dataset that takes advantage of the complemen-
tary nature of both sources can be produced. This study evaluated the efficacy of various
configurations of correction and blending techniques. The correction techniques trialled
were linear correction to totals, linear correction to anomalies, and CDF matching. The
blending techniques tested were based on inverse error variance using MSWEP as truth,
a distance-weighted approach, and a triple collocation analysis-weighting scheme using
GSMaP, AGCD, and ERA5. The main findings are as follows:

1. The most performant correction technique in this study was a linear correction to
totals. The choice of kriging technique did not have a strong impact, with EBK slightly
outperforming EBKRP and OK;

2. The most performant blending technique was an inverse error variance blending tech-
nique using a GSMaP dataset linearly corrected to totals. All the blending techniques
tested were able to improve the underlying corrected dataset, having a harmonising
effect that greatly reduced the differences between the corrected datasets. The im-
provement was non-linear, resulting in the total-OK-IEV-blended dataset performing
the best generally;

3. The validation technique used is important, as station-based validation favoured
DW-blended datasets while the more general TCA and MSWEP validations favoured
the IEV-blended datasets. Triple collocation analysis using satellite data, SM2R, and
ERA5 as the triplet yielded results consistent with a traditional comparison to MSWEP,
highlighting the versatility of the technique;

4. The trade-off between at-station and away-from-station performance was clear. For
the correction techniques, the CDF method traded at-station performance for away-
from-station performance. For the blending techniques, the DW method traded away-
from-station performance for at-station performance. This made them complementary
to each other. Likewise, the linear correction methods were complementary to the IEV
blending methods.

The results of having three different blending techniques yield a similar representation
of rainfall, suggesting that the blended result obtained in this study is close to being
optimal. When both at-station and away-from-station performance is considered, total-OK-
IEV performed the best. The effectiveness of this method over a domain with much fewer
rain gauges is an important future research topic as the rain gauge analysis is an important
ingredient in this method.
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Appendix A

The assumptions were generally met and TCA should be considered appropriate.
Full satisfaction was not expected given several factors which would make it virtually
impossible. For example, some correlation in the errors is expected due to the use of an
imperfect truth which would result in a common bias amongst all the datasets.

1. Stationarity of the data (no autocorrelation).

An Augmented Dickey–Fuller Test (ADFT) was performed on the monthly time series
of each of the TCA datasets over the study domain (the OK-total-IEV-blended dataset is
used as an example). The ADFT tests the null hypothesis that the dataset has a unit root
(H0), with more negative values indicating a greater confidence in the stationarity of the
dataset [53]. SM2R, GSMaP, and ERA5 exhibited very high confidence of being stationary,
with H0 being rejected at greater than a 99% level. AGCD along with the corrected and
blended satellite datasets demonstrated a greater degree of non-stationarity and could only
be rejected at a greater than 20% level;

2. The datasets can be linearly related to each other.

The linear correlation of the monthly time series to that of ERA5 and SM2R was
computed. All the datasets showed a high level of linear correlation, ranging from 0.8
to 0.9;

3. Orthogonality of errors (their expected sum is zero).

A monthly time series of the domain-averaged error for each dataset was computed
using MSWEP as truth. This was then compared against the mean of the data to see how
large the error was. SM2R had the largest proportion (around 7%), but for other datasets
the ratio was 5% or less;

4. There is no cross-correlation amongst the errors of the datasets, as well as with
the truth.

A linear correlation was performed on the time series of the errors to that of ERA5 and
SM2R. Correlations were generally low. ERA5 correlations were higher, though the highest
correlation was only around 0.36. Table A1 below contains the full results.

Table A1. Metrics testing whether the assumptions required for TCA are satisfied.

Dataset ADF Statistic p-Value Ratio of Bias
to Mean (%) R to SM2R R to ERA5 R to SM2R

(Bias)
R to ERA5

(Bias)

SM2R −11.08 0.00 −7.07 - 0.90 - 0.18
ERA5 −7.92 0.00 −5.00 0.90 - 0.18 -
AGCD −2.69 0.08 2.18 0.89 0.90 0.24 −0.37
GSMaP −11.86 0.00 −0.67 0.83 0.85 0.12 0.32

GSMaP OK-total −2.27 0.18 1.39 0.88 0.90 0.17 0.36
GSMaP OK-total-IEV −2.35 0.6 1.58 0.89 0.92 0.19 0.36
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Appendix B

Six models were tested—Generalised Exponential, Generalised Extreme, Pearson III,
Generalised Gamma, Inverse Gaussian, and Inverse Gamma. A CDF corresponding to
these models was fitted to all the values across the domain and the entire period. Values
were masked to be only over land. Both satellite and AGCD data were fitted. The fitting
was then repeated for a larger set of AGCD values, spanning 100 years from 1921 to 2021 to
check if the results varied for a longer record. This could not be achieved for the satellite
data due to its comparatively shorter record.

The Kolmogorov–Smirnov (K-S) test was used to evaluate goodness-of-fit. The K-S
test calculates the distance between the empirical distribution function of the sample and a
reference CDF, with lower values indicating a better fit [54]. The set of values used to fit
the CDFs was used as the sample while each of the fitted CDFs was used as the reference.
The results are shown below in Table A2.

Table A2. Kolmogorov–Smirnov (K-S) goodness-of-fit test for various distributions.

Model Satellite AGCD AGCD (100 Years)

Generalised Exponential 0.25 0.17 0.17
Generalised Extreme 0.29 0.14 0.14

Pearson III 0.25 0.09 0.09
Generalised Gamma 0.25 0.08 0.08

Inverse Gaussian 0.28 0.10 0.10
Inverse Gamma 0.43 0.15 0.15

Gamma 0.29 0.08 0.08

The generalised gamma model had the best performance, followed by the gamma
model. Both are based on the same distribution, but the former includes an additional
parameter. The generalised gamma model increased the generation time by an order of 100.
Considering this, the gamma model was chosen as it showed similarly good performance.

Appendix C

The full configuration of verification statistics for blended datasets with AGCD in-
cluded as a reference is presented in Table A3.

Table A3. Verification results for all corrected and blended datasets in this study.

Station MSWEP TCA Overall

RMSE R Rank RMSE R Rank σε R Rank Rank (Mean)

GSMaP-total-OK-IEV-old 0.62 0.96 9 0.57 0.94 7 0.44 0.93 16 10.3
GSMaP-total-OK-IEV 0.66 0.95 12 0.54 0.95 2 0.40 0.94 1 6.2

GSMaP-anom-OK-IEV 0.69 0.95 13 0.54 0.95 1 0.40 0.94 2 6.7
GSMaP-total -EBK-IEV 0.64 0.95 10 0.55 0.94 3 0.42 0.94 3 6.8
GSMaP-anom-EBK-IEV 0.72 0.94 18 0.57 0.94 4 0.40 0.93 6 10.5

GSMaP-total-EBKRP-IEV 0.64 0.95 11 0.56 0.94 5 0.41 0.94 3 8.2
GSMaP-anom-EBKRP-IEV 0.72 0.94 17 0.57 0.94 8 0.40 0.93 3 10.7

GSMaP-CDF-IEV 0.70 0.95 15 0.61 0.93 15 0.45 0.93 22 16.2
GSMaP-total-OK-DW 0.60 0.96 4 0.60 0.94 9 0.45 0.93 9 9.3

GSMaP-anom-OK-DW 0.60 0.96 8 0.58 0.94 5 0.44 0.92 25 11.3
GSMaP-total-EBK-DW 0.60 0.96 2 0.64 0.93 16 0.46 0.93 21 12.2

GSMaP-anom-EBK-DW 0.60 0.96 4 0.60 0.94 10 0.45 0.92 25 11.7
GSMaP-total-EBKRP-DW 0.60 0.96 3 0.66 0.92 21 0.46 0.93 23 14.3

GSMaP-anom-EBKRP-DW 0.60 0.96 6 0.64 0.93 17 0.46 0.92 28 15.5
GSMaP-CDF-DW 0.60 0.96 6 0.75 0.90 22 0.57 0.91 29 18.8

GSMaP-total-OK-TC 0.72 0.94 18 0.60 0.94 10 0.44 0.93 7 13.2
GSMaP-total-anom-TC 0.77 0.93 22 0.61 0.93 12 0.44 0.92 18 17.2
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Table A3. Cont.

Station MSWEP TCA Overall

RMSE R Rank RMSE R Rank σε R Rank Rank (Mean)

GSMaP-total-EBK-TC 0.69 0.94 14 0.62 0.93 13 0.45 0.93 18 15.0
GSMaP-anom-EBK-TC 0.74 0.94 20 0.62 0.93 14 0.44 0.92 17 16.8

GSMaP-total-EBKRP-TC 0.70 0.94 16 0.63 0.93 17 0.45 0.93 20 17.0
GSMaP-anom-EBKRP-TC 0.74 0.94 21 0.64 0.92 20 0.45 0.92 23 20.0

GSMaP-CDF-TC 0.79 0.93 23 0.75 0.90 23 0.57 0.91 29 24.8
GSMaP-total-OK-TC-ERA5 1.28 0.76 26 1.23 0.68 24 0.32 0.92 8 21.0

GSMaP-anom-OK-TC-ERA5 1.34 0.74 30 1.27 0.66 30 0.31 0.91 15 25.0
GSMaP-total-EBK-TC-ERA5 1.27 0.76 24 1.24 0.68 25 0.32 0.92 12 21.3

GSMaP-anom-EBK-TC-ERA5 1.32 0.75 28 1.27 0.66 29 0.31 0.91 9 23.7
GSMaP-total-EBKRP-TC-ERA5 1.27 0.76 24 1.24 0.67 26 0.32 0.92 12 21.5

GSMaP-anom-EBKRP-TC-ERA5 1.32 0.75 28 1.27 0.66 28 0.32 0.91 12 23.7
GSMaP-CDF-TC-ERA5 1.30 0.75 27 1.26 0.66 27 0.41 0.89 27 25.0

AGCD 0.44 0.98 1 0.62 0.92 19 0.42 0.93 9 11.2
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