
����������
�������

Citation: Barbieri, S.; Di Fabio, S.;

Lidori, R.; Rossi, F.L.; Marzano, F.S.;

Picciotti, E. Mosaicking Weather

Radar Retrievals from an Operational

Heterogeneous Network at C and X

Band for Precipitation Monitoring in

Italian Central Apennines. Remote

Sens. 2022, 14, 248. https://doi.org/

10.3390/rs14020248

Academic Editors: Mi Wang,

Hanwen Yu, Jianlai Chen and

Ying Zhu

Received: 5 November 2021

Accepted: 1 January 2022

Published: 6 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Mosaicking Weather Radar Retrievals from an Operational
Heterogeneous Network at C and X Band for Precipitation
Monitoring in Italian Central Apennines
Stefano Barbieri 1,2,*, Saverio Di Fabio 1, Raffaele Lidori 1, Francesco L. Rossi 3, Frank S. Marzano 1,2

and Errico Picciotti 1

1 CETEMPS, Department of Physical and Chemical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
saverio.difabio@aquila.infn.it (S.D.F.); raffaele.lidori@himet.it (R.L.); frank.marzano@uniroma1.it (F.S.M.);
errico.picciotti@aquila.infn.it (E.P.)

2 DIET, Department of Information Engineering, Electronics and Telecommunications,
Sapienza University of Rome, 00184 Rome, Italy

3 CFA, Civil Protection Functional Centre of Abruzzo Region, 67100 L’Aquila, Italy;
francesco.rossi@regione.abruzzo.it

* Correspondence: stefano.barbieri@uniroma1.it; Tel.: +39-06-44585847

Abstract: Meteorological radar networks are suited to remotely provide atmospheric precipitation
retrieval over a wide geographic area for severe weather monitoring and near-real-time nowcasting.
However, blockage due to buildings, hills, and mountains can hamper the potential of an operational
weather radar system. The Abruzzo region in central Italy’s Apennines, whose hydro-geological
risks are further enhanced by its complex orography, is monitored by a heterogeneous system of
three microwave radars at the C and X bands with different features. This work shows a systematic
intercomparison of operational radar mosaicking methods, based on bi-dimensional rainfall products
and dealing with both C and X bands as well as single- and dual-polarization systems. The considered
mosaicking methods can take into account spatial radar-gauge adjustment as well as different spatial
combination approaches. A data set of 16 precipitation events during the years 2018–2020 in the
central Apennines is collected (with a total number of 32,750 samples) to show the potentials and
limitations of the considered operational mosaicking approaches, using a geospatially-interpolated
dense network of regional rain gauges as a benchmark. Results show that the radar-network pattern
mosaicking, based on the anisotropic radar-gauge adjustment and spatial averaging of composite data,
is better than the conventional maximum-value merging approach. The overall analysis confirms that
heterogeneous weather radar mosaicking can overcome the issues of single-frequency fixed radars in
mountainous areas, guaranteeing a better spatial coverage and a more uniform rainfall estimation
accuracy over the area of interest.

Keywords: weather radar; networking; mosaicking algorithm; data processing; validation

1. Introduction

In mountainous regions, heavy rainfall represents a problem that can manifest itself in
the form of flash floods, especially in relatively small river basins. The Abruzzo region in
central Italy is characterized by complex orography with vast mountainous regions within
the Apennine range (with its highest peak, the Gran Sasso, at 2912 m above the sea level) and
several catchments with very rapid runoff [1]. The detection and warning of severe events
are typically approached using both rain gauges (RGs) and remote sensing instruments,
from the ground and from space, in order to obtain a quantitative precipitation estimation
(QPE) as accurately as possible [2–8]. In this respect, the ground-based microwave weather
radar (WR) monitoring of precipitation systems is a well-established technique (e.g., [2,3]).
It has a number of advantages over other instruments, as it can provide QPE products with
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a high spatial resolution over a large area (i.e., hundreds of kilometers) within a relatively
short period of time (i.e., a few minutes). Weather radar data are usually complemented
by rain gauge networks, providing point-like surface rainfall measurement, as well as
by satellite-based radiometers [4]. The latter, indeed, can provide cloud coverage and
deep convection maps at infrared wavelengths but with a poor resolution, especially from
geostationary platforms (i.e., many kilometers) and a poor temporal repetitiveness from
low-Earth-orbit (LEO) platforms (i.e., few overpasses per day) [3].

Numerous sources of errors may affect single radar measurements, such as ground
clutter backscattering, incomplete vertical profiling, non-uniform beam filling, two-way
path attenuation, mixed-phase hydrometeors, anomalous propagation, and second-trip
echos (e.g., [2]). The use of radar in mountainous terrain is particularly affected by the
partial blocking of the radar antenna beam and the range-dependent degradation of surface
rainfall retrieval due to increasing altitude and beam broadening. Operationally speaking,
to improve the accuracy of radar QPE while preserving their spatial description of rainfall
fields, many approaches suggest adjusting radar QPEs as a function of rain gauge mea-
surements [4]. In this way it is possible to combine the advantages of in-situ sensors with
radar remote sensing ones, partially overcoming their respective drawbacks [5]. Several
radar–rain-gauge merging techniques have been developed, which have proven effective to
improve the accuracy of single-radar QPEs (e.g., [4,6,7]) such as geostatistical approaches,
based on the Kriging spatial extrapolation method, and simpler algorithms, based on an
anisotropic correction map (e.g., [8]).

When a radar network is available within the region of interest, the multi-radar data
composite techniques allow obtaining better quantitative rainfall retrieval than those ob-
tained with individual radars [9–17]. This is due not only to the better spatial coverage,
especially near the surface, but also to the improved quality of data products in overlap-
ping areas. Several meteorological services and research centers across the world are using
networks of weather radars both at the national and regional scales, e.g., [9–12]. These
networks are very often heterogeneous so that different frequencies, antenna geometries,
and scanning strategies pose some challenges when trying to mosaic their data [13,14].
Although the use of X-band weather radars has been successfully demonstrated for many
applications, their use in coordination with C-band radars still needs a detailed and sys-
tematic analysis for an operational radar network, especially when dual polarization is
not available and they are operated in complex-orography regions [15–17]. The radar com-
posite products can be generated combined onto a unified 3D Cartesian grid; the volume
of data generated from each radar, from an operational point of view, is more effective
and straightforward [18] to use in generating products at the single-radar level and then
combine them onto a unified 2D Cartesian grid.

The Abruzzo weather radar network design was driven by the needs of the Func-
tional Centre of Region Abruzzo (CFA) for the detection and warning of severe weather
and related hydrometeorological hazards, a requirement that requires high redundancy,
availability, and accuracy of radar data. CFA is part of the Civil Protection Regional System
of the Abruzzo Region in central Italy, which has functions regarding the forecast, mon-
itoring, and warning of meteorological, hydrological, hydraulic, and wildfire risk, with
the institutional duty of daily operational meteorological surveillance [16]. The Center
of Excellence CETEMPS of the University of L’Aquila (Italy) carries out research activity,
mainly concerning atmospheric physics, remote sensing, meteorology, and hydrology
and supports CFA in its daily operational meteorological forecast and surveillance. The
Abruzzo radar network, planned by CFA together with the Center of Excellence CETEMPS
(L’Aquila, Italy) and completed in 2018, is based on X- and C-band systems, installed in
different periods by diverse manufacturers, and performing different scanning strategies
and signal processing [17,19].

Within the context just discussed, the purposes of this work are: (i) to introduce an
operational three-dimensional (3D) radar raw-volume-processing chain, called RAMP
(radar advanced multiband processing), to compensate for the most common error sources
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for each system at the C and X bands with and without polarimetric capability and to
provide single-radar-level products; (ii) describe the operationally-oriented radar composite
modular algorithm, called CRAMS (CETEMPS radar advanced mosaic software), capable
of ingesting both radar RAMP-processed products and providing 2D composite products;
(iii) apply CRAMS to a large set of precipitation events in central Italy’s Apennines and the
Adriatic coast over 2 years and validate its surface rain-rate hourly rainfall output against
the rain gauge data of the Abruzzo network by ranking the various 2D mosaicking schemes
in terms of error index statistics.

This paper is organized as follows. In Section 2, the Abruzzo Region weather radar and
rain gauge network is described in terms of C-band and X-band radars and available rain
gauges. Section 3 presents the multi-radar mosaicking methodology wherein single-radar
products for composite, radar–gauges adjustment methods, and mosaicking techniques are
presented. The radar pattern mosaicking validation using rain-gauge data is illustrated in
Section 4 with an overview of available case studies, the analysis of some selected events,
and a discussion of the overall error statistical metrics for each considered technique.
Conclusions are drawn in Section 5, whereas the Appendix A provides some details about
the RAMP processing chain.

2. Abruzzo Region Weather Radar and Rain Gauge Network

The Abruzzo radar network consists of three weather radars: a C-band system located
at the site of Mt. Midia (L’Aquila, Italy) and two X-band mini radars, both located along the
Adriatic Sea coast, in Cepagatti (Pescara, Italy) and Tortoreto (Teramo, Italy), respectively,
as shown in Figure 1.
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Figure 1. Locations and pictures of the weather radars at the C and X bands, installed within the
Abruzzo region in central Italy (blue dots) and the location of the 98 quality-controlled rain gauges in
the Abruzzo region (red dots).
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The sites of all radar systems were chosen to guarantee the maximum extension of the
composite taking into account technical, financial, and logistic constraints. The Abruzzo
rain-gauge network, here considered to evaluate the QPE performance of the WR system,
is composed of 98 quality-controlled stations (see Figure 1).

Both Abruzzo region weather radar and rain gauge features are described in the
following two paragraphs.

2.1. C-band and X-band Weather Radars in Abruzzo

The current position of the Mt. Midia C-band Doppler weather radar dates back to
2006, when it was transferred from the previous site near the city of L’Aquila (see Figure 1).
The radar project involved, in a synergistic work, the Italian Department of Civil Protection
(DPC) as a sponsor, CETEMPS as coordinator, CFA, and some Italian companies in the
sector [15].

The Mt. Midia radar is currently part of the Italian operational weather radar net-
work [16], composed of 23 systems, managed by a federation of national and regional
bodies. The Mt. Midia site is in a mountainous area at the border between the Abruzzo
and Lazio regions. Mt. Midia’s top height is 1710 m, thus covering most of central Italy, in-
cluding the Abruzzo inland and the urban area of Rome, but leaving the Abruzzo coastline
basically uncovered.

For this reason and with the aim of obtaining qualitatively valid observations along
the Abruzzo coastline, two X-band radar systems were also installed in Abruzzo in the
framework of three European projects, HYDRORAD [17], AdriaRadNet [19], and CapRad-
Net [20]. The first one, with Doppler dual-polarized radar technology, became operational
in 2014 at Tortoreto, whereas the other one, with non-Doppler single-polarization capability,
was located in 2017 at Cepagatti, a few kilometers from the Pescara airport.

The technical specifications of all 3 weather radar systems installed in the Abruzzo
region are shown in Table 1, whereas their locations and pictures are given, as mentioned,
in Figure 1. Both the Tortoreto and Mt. Midia radars are typically operated with a range
resolution of 125 m, while the Cepagatti radar uses a resolution of 450 m.

Table 1. Technical specifications of the three weather radars, installed in the Abruzzo region.

Name/Features M. Midia
(MM)

Tortoreto
(TO)

Cepagatti
(CE)

Owner CFA CFA CFA

System model DWSR-93C WR-25XP WR-10X

Manufacturer Enterprise, USA ELDES, IT ELDES, IT

Latitude 42.06◦ 42.78◦ 42.40◦

Longitude 13.18◦ 13.94◦ 14.14◦

Height (a.s.l.) 1710 m 15 m 50 m

Polarization Single Dual Single

Frequency band C X X

Doppler capability Yes Yes No

Peak power 250 kW 25 kW 10 kW

Beamwidth 1.6◦ 3.0◦ 3.0◦

Antenna gain 40.5 dB 35 dB 35 dB

The volume scan period is the same for all radars and occurs every 10 min. Due to its
altitude, Mt. Midia radar scans at 0.5◦, 1.5◦, 2.5◦, and 3.5◦ elevation angles, whereas both
the Tortoreto and Cepagatti radars are programmed to scan at 1◦, 2◦, 3◦, 4◦, 5◦, and 30◦

and 1◦, 2◦, 3◦, 4◦, 5◦, and 15◦, respectively (the difference in the last elevation is due to the
surrounding orography).
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2.2. Rain Gauge Network in Abruzzo

The term rain gauge is generally used to refer to instruments used to measure the
amount of liquid precipitation at a point location, over a set period of time, mainly by
means of direct rainfall collection. Rain gauges are the most widely used rainfall sensors,
providing low-cost, direct, and relatively accurate measurement. Rain gauge records are
often used as ground truth in the calibration and verification of remote rainfall sensors
such as weather radars [4–7]. Tipping bucket rain gauges (TB-RGs) are the most common
type of automatic recording gauge and are in fact the main data source used for adjustment
of radar rainfall estimates [6,21–23].

The Abruzzo region was chosen as a testing domain for both single-radar and com-
posite precipitation estimates, whereas the rain-gauge network nominally consists of 98
TB-RGs stations, as shown in Figure 1. As is well-known, the bucket resolution of TB-RGs
and the minimum hourly rainfall accumulation time period (e.g., 0.2 mm and 10 min for
the Abruzzo network) can affect the effective accuracy and temporal resolution of the rain-
gauge estimates [24]. The rain-gauge network data are collected and centrally processed in
near-real time by DPC and distributed to functional centers and competence centers [25]
via the DEWETRA data portal. The data are stored on DEWETRA in the form of hourly
accumulations for further analysis.

The point-like rain-gauge records may contain significant instrumental errors arising
from a variety of sources. In order of general importance, systematic errors common
to all rain gauges, wetting loss in the internal walls of the collector, evaporation from
the container, and errors due to in and out-splashing of water [26]. Additional errors in
rain-gauge measurements may arise from operational conditions such as miscalibration,
blockages, and double-tipping (in the case of TB-RGs). Operational errors can usually be
detected (and therefore removed or corrected) through time-series analysis or through
comparison against neighboring gauges and even against co-located radar estimates.

Given that rain-gauge records are often used as ground truth, all rain-gauge data
employed in this work were preliminarily subjected to quality control in order to identify
and remove any inconsistencies before being used in radar-rain gauge comparison. Typical
quality checks are: (i) identification of rain gauges with the same name but different
coordinates, (ii) removal of data associated with rain gauges without valid coordinates, iii)
removal of duplicate data and identification of anomalous data (for example very different
values compared to the surrounding rain gauges).

In this study, systematic, operational, and additional errors, highlighted during a
quality check of rain-gauge data, were corrected by removing the measurement or the rain
gauge itself from the comparison.

3. Single Radar and Mosaicking Methodology

The need to create a meteorological radar network arises both from the requirement
for meteorological monitoring over a wider area and from the need to improve the quality
of single-radar measurements and associated rainfall retrievals. As a matter of fact, the use
of a single weather radar involves a series of problems that limit its effectiveness, such as
areas within the nominal radar’s unambiguous range not electromagnetically detectable
due to the local orography or, especially at the X band, to strong precipitation leading to a
considerable path attenuation or even the complete extinction of the backscattered signal.
In the latter case, attenuation signal correction can be approached by using spatial coverage
redundancy with additional radar sources not experiencing the same signal loss. To do this,
we need to design a weather radar network and a scheme to generate a composite at the
price to add new systems that can indeed extend the precipitation monitoring area itself.

The essential requirements for generating an accurate composite are: (i) control of
the data quality of individual radars, using proper filtering and correction algorithms,
(ii) mapping of the artifact-corrected radar data onto a uniform common grid with a
homogeneous presentation, and the (iii) synchronization of the various radar sources with
their temporal availability almost in real time. In summary, generating weather radar
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composite products from multiple radar scans, having different system characteristics (e.g.,
see Table 1 in the case of the Abruzzo region), can offer a number of advantages when
compared to observations of a single radar, summarized as follows:

• Coverage of a wider area of the monitored territory

- overcoming the limited coverage of individual radars;
- more accurate measurements at greater distances;

• Spatial redundancy of weather radar observations

- inter-calibrating the hybrid network radars;
- reducing ground clutter effects and beam blocking;
- guaranteeing measurements even in the case of the failure of one radar;

• Mitigation of path attenuation effects and improved retrievals

- reducing two-way path attenuation effects in complex orography;
- extracting radar data in total signal extinction area;
- improving the rainfall estimate thanks to simultaneous observations;

3.1. Single-Radar Algorithms

The realization of the multi-radar composite for the Abruzzo region involves both the
use of complete volumetric scans and two-dimensional products from the Mt. Midia (MM),
Cepagatti (CE), and Tortoreto (TO) radars, all synchronized and collected every 10 min.
The 3D volume scans of each radar system are processed by means of the RAMP processing
chain in the native radar (spherical) coordinates, briefly described in the Appendix A.

As mentioned, the results of each weather radar scan are often associated with sig-
nificant uncertainties, arising from various sources: hardware calibration, ground clutter,
range-related effects, beam blockage, beam overshooting or partial beam filling, anomalous
propagation of the radar beam, and wireless local-area-network (WLAN) interferences. In
practical applications, it is not possible to separate and estimate the different sources of
radar errors, but they are still important to identify and characterize to improve the quality
of the final products.

RAMP is a modular algorithmic platform able to harmonize and process data from
radars with different specifications, deal with the most common error sources for each
system, and generate products (see Appendix A). The RAMP schematic processing chain is
shown in Figure 2 top panel, where the input and output data are highlighted. The input
data consist of horizontally reflectivity Zhh and, for polarimetric radar, also differential
reflectivity Zdr and differential phase shift φdp. The output data consists of the same input
variables, corrected by errors, and the products described in Table 2.

The RAMP approach is similar to that adopted in literature (e.g., [27,28]), in which
the data processing is functionally divided into two steps: the first is aimed at raw data
corrections, whereas the second is devoted to the characterization of radar data quality. The
latter is expressed as a quantitative quality index, subjectively identified by the combination
of several indicators and applied to each cell of the radar scan volume. Quality control
algorithm functions can be switched on or off in the RAMP scheme.

Data-correction algorithms are essential for improving estimation uncertainty, whereas
quality-control algorithms generate a total quality index (TQI) map that can be attached to
radar-based retrievals [29]. Figure 2 (bottom panel) shows an example of the RAMP chain
application to weather radar data in terms of data before and after RAMP corrections as
well as attached TQI maps. The individual radars are not temporally synchronized so that
a posterior synchronization is carried out both for volumetric 3D and 2D products.

A list of typical products, obtained from the RAMP algorithm for each individual
radar, is given in Table 2 (see also Appendix A). All single-radar algorithms, organized in a
series of sub-packages characterized by their specific functionality, have been developed
to manage a variety of routines, including the reading, processing, analyzing, composing,
and displaying of data from different weather radars with different input formats.
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In this work, as mentioned, we focus on the surface rain rate mosaicking. To this
purpose, the horizontally reflectivity factor Zhh is usually converted into surface rainfall
intensity (SRI) by means of a conventional power law of the form. In complex orography,
we can approach the estimate using the lowest detectable bin (LDB) Zhh-LDB (i.e., the
radar bin which is detected at the lowest altitude along the pixel column) or the vertical
maximum intensity (VMI) Zhh-VMI (i.e., the radar bin with maximum reflectivity along the
pixel column). For operational purposes, VMI provides a clear signature of the rainfall
ingesting to some extent the vertical variability of the radar returns. For this reason, within
the single-polarization RAMP scheme, for a given pixel (x,y) and at a given time t, we
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have adopted the following parametric estimator of the radar-based SRI of the hourly rain
rate RWR:

RWR(x, y, t) = fS[Zhh−VMI(x, y, t)] = aR [Zhh−VMI(x, y, t)]bR (1)

where fS is the single-polarization estimation function; (x,y) are local grid Cartesian coordi-
nates; aR and bR are empirical regression parameters derived from an external calibration
using rain-gauge quality-controlled data in order to tackle the DSD-dependence in single-
polarization systems (e.g., [30–32]). These coefficients may depend on the precipitation
type (e.g., stratiform, convective, embedded) and season, but, for operational purposes,
this data stratification is not applied due to the errors in classifying each radar bin within
an event. In (1), the subscript WR stands for the MI, CE, or TO weather radar (see Table 1).

Table 2. List of the main products of each single radar using RAMP within the Abruzzo network
composite. RAMP modules are briefly described in Appendix A.

Description Symbol
Vertical maximum of reflectivity. This product is useful for the quick surveillance of
regions covered by the radar. VMI

Convective storm detection. This product is aimed at distinguishing stratiform and
convective precipitation. CSD

Nowcasting. This product is aimed at a short-term forecast of convective cells’ motion. NOW

These products estimate the ground instantaneous (SRI) and accumulated (SRT) rain
over the radar coverage area. SRI, SRT

Vertically integrated liquid. This product can be used as a measure of the potential for
strong rainfall. VIL

Probability of hail. This product is aimed at the detection of hail, which is one of the
most dangerous weather phenomena. POH

In the case of polarimetric radars, such as the TO radar at the X band in the Abruzzo
network (see Figure 1), additional variables are available (e.g., differential reflectivity Zdr
and differential phase shift Φdp), so that horizontal specific attenuation Ahh can be derived
to correct for two-way path extinction effects. In this case, we expect an improved rainfall
rate estimation, providing estimates of DSD fitting parameters [30]. Alternatively, robust
estimators of SRI, based on the specific differential phase shift Kdp and the differential
reflectivity Zdr can be applied, especially in the case of moderate to intense precipitation
after correcting for two-way path attenuation (see the Appendix A):

RWR (x,y,t) = fP[Zhh−VMI(x,y,z,t), Kdp(x,y,z,t), Zdr(x,y,z,t)] (2)

where fP is the dual-polarization estimation function involving the vertical maximum inten-
sity of the corrected reflectivities Zhh−VMI and Zdr, as well as the estimated Kdp [27]. Specific
modules are introduced in the RAMP scheme to process polarimetric radar observables and
to generate further products such as the hydrometeor classification for each radar volume
scan (see Appendix A).

As mentioned, the main steps of data correction and quality characterization within the
RAMP chain are briefly summarized in the Appendix A. To mitigate the range-dependent
degradation of radar rain estimates, for operational purposes we have adopted a static
radar-gauges adjustment methodology which will be described in some detail in the
next section.

3.2. Radar-Gauge Spatial-Adjustment Methods

For operational purposes, radar-gauge adjustment methods attempt to correct the
average error, which is always present in radar-based hourly rain rate RWR when compared
to rain gauge hourly rain rate RRG within the single-radar coverage. The main statistical
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approach in literature uses an isotropic multiplicative factor, and they are well resumed
in [33]; however, an anisotropic map approach [8] has also been used here.

In the first method, the whole radar RWR(r) field is used as a background, applying a
multiplicative (or additive in some cases) correction factor. The isotropic-range adjustment
(IRBA) algorithm defines the radar adjustment factor as a space–time average ratio of rain
gauge and co-located radar rain rates over the considered time period [8]. Resampling
the radar estimates at a 0.400-km resolution in a Cartesian grid (x,y) and representing the
IRBA algorithm as a function of the radar range r(x,y), the average radar adjustment factor
Fadj(x, y) can be expressed as an exponential function of the range:

Fadj(x, y) = FIRBA(r) = 〈
RRG(r)
RWR(r)

〉 = c e d r (3)

where the angle brackets indicate the space–time average, whereas c and d are empirical
regression coefficients, derived from the comparison between rain gauge and weather radar
usually at the available rain-gauge locations over a time period of two years (2018–2019).

For the Mt. Midia radar, an example of IRBA output map is presented in Figure 3a. The
IRBA factor is basically a radial scaling of the original radar-retrieved field using available
rain-gauge stations not only in Abruzzo but also for central Italy regions covered by the Mt.
Midia radar range of 120 km.

In the second method, unlike the isotropic adjustment approach, the anisotropic spatial
adjustment (ASBA) method is assuming a spatially inhomogeneous correction factor, which
means a range dependence that may vary not only with respect to radar range r(x,y), but
also to the azimuth ϕ. Since the radar grid is resampled at 1-km resolution, the rain gauge
field is geospatially interpolated by means of the Kriging method. The Kriging interpolation
consists of predicting values at ungauged locations as the linear combination of values
at gauged locations, with the linear weights being derived through the minimization of
the variance of the estimation error [34]. As such, the so-called Kriging yields the best
linear unbiased estimator of the rainfall field, based upon available rain-gauge records.
Indicating with RRG-K the Kriging-interpolated rain field, the ASBA factor can be formally
expressed by:

Fadj(x, y) = FASBA(r, ϕ) = 〈RRG−K(r, ϕ)

RWR(r, ϕ)
〉 (4)

The output map of the ASBA method, obtained using two years of rain-gauge data, is
presented, for the Mt. Midia radar, in Figure 3b, wherein we note the azimuthal inhomo-
geneities between the ASBA map and the corresponding IRBA one. The ASBA approach
leads to the generation of a correction adjustment map for each individual radar, which is
then applied to the rainfall estimates before performing the radar product mosaicking.

In summary, the estimated rain rate fields RWRadj from each single weather radar can
be expressed by applying the adjustment factor Fadj (in one of its 2two forms given in (3) or
(4)), as follows:

RWRadj(x, y, t) = Fadj(x, y) RWR(x, y, t) (5)

where the considered weather radars are MM, TO, or CE (see Table 1), and the adjustment
method can be IRBA or ASBA. The previous expression justifies the choice to perform
the radar network mosaic in the rain-rate domain where we can uniformly merge data
coming from systems at different frequencies (e.g., C or X bands) and having single- or dual-
polarization, as in the case of the Abruzzo heterogeneous radar network. If no adjustment
factor is adopted, then it remains Fadj(x,y) = 1.

3.3. Radar Mosaicking Techniques

This section describes the mosaicking algorithm CRAMS for the multi-radar heteroge-
neous network, developed for the generation of the regional-scale composite products [35].
The CRAMS technique, whose general scheme is shown in Figure 4, is designed to provide
the necessary tools to build a complete radar processing chain in a flexible and modular
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way to adapt to different radar networks. The single-radar RAMP products are remapped
into a 3D Cartesian grid preserving height information, spatial resolution, and coverage
range in order to initialize the CRAMS algorithm for the composite generation.
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Figure 4. Overview of the CRAMS chain flowchart: all data are collected every 10 min and synchro-
nized, and the related composite products are generated in real time as output maps.

The Abruzzo mosaicking domain of about 83,000 km2 (310 km by 268 km) is set up
considering the technical characteristics of each weather radar, as well as the geographical
location and the surrounding orography. For each radar, the coverage area is set to be
compatible with the size of the mosaicking domain, as shown in Figure 5a, covering a
large part of central Italian territory. The WR products, generated at the single-radar level,
are remapped onto a common Cartesian 2D grid with a spatial resolution of 0.400 km,
covering the mosaicking domain, a trade-off able to guarantee sufficient accuracy, ease of
implementation, and calculation speed in processing.

To represent the orography complexity and the impact of radar beam blockage, Figure 5
(right panel) also shows the map of the minimum LDB (lowest detectable bin) height,
mosaicked from the corresponding maps of the three weather radars using the SRTM
(shuttle radar topographic map) digital elevation model (DEM) of the Abruzzo region at
30-m resolution. The discontinuities at the border of WR maximum-range circles are mainly
due to the orographic blockages dependent on the WR installation sites (along the coast for
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the TO and CE radars and in the middle of the Apennines for the MM radar), as reflected
by their altitudes in Table 1.

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 31 
 

 

 

  
Figure 5. (Left panel) The Abruzzo network composite domain with the maximum coverage area 
chosen for each radar system (120 km for C-band MM, 80 km for X-band CE, and 60 km for X-band 
TO). (Right panel) Map of the minimum LDB (lowest detectable bin) height, mosaicked from the 
corresponding maps of the three weather radars represented by the operational maximum range 
(see the left panel). 

To represent the orography complexity and the impact of radar beam blockage, 
Figure 5 (right panel) also shows the map of the minimum LDB (lowest detectable bin) 
height, mosaicked from the corresponding maps of the three weather radars using the 
SRTM (shuttle radar topographic map) digital elevation model (DEM) of the Abruzzo 
region at 30-m resolution. The discontinuities at the border of WR maximum-range cir-
cles are mainly due to the orographic blockages dependent on the WR installation sites 
(along the coast for the TO and CE radars and in the middle of the Apennines for the MM 
radar), as reflected by their altitudes in Table 1. 

The resampled radar products can be combined in order to obtain the final regional 
WR composite. Selecting an optimal way to merge radar data from different systems is a 
critical task and several factors, such as the size and shape of the domain of interest, the 
number of radars, and their geographic location should be considered. The WR compo-
site can be generated directly from scanned volume data from each radar or from some 
specific WR-based products, generated by every single radar. In the first case, 3D obser-
vations from individual radars can be combined onto a unified 3D Cartesian grid, 
whereas in the latter case 2D products from individual radars can be combined onto a 
unified 2D Cartesian grid. The main differences between 3D and 2D mosaics are well 
described in [36]. 

The 2D composite scheme is adopted in the CRAMS algorithm. The 2D approach 
can be at a first glance less accurate than the 3D one, but it has the advantage of being 
computationally less complex and thus easier to implement in an operational environ-
ment, especially if the domain size is wide and the data to work with are heterogeneous 
since they come from radars with very different characteristics.  

Formally speaking, the mosaicking technique is providing the weather radar net-
work (WRN) rain rate estimation RWRN at a given time by means of:  𝑅ௐோே௘௧(𝑥, 𝑦, 𝑡) = 𝑀௡௘௧൛ 𝑅ெெ௔ௗ௝ (𝑥, 𝑦, 𝑡), 𝑅்ை௔ௗ௝ (𝑥, 𝑦, 𝑡), 𝑅஼ா௔ௗ௝ (𝑥, 𝑦, 𝑡)ൟ (6)

where Mnet is the mosaicking technique rule for the network radar data, whereas RMMadj, 
RTOadj, and RCEadj are the estimated rainfall rate adjusted by applying the Fadj factor to the 
MM, TO, and CE radars, respectively.  

In addition to the rain estimation, the CRAMS mosaicking technique can also be 
applied to the other products of the individual radars, as shown later in Section 4.1 with 

Figure 5. (Left panel) The Abruzzo network composite domain with the maximum coverage area
chosen for each radar system (120 km for C-band MM, 80 km for X-band CE, and 60 km for X-band
TO). (Right panel) Map of the minimum LDB (lowest detectable bin) height, mosaicked from the
corresponding maps of the three weather radars represented by the operational maximum range (see
the left panel).

The resampled radar products can be combined in order to obtain the final regional
WR composite. Selecting an optimal way to merge radar data from different systems is a
critical task and several factors, such as the size and shape of the domain of interest, the
number of radars, and their geographic location should be considered. The WR composite
can be generated directly from scanned volume data from each radar or from some specific
WR-based products, generated by every single radar. In the first case, 3D observations from
individual radars can be combined onto a unified 3D Cartesian grid, whereas in the latter
case 2D products from individual radars can be combined onto a unified 2D Cartesian grid.
The main differences between 3D and 2D mosaics are well described in [36].

The 2D composite scheme is adopted in the CRAMS algorithm. The 2D approach
can be at a first glance less accurate than the 3D one, but it has the advantage of being
computationally less complex and thus easier to implement in an operational environment,
especially if the domain size is wide and the data to work with are heterogeneous since
they come from radars with very different characteristics.

Formally speaking, the mosaicking technique is providing the weather radar network
(WRN) rain rate estimation RWRN at a given time by means of:

RWRNet(x, y, t) = Mnet

{
RMMadj (x, y, t), RTOadj (x, y, t), RCEadj (x, y, t)

}
(6)

where Mnet is the mosaicking technique rule for the network radar data, whereas RMMadj,
RTOadj, and RCEadj are the estimated rainfall rate adjusted by applying the Fadj factor to the
MM, TO, and CE radars, respectively.

In addition to the rain estimation, the CRAMS mosaicking technique can also be
applied to the other products of the individual radars, as shown later in Section 4.1 with an
example. The discussion of these other mosaic products is outside the scope of this work.

After a literature review about 2D mosaicking, Table 3 summarizes the main rules
Mnet for radar mosaicking. We basically considered 4 approaches in terms of:

1. Max, wherein a multi-radar maximum criterion is used;
2. Avg, wherein a multi-radar average criterion is used;
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3. Lin, wherein a multi-radar linear distance-weighted criterion is used;
4. Exp, wherein a multi-radar exponential distance-weighted criterion is used.

Table 3. Merging strategies for multi-radar mosaicking, tested in the Abruzzo composite domain (see
Figures 1 and 5). The identification (ID) number lists the merging (from 1 to 4) and processing (a or b)
methods and then their combination as a merging technique (from 1a to 4ab). SRT is the surface rain
total (mm), accumulated in time on a given site.

ID Label Multi-Radar Merging Method Reference
1 Max Assign to the common pixel the maximum value of the available measurements. [37]

2 Avg Assign to the common pixel the mean value of the available measurements. [37]

3 Lin Assign to the common pixel a value-weighted with the distance from the radars, using
linear weighting functions. [38]

4 Exp Assign to the common pixel a value weighted with the distance from the radars, using
exponential weighting functions. [37]

ID Label Single-Radar Processing Method ID LABEL
a Pol Polarimetric rain rate estimation applied to the polarimetric radar in Tortoreto (TO). P

b Ani Single-radar spatial anisotropic correction, based on the ASBA mapping (see Figure 4). A
ID Label WR Network (WRN) Mosaicking Technique ID LABEL
1 Max Assign the maximum value among those covering the same grid of cells. RWRN1

1a MaxPol Assign the maximum value among the available measurements. Polarimetric
processing is performed on the TO-radar. RWRN1a

1b MaxAni Assign the maximum value among the available measurements after a single-radar
spatial anisotropic correction. RWRN1b

1ab MaxPolAni Assign the maximum value among the available measurements. A single-radar spatial
anisotropic correction and polarimetric processing on the TO-radar is performed. RWRN1ab

2 Avg Assign the mean value among those covering the same grid of cells. RWR2

2a AvgPol Assign the mean value among the available measurements. Polarimetric processing on
the TO-radar is performed. RWRN2a

2b AvgAni Assign the mean value among the available measurements after a single-radar spatial
anisotropic correction. RWRN2b

2ab AvgPol
Ani

Assign the mean value among the available measurements. A single-radar spatial
anisotropic correction and polarimetric processing on the TO-radar is performed. RWRN2ab

3 Lin Assign the value linear weighted with the distance from the radars among those
covering the same grid of cells. RWRN3

3a LinPol Assign the value linear weighted with the distance among the available measurements.
Polarimetric processing is performed on the TO-radar. RWRN3a

3b LinAni Assign the value linear weighted with the distance among the available measurements
after a single-radar spatial anisotropic correction. RWRN3b

3ab LinPol
Ani

Assign the value linear weighted with the distance among the available measurements.
A single-radar spatial anisotropic correction and polarimetric processing on the

TO-radar is performed.
RWRN3ab

4 Exp Assign the value exponential weighted with the distance from the radars among those
covering the same grid of cells. RWRN4

4a ExpPol Assign the value exponential weighted with the distance among the available
measurements. Polarimetric processing is performed on the TO-radar. RWRN4a

4b ExpAni Assign the value exponential weighted with the distance among the available
measurements after a single-radar spatial anisotropic correction. RWRN4b

4ab ExpPol
Ani

Assign the value exponential weighted with the distance among the available
measurements. A single-radar spatial anisotropic correction and polarimetric

processing on the TO-radar is performed.
RWRN1b
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Moreover, any option can be switched on and off, such as the polarimetric retrieval for
the TO radar as well as the anisotropic correction for all radars, thus setting up Fadj(x,y) = 1.
The 16 combinations of all possible approaches, considered in this work, are labeled with
numbers (1, 2, 3, and 4) and labels (a, b) to be more effective when referring to and
comparing them during the validation stage of this work.

4. Mosaicking Validation Using Rain Gauge Data

The mosaicking techniques, listed in Table 3, have been tested on a series of case
studies in the period 2018–2020, related to different precipitation regimes in the Abruzzo
region, listed in Table 4.

Table 4. Precipitation test cases in 2018–2020 within the Abruzzo domain used for intercomparing
and validating the merging techniques listed in Table 3. Duration and maximum rain rate are derived
from the rain gauge time series over the whole domain in Figure 2.

Date Atmospheric
Phenomena

Precipitation
Type

Duration
(Day)

Maximum
Rain Rate

(mm/h)
3 May 2018 Rainstorm Moderate/Frequent 1 49
8 May 2018 Rainstorm Moderate/Frequent 1 58
5 June 2018 Storm Light/Discontinuous 1 41
8 June 2018 Rainstorm Moderate-heavy/Frequent 1 61
22 June 2018 Storm Moderate/Frequent 1 60
6 July 2018 Rainstorm Light/Discontinuous 1 56
16 July 2018 Rainstorm Moderate/Frequent 1 35
14 August 2018 Rainstorm with hail Intense/Persistent 1 83
5 May 2019 Rainstorm with snow/hail Light/Discontinuous 3 44
10 July 2019 Rainstorm with hail Intense/Persistent 1 72
4 February 2020 Rain and snow Moderate/Frequent 2 37
27 March 2020 Rain and snow Light/Discontinuous 1 14
3 May 2020 Rainstorm Light/Discontinuous 1 38
17 July 2020 Rainstorm with hail Light/Discontinuous 1 42
7 October 2020 Rainstorm with hail Moderate/Discontinuous 1 75
20 November 2020 Rain and snow Moderate/Frequent 1 52

The 16 selected rainfall cases include rainstorms and stratiform rain, as well as snowfall
and hail occurrences during the rainiest seasons in central Italy, that is from spring till
autumn with some winter events. Considering the number of regional rain gauges (see
Figure 1) and possible deficiencies in data availability, the number of radar-gauge coupled
estimates is about 2100 per day.

As mentioned, radar QPE is performed in the composite domain of Figure 5, but
it is verified only in the Abruzzo region where the overlap of the nominal maximum
unambiguous range of the 3 radars is optimal. The mosaic radar rainfall hourly rain rates
RWRNet(x,y,t), given in (6) and obtained using the retrieved rain rates every 10 min, are
summed to derive the time-averaged rain rate RWRNet∆t, i.e.,:

RWRNet∆t(x, y, t) =
1

∆t

N

∑
i=1

RWRNet(x, y, ti) ∆ti =
1
N

N

∑
i=1

RWRNet(x, y, ti) (7)

where N = ∆t/∆ti are the discrete instants ti with a period ∆ti, expressed in minutes, within
the integration time ∆t. In our case, N is equal to 6, since ∆ti = 10 min is constant and
∆t = 60 min (1 h), where in the sum we include the first sample and exclude the last one
since radar volumes are labeled with the initial timestamp of each scan. The radar-based
hourly rain rates are then compared with the corresponding hourly rain-gauge rain rates,
derived in a similar way from the 10-min samples.

The intercomparison is carried out by matching each rain gauge with the correspond-
ing radar mosaic pixel using the nearest neighbor criterion (i.e., each rain gauge measure-
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ment is compared with the closest value estimated by the radar around 500 m from the rain
gauge itself). Since the minimum rainfall measurement of the rain gauge is 0.2 mm, only
rainfall measurements exceeding this value are used for evaluation. The available WR-RG
couples are, on average, around 2100 per day and 32,750 in total for all the selected cases.

The results are presented in the following two paragraphs for three selected case
studies within those in Table 4 (Section 4.1) and for the whole dataset in terms of conven-
tional statistical error indices (Section 4.2), respectively. Defining the statistical error εR as
the difference between the hourly precipitation estimates from weather radar composite
RWRNet and the ones RRG measured from rain gauges and indicating with angle brackets
the space-time average (for all rain gauges sites and all-time samples), we can compute:

Mean error or error bias (optimum value = 0) Bias =< εR> = <(RWRNet−RRG)>

Error standard deviation STD (optimum value = 0) STD = σε=

√〈
(εR − 〈εR〉)2

〉
Absolute mean error (MAE) (optimum value = 0) MAE =<|ε R|>
Root mean square error (RMSE) (optimum value = 0): RMSE =

√〈
ε2

R
〉

Normalized RMSE (optimum value = 0): NRMSE =

√〈(
εR

RRG

)2
〉

Fractional standard error (FSE) (optimum value = 0): FSE = RMSE/<RRG>
Coefficient of correlation (Corr) (optimum value = 1): Corr = σWRRG/(σWRσRG )
Mean–field ratio bias (MRB) (optimum value = 1): MRB = <RWRNet>/<RRG>

Where σWRRG, σWR, and σRG indicate in Corr, respectively, the covariance of the radar-
based estimates and rain gauge data, the standard deviation of the radar-based estimates
RWRNet, and the standard deviation of the rain-gauge measurements RRG. Note that RMSE
is also equal to the square root of the Bias2 plus the error variance σ2ε or squared standard
deviation (STD). Bias, MAE, RMSE, and STD are in mm/h, being hourly precipitation rates,
whereas all other indices are adimensional.

4.1. Overview of Selected Case Studies

The selection of the case studies is useful to illustrate and discuss precipitating events
that occurred inland and along the coast of the Abruzzo region in different seasons with
different weather regimes to highlight the advantages of the composite compared to the
observations of a single radar.

The list of the selected events is the following.

1. Event on 8 June 2018. The first case corresponds to a strong inland atmospheric insta-
bility that developed into several convective precipitation phenomena. A minimum
depression, located on the western Mediterranean, favored the transport of unstable
currents over central and northern Italy, resulting in a phase of bad weather, rapidly
evolving. It was characterized by precipitation with a predominantly rain shower or
thunderstorm character, of strong intensity, with frequent electrical activity, local hail
storms, and strong wind gusts.

2. Event on 4 February 2020. A second case examined is characterized by convective
phenomena located mainly along the Adriatic coast. The passage of a cold core from
northern Europe was responsible for a general and significant drop in temperature
and for a reinforcement of the ventilation at all altitudes. The flow of cold air over the
Adriatic Sea has also led to the formation of consistent cloud cover associated with
showers and locally strong thunderstorms.

3. Event on 7 October 2020. The third case is a widespread event during which the transit
of a cloudy system of Atlantic origin through the central Italian regions facilitated
showers on the Apennine areas, scattered rains, and the possibility of thunderstorms
in the hilly and coastal areas.

Regarding the selected case studies, Figures 6a, 7a and 8a show the mosaicked cumu-
lative surface rainfall total (SRT) with the average technique (2b in Table 3), over a 24-h
time interval, of the instantaneous radar-based estimates, whereas Figures 6b, 7b and 8b
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depict the cumulative results derived from the rain-gauge network, spatially interpolated
using the Kriging method and fitted to the intercomparison domain. The previous figures
highlight the different features of each precipitation event with a larger dynamical range of
value on 8 June 2018, widespread low-to-moderate rainfall on 4 February 2020, and an inter-
mediate regime with embedded convection on 7 October 2020. Similarities and differences
between the radar-based and rain-gauge derived rainfall maps are also noted, such as the
higher spatial detail in the radar-based retrievals due to the better WR range sampling with
respect to the low-resolution spatially-interpolated rain-gauge maps. Especially for the
event on 8 June 2018, in Figure 6a in its northern part, the transition between MM and TO
rainfall estimates is sharper mainly due to the X-band rain-rate underestimation in those
regions caused by partial beam blockage and ineffective path attenuation mitigation.
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As mentioned, the 2D products, generated by 3D observations of every single radar
in the RAMP processing chain, are remapped in Cartesian coordinates by means of the
CRAMS algorithm for the composite generation. As an example, we show CRAMS mo-
saicked products for the hailstorm, which occurred on 10 July 2019, along the Abruzzo
coastline, listed in Table 4. Details on the cyclogenesis of this unusual hail-bearing storm,
with supercell characteristics, are provided and discussed in [39]. Figure 9 shows for
this event some composite products described in Table 2: vertically maximum intensity
(a), rainfall rate (b), vertically integrated liquid (c) and probability of hail (d). The POH
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composite map evidences the presence of hail near the Adriatic coast, confirmed by ground
observations, as well as high values of vertically integrated liquid [39].
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domain and the (b) rain-gauge network within the Abruzzo region (see Figure 1).
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4.2. Analysis of Selected Case Studies

Considering an hourly time period, the WR-based rainfall estimates can be compared
to rain-gauge acquisitions by showing:

- the rainfall temporal accumulation CWRNet(t) (in mm), also called surface rainfall
total (SRT), of hourly radar-based estimates and the corresponding ones CRG(t) of
rain-gauge hourly measurements for each mosaicking type of Table 4. In formulas we
have:

CWRNet(x, y, t) =
∫ t

0
RWRNet

(
x, y, t′

)
dt′, CRG(x, y, t) =

∫ t

0
RRG

(
x, y, t′

)
dt′ (8)

where t goes from the beginning till the end of the precipitation event.
- the correlation diagram between hourly rain rate estimates RWRNet(x,y,t) (in mm/h)

from weather radar mosaic and hourly rain rate measurements RRG(x,y,t) (in mm/h)
from rain gauges.

Figures 10a, 11a and 12a show the rain-gauge cumulative sum CRG(t) (red curve) and
the Mt. Midia radar one CWR(t) (green curve) intercomparing all the mosaicking methods,
listed in Table 3, with the MM C-band single-radar rainfall estimates (see Equation (A5)). In
Figures 10b, 11b and 12b, the hourly rain-rate scatterplot between RRG (from the rain gauge)
and RWRNet (from the weather radar network) are plotted using the average method 2b in
Table 3 and indicating the normalized sample density through a false-color bar. Note that
a threshold (0.2 mm) is set to discriminate the accumulated above the minimum amount
detectable by the rain gauges.
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end meaning. (b) Scatterplot of radar mosaic hourly rain rate estimates RWRNet (see Equation (6)) and 
rain-gauge hourly rain rate RRG during the same event. The hourly rain rate RWRNet (see Equation (5)) 
from the weather radar mosaic is obtained by means of the average method (label 2b in Table 3). 

  

Figure 10. (a) Time series of rainfall temporal accumulation (see Equation (7)), based on rain-gauge
data (CRG) and weather radar mosaic data (CWRNet) with different mosaicking techniques, for the
event occurring on 8 June, 2018. For comparison, the rainfall temporal accumulation from MM
single-radar (with and without anisotropic correction) is also shown. See Table 3 for the label legend
meaning. (b) Scatterplot of radar mosaic hourly rain rate estimates RWRNet (see Equation (6)) and
rain-gauge hourly rain rate RRG during the same event. The hourly rain rate RWRNet (see Equation (5))
from the weather radar mosaic is obtained by means of the average method (label 2b in Table 3).

The maximum-value approach (ID = 1 in Table 3 with all its variants, blue lines) is
a conventional choice for a radar composite. However, unreliable data are easily passed
through, thus introducing a larger uncertainty. There is also a tendency to overestimate
precipitation estimates in the presence of convective events. The weighted-value methods
with the distance (in Table 3 ID = 3, light blue lines, and ID = 4, magenta lines with all
their variants) tend to smooth the rainfall peaks in convective cells and produce a general
underestimate of rain-gauge estimates.
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Figure 12. As in Figure 10, but for the event occurring on 7 October 2020.

From these figures, it emerges that the use of the mosaic strategy by averaging the
radar data after the adjustment factor application is particularly effective. The average-
value method (ID = 2 in Table 3, black lines) has the advantage of compensating possible
data discrepancy, and at the same time, it tends to equalize the values, especially in the
presence of convective cells.

4.3. Overall Statistical Error Analysis

After comparing the radar estimates on individual rain gauges for some case studies,
the whole event data set of Table 4 is considered to corroborate the previous considerations
on a more robust statistical basis. The rainy events analyzed have been collected between
January 2018 and December 2020, and the total number of samples is about 32,750. Note
that the intercomparison is carried out only within the Abruzzo rain gauge network area
only (see Figures 1 and 5) so that C-band MM western observations over the Lazio region
and anomalous effects of X-band TO weather radar estimates at longer ranges (as noted in
Figure 8) are avoided.

An indication of the deviation of radar estimates from the rain-gauge value is deduced
from the above Figure 13, showing the hourly rain rate for the whole data set of Table 4 with
the color indicating the normalized sample density. Figure 13a shows the radar–gauges
scatter plot of the Mt. Midia single radar, while Figure 13b shows the scatter plot of the
composite made with the average-value approach (ID = 2b in Table 3), which proves to be
quite accurate in this study.
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gram. They are grouped by the mosaicking method (ID) from 1 to 4 and all compared 

Figure 13. (a) Scatterplot of M. Midia radar and rain-gauge hourly rain rates during all events listed
in Table 4; (b) scatterplot of the hourly rain rates between radar mosaic estimates, RWRNet, obtained
using the average method (2b in Table 3), and rain-gauge estimates, RRG.

The most effective way to evaluate the overall performances of the various mosaick-
ing methods using the overall dataset is to compute the statistical error indices, defined
previously in this section. Table 5 shows these Corr, Bias, STD, MAE, NRMSE, FSE, and
MRB indices for all methods in Table 3. Colors in the table indicate the worst results (red)
and the best results (green) for each considered error index (column). The table confirms
that approach 2b is the best-performing one, especially for the error uncertainty (i.e., Corr,
STD, NRMSE, FSE), with slightly worse results for the mean-error related indices (i.e., Bias,
MAE, MRB). Bias, MAE, and STD in mm/h, whereas all other indices are adimensional.

Table 5. Overall error indices of the merging methods, given in Table 3, tested in the composite
domain using the whole dataset listed in Table 4 (note that MMa stands for MM anisotropic technique).
The green and red numbers indicate the best and worst technique for each statistical index (column),
whereas the grey row indicates the overall best performing technique (2b, AvgAni).

ID Corr
Adim

Bias
(mm/h)

STD
(mm/h)

MAE
(mm/h)

Nrmse
Adim

FSE
Adim

MRB
Adim

1 0.754 −0.117 1.546 0.377 0.025 2.409 0.819

1a 0.727 −0.093 1.659 0.390 0.027 2.581 0.856

1b 0.747 0.030 1.732 0.417 0.028 2.685 1.047

1ab 0.713 −0.0125 1.855 0.412 0.030 2.978 0.980

2 0.750 −0.238 1.570 0.375 0.026 2.470 0.630

2a 0.744 −0.226 1.577 0.376 0.026 2.477 0.648
2b 0.802 −0.122 1.370 0.356 0.022 2.163 0.808

2ab 0.677 −0.251 1.680 0.418 0.027 2.749 0.594

3 0.740 −0.253 1.587 0.373 0.026 2.509 0.605

3a 0.733 −0.241 1.594 0.373 0.026 2.515 0.624

3b 0.760 −0.155 1.511 0.356 0.025 2.361 0.759

3ab 0.747 −0.140 1.551 0.362 0.025 2.419 0.782

4 0.744 −0.227 1.572 0.375 0.026 2.473 0.647

4a 0.743 −0.219 1.571 0.374 0.026 2.467 0.659

4b 0.768 −0.116 1.492 0.365 0.024 2.322 0.820

4ab 0.765 −0.108 1.501 0.367 0.024 2.333 0.833

MM 0.650 −0.255 1.764 0.442 0.029 2.784 0.602

MMa 0.663 −0.146 1.763 0.449 0.029 2.761 0.773
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Figure 14 shows the same error indices of Table 5, graphed by means of a bar diagram.
They are grouped by the mosaicking method (ID) from 1 to 4 and all compared with the
performance of the single MM radar (green bar). This representation is very effective to
visually comparing the statistical error results. This figure suggests that the corrected radar
QPE, using an adjustment factor, has improved performance but only if mitigated through
spatial averaging. Method 2b (i.e., assign the mean value among the available measure-
ments after a single-radar spatial anisotropic correction) is among the mosaicking methods
with the highest score, as already pointed out. The use of the maximum-value method in
the realization of the radar composite tends to emphasize the extreme phenomena leading
to an overestimated QPE in the case of convective events.
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dataset listed in Table 4.

5. Conclusions

A weather-radar network composite algorithm, called CRAMS, has been presented
and its rainfall estimates have been tested using two years of rain-gauge data over the
Abruzzo region in Central Italy. CRAMS is able to ingest and process data from different
radar systems to generate various composite products. It is currently operational in a real-
time mode for the Abruzzo region radar network, a heterogeneous network constituted by
systems at the C and X bands with and without polarimetric capabilities operating in the
complex topography of the Italian Apennines. CRAMS routinely collects every 10 min the
available radar data and elaborates composite products displaying them on a web interface.

The weather radar composite has the potential to significantly improve the accuracy
and applicability of radar rainfall estimates compared to single-radar QPEs and rain-gauge
networks alone. CRAMS can enhance the regional-scale precipitation monitoring in an
operational mode to exploit a heterogeneous radar network topology, simultaneously
satisfying the needs of multiple users. Its features are: (i) capability of ingesting the 2D
radar products of single radars, processed by the RAMP algorithm suite; (ii) applicability
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to weather radar networks with different specifications (frequency, beam-width, maximum
range, polarization); (iii) suitability for real-time applications thanks to its computational
efficiency, widely used in the radar community for its expressive and easy-to-read syntax.

The considered mosaicking methods can take into account spatial radar-gauges ad-
justment, as well as different spatial combination approaches. A data set of 16 precipitation
events during the years 2018–2020 in the central Apennines has been collected (with a
total number of 32,750 samples) to show the potential and limitations of the considered
operational mosaicking approaches, using a geospatially interpolated dense network of
regional rain gauges as a benchmark. Results show that the radar-network pattern mo-
saicking, based on the anisotropic radar–gauge adjustment and the spatial averaging of
composite data, is better than the conventional maximum-value merging approach. The
overall analysis confirms that heterogeneous weather radar mosaicking can overcome the
issues of single-frequency fixed radars in mountainous areas, guaranteeing a better spatial
coverage and a more uniform rainfall estimation accuracy over the area of interest.

This study suggests that storm type, which is highly related to seasons, is one of the
main factors affecting the performance of merging methods for operational purposes.

As an example, in the cold season, a possible restraint is the effect of the bright band,
which is not compensated for at the single-radar level in this study. Moreover, further and
more robust analysis in terms of statistical significance will be needed to corroborate our
findings.

Future work should be aimed at evaluating the possible improvement due to mo-
saicking 3D volume products, instead of 2D ones, extending this approach to nowcasting
applications. The data-quality assessment of single-radar estimates remains the most criti-
cal issue in a regional composite, even though the combination of multiple measurements
can be exploited to better assess the WR mosaic quality itself.
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Appendix A. Radar Advanced Multiband Processing (RAMP) Main Modules

The 3D volume scans of each radar system are processed by means of the radar
advanced multiband processing (RAMP) processing chain. All RAMP algorithms are orga-
nized in a series of sub-packages or steps, each characterized by its own specific function
and operating in native radar (spherical) coordinates. The steps are briefly described in the
following sections.

http://www.mydewetra.org/
http://www.mydewetra.org/
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Appendix A.1. Pre-Processing Correction

For each radar, a pre-processing correction of volumetric data is applied. Ground-
clutter, specks, wireless local area network (WLAN) interference, and biological and other
non-meteorological echoes are removed from the horizontally polarized reflectivity Zhh (or
in dBZ expressed as ZHH) field by exploiting the textural spatial correlation of meteoro-
logical targets with respect to artifacts [28]. Uncertain data are flagged but not removed.
For dual-polarization systems, in addition, a median smoothing filter and bias correction
are applied to the differential reflectivity Zdr (or in dB expressed as ZDR), whereas com-
pensation is applied to the correlation coefficient (ρHV). The differential phase Φdp (in ◦)
is processed and then reconstructed by a multistage smoothing filter for estimating the
differential specific phase shift Kdp (in ◦/km) [40].

Appendix A.2. Partial Beam Blockage Correction

Due to the complex topography of the Abruzzo region, characterized by high moun-
tains, all radar systems suffer from beam blockage along several directions, especially at
lower elevation scans. The second step of the single-radar processing chain is the partial
beam blockage (PBB) correction. When a radar beam intercepts an obstacle, two situations
are possible: (1) only part of the beam cross-section illuminates the intercepted topography
(partial blockage); (2) the radar beam is completely blocked (total blockage). Occlusion of
the beam less than 10% is considered negligible and is not corrected, whereas an occlusion
exceeding 60% is rejected. If radar bins are partially shielded with a blockage between
10% and 60%, the radar reflectivity factor measurements are modified by adding 1–4 dB
depending on the degree of occultation [41].

Appendix A.3. Path Attenuation Correction

The horizontal radar reflectivity ZHH is proportional to the received radiation backscat-
tered by the raindrop size distribution (DSD) within each radar volume bin, whereas ZDR
is the difference between ZHH and ZVV. The polarimetric attenuation correction algorithms
are applied to ZHH and ZDR (corrected by the first step and PBB correction modules), using
the reconstructed differential phase shift Φdp [42]. If PIA indicates the 2-way path integrated
attenuation (in dB), the range differences of the reconstructed phase between two cells are
connected to the total path attenuation increments along the path through the coefficients α
and β [30]:

ZHHc = ZHH + PIA = ZHH + α
[
Φdp(rN)−Φdp(r0)

]
(A1)

ZDRc = ZDR + PIA = ZDR + β
[
Φdp(rN)−Φdp(r0)

]
(A2)

where α = 0.28, β = 0.04 for the X band [43], α = 0.08, β = 0.03 for the C band [44], and rN and
r0 are, respectively, the farthest cell and the initial cell along the radar beam path. In (1) and
(2), the terms ZHHc and ZDRc indicate the corrected quantities, whereas PIA is the two-way
integrated path attenuation that undergoes the radar signal in the presence of precipitation
between the cells at range r0 and rN. For single-polarization systems, PIA is estimated
using an iterative procedure using only the measurement of horizontal reflectivity ZHH and
an arbitrary power-law between ZHH and PIA [29]. However, this scheme is notoriously
unstable; thus, in this case, a threshold value is set on PIA to limit the correction itself.

It is worth mentioning that nowadays X-band radars represent a cost-effective solution
where the domain of interest is limited in size to a county because these radars are much
cheaper (in terms of direct costs, infrastructure, and maintenance) than traditional C-band
or S-band ones. On the other hand, at the X band, path attenuation due to rainfall can be
quite significant so that, in case of heavy rain, we can have even a total signal loss. This
problem can be only addressed by providing additional radar information from a separate
source that is not experiencing a total signal loss. This is why radar networks can become
useful especially at the X band.
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Appendix A.4. Total Quality Information

The quantitative estimation of error magnitude is necessary not only in order to gain
general knowledge about data uncertainty but also to apply quality information in further
data processing, e.g., in the generation of standard or user-related specific products [29,45].
One of the most common approaches in the characterization of weather radar data quality
is to employ a quality index qi, defined as a unitless quantity providing data reliability on a
digital scale.

The idea of the radar data quality scheme is based on the selection of quality factors,
determination of their quality indices, and the computation of one total quality index.
Assuming that each radar system is well maintained, the quality analysis is focused on
the error sources resumed in Table A1. For each error i, a quality index qi is estimated in
each radar pixel through appropriate tests, giving as output a unitless quantity from 0 (bad
quality) to 1 (excellent quality).

The total quality index (TQI) in each radar pixel can be retrieved by combining all the
individual quality indicators listed in Table A1:

TQI = qSYS qNME qPBB qRAN qATT qVPR (A3)

where a multiplicative combination rule is here used as in [45].

Table A1. Group of quality indices qi and related sources of error.

Quality Index Source of Error Note

qSYS Radar system technical parameters It is static within the whole radar range as well as in time and takes
into account several factors as in [29].

qNME Non-meteorological echo Pixels affected by non-meteorological echoes are removed; for the
uncertain pixel a value of 0.5 is applied, and the other data are set to 1.

qPBB Partial beam blocking It is computed from the corrected data taking into account the PBB
value as in [28].

qRAN Long-range measurement This quality factor decreases with increasing the measurement distance
from the radar; it is computed as in [45].

qATT Rain path attenuation It is computed from the corrected data taking into account the PIA
value as in [28].

qVPR
Inhomogeneous vertical profile of

reflectivity
The compensation of this effect is not performed in RAMP; the
associated quality index is estimated as in [46].

Appendix A.5. Rainfall Rate Estimation

After performing the previous corrections, the near-surface rainfall rate R (in mm/h),
also called surface rainfall intensity (SRI), is computed from the vertical maximum intensity
(VMI) or from the sweep at first elevation or the lowest detectable bin (LDB) by means of
the following estimators. In particular, for C- and X-band polarimetric radar we have:

R(ZHHc, ZDR) = α 10(0.1·β·ZHHc) 10(0.1·γ·ZDR) (A4)

with α = 0.00899, β = 0.927, and γ = −5.05 derived from disdrometer data [47], whereas for
the single-polarization radar we have:

R(ZHHc) =

(
1
α

10(0.1·ZHHc)

) 1
β

(A5)

with α = 443.5 and β = 1.2987 [47] for X-band single-polarization radar and with α and β
values as in [8] for C-band single-polarization radar. In (A4) and (A5) ZHHc, ZDR, and R are
in dBZ, dB, and mm/h, respectively. CRAMS also foresees parametric relationships, as in
(A4), including Kdp where its estimate is not too noisy [40]. Recently, some studies have fo-
cused on developing a polarimetric QPE based on specific attenuation A (in dB/km) [48,49].
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However, the estimator R(A) must be very carefully used in the situations of very light and
sporadic rain wherein the attenuation signal is too weak and in widespread light stratiform
rain [50]. The potential of using A might be limited depending on the approach to obtain
ΦDP [30,51]). Although the radial interval to calculate A can be freely selected, ∆Φdp could
be inaccurate at short path intervals and/or be contaminated by backscatter differential
phase δhv, as a result of Mie scattering and random fluctuations. For these reasons, CRAMS
is not ingesting algorithms based on R(A).

From the estimated R, the accumulated rain, named SRT (surface rainfall total) can
be computed, at a given generic time interval, by two steps as described below. First, the
accumulated hourly precipitation, at time h, is computed by the following relationship:

Rh,1 =
1
M

M

∑
i=1

Ri (A6)

where M represents the available rainfall rate R in the hourly time interval (6 for Abruzzo
radars). Then, the accumulated precipitation between hours h-N and h, or the accumulated
at N hours from the current time h is computed by:

Ch,N =
N−1

∑
i=0

Rh−i,1 (A7)

Appendix A.6. Vertically Integrated Liquid Estimation

An excellent indicator of severe storm activity is the VIL (vertically integrated liquid)
product, especially with regard to the rainfall potential of a storm. In general, it can be
considered a means of locating the most active and severe storms in a region; in stratiform
situations VIL rarely exceeds a value of 10 kg/m2, in thunderstorms, however, VIL is
usually (much) higher.

VIL is calculated by vertically integrating reflectivity values from the top of a thun-
derstorm to the ground and converting reflectivity data into an equivalent liquid water
content value [52]. The three-dimensional radar data is converted to a map of the amount
of liquid water present in a vertical column above a certain position. The general equation
for VIL (expressed as LV in kg/m2) is:

LV = ∑
i

a
[
(Zi + Zi+1)

2

]b
∆h (A8)

where Zi and Zi+1 are two adjacent radar reflectivity bin values (expressed in mm6 m−3) at
the same horizontal coordinate, and ∆h is the vertical distance between the i-th and the i +
1-th bin (expressed in meters). The pair a and b of coefficients are set as a function of the
frequency band (e.g., [30,39]).

When calculating VIL, has to be taken into consideration that its values in storms
located too close to the radar will be underestimated, because the radar is not capable of
scanning high enough to reach the upper portions of the storms.

Appendix A.7. Probability of Hail

Hail events are typically related to crop losses, building and car damage, and casualties.
Nowadays, the simplest and direct way to distinguish between hail and rain is by using
radar reflectivity. This is an alternative to the classification that requires good-quality
polarimetric parameters. Several methods that use radar reflectivity and other ancillary
data are available from literature and some of them were tested by [53]. Among these, for
the needs of the Abruzzo Region, a method that uses the value of VIL density (VLD) has
been accomplished [54]. VLD is simply the VIL divided by the EchoTOP and multiplied
by 1000 in order to express the result as g/m3. We remember that the EchoTOP is the
height of the highest (in altitude) bin measured by a radar during a volumetric scan.
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VLD makes VIL independent of height and then reduces errors due to the fact that VIL
alone may not be sufficient to distinguish tall storms with low overall reflectivity (smaller
targets, including possible small hail) from short storms with high reflectivity (larger targets
including possible large hail).

Thus, VLD is well-adapted for the algorithms of hail detection since thunderstorms
with larger VLD values generally produce larger hailstones at the surface; usually, VLD
values range from 0 to 5 g·m−3. To find a relationship between POH and VLD several
thunderstorms with and without hail have to be examined with a radar system. The
probability of hail (POH, in %) rises sharply as VLD increases and their relationship can be
expressed, as an example, with a third-order polynomial fitted curve [55].

Appendix A.8. Convective Storm Detection

Distinguishing between convective and stratiform is an important indicator of the ver-
tical and horizontal structure of cloud systems producing precipitation. This precipitation-
identification product is aimed to provide a separation of the radar echoes into convective
and stratiform regions, on the basis of the intensity and sharpness of the peaks of echo
intensity [56]. The method for the identification of precipitation type is based on the hori-
zontal structure of the precipitation field. The idea consists of the search for the reflectivity
peaks: if they satisfy specific criteria, related to the ratio of the peak and the mean reflec-
tivity of their immediate surroundings, they are classified as convective centers. The next
step is classifying the area immediately adjacent as intermediate between stratiform and
convective (mix), introduced to indicate those events whose nature is uncertain, while the
remaining reflectivity field is categorized as stratiform.

Appendix A.9. Nowcasting

The nowcasting radar module is aimed to provide an indication of the temporal
evolution of reflectivity or rain field at future instants, in particular for convective cell
storms. Due to high temporal variability of heavy rain cells (usually lasting for periods
larger than the radar temporal resolution ∆T but less than 30 min), the nowcasting methods
often propagate the information at short instants ahead, t0 + n·∆T, with respect to the
procedure initialization instant t0.

The nowcasting methodology adopted into CRAMS is based on the spectral pyramidal
advection radar estimator (SPARE) algorithm by [57]. The procedures take a temporal
sequence of available radar maps and propagate the last available one in the future. The
principle is based on the cross-correlation between portions of two consecutive radar maps
to compute the displacement vector between them [58]. The segmentation of each available
radar field (also regarded as a special case of spatial decomposition) is a fundamental
step that allows computing the displacement vectors for each identified portion of the
radar maps. This implies that the resulting motion field is composed of several vector
components (one for each identified portion of the radar map) that in principle are different
from each other. Thus, vortex or multiple system movements can in principle be caught.

The original concept of the SPARE algorithm, in its primordial version, is to perform
spatial correlation on filtered radar images in the spectral domain of spatial frequency.
The spatial filter used in the SPARE algorithm is able to isolate spatial components in a
prescribed range of spatial scales. For this reason, SPARE is said to be pyramidal, since
the decomposition of radar maps in spatial components resembles a pyramid. This way to
proceed tends to ensure a better estimation of the displacement field. The input variable
for the radar nowcasting algorithm is the reflectivity at the two consecutive past instants
with respect to procedure initialization.
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