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Abstract: The increase in temperatures and changing precipitation patterns resulting from climate
change are accelerating the occurrence and development of landslides in cold regions, especially
in permafrost environments. Although the boundary regions between permafrost and seasonally
frozen ground are very sensitive to climate warming, slope failures and their kinematics remain
barely characterized or understood in these regions. Here, we apply multisource remote sensing and
field investigation to study the activity and kinematics of two adjacent landslides (hereafter referred
to as “twin landslides”) along the Datong River in the Qilian Mountains of the Qinghai-Tibet Plateau.
After failure, there is no obvious change in the area corresponding to the twin landslides. Based on
InSAR measurements derived from ALOS PALSAR-1 and -2, we observe significant downslope
movements of up to 15 mm/day within the twin landslides and up to 5 mm/day in their surrounding
slopes. We show that the downslope movements exhibit distinct seasonality; during the late thaw
and early freeze season, a mean velocity of about 4 mm/day is observed, while during the late freeze
and early thaw season the downslope velocity is nearly inactive. The pronounced seasonality of
downslope movements during both pre- and post-failure stages suggest that the occurrence and
development of the twin landslide are strongly influenced by freeze–thaw processes. Based on mete-
orological data, we infer that the occurrence of twin landslides are related to extensive precipitation
and warm winters. Based on risk assessment, InSAR measurements, and field investigation, we infer
that new slope failure or collapse may occur in the near future, which will probably block the Datong
River and cause catastrophic disasters. Our study provides new insight into the failure mechanisms
of slopes at the boundaries of permafrost and seasonally frozen ground.

Keywords: landslides; Gaofen-2; Interferometric synthetic aperture radar (InSAR); freeze–thaw
processes; permafrost; Qilian Mountains

1. Introduction

A landslide is the downslope movement of soil, rock, and debris under the action of
gravity and the landform that results from such movement [1]. The factors triggering slope
failure mainly include rainfall, earthquakes, fluvial erosion, excavation, and construction
activities [1]. Slope failure occurs frequently in rainy and mountainous areas, often resulting
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in casualties and property damage [1,2]. Slope failure at high latitudes and high altitudes
in cold regions has attracted significant attention for decades. Climate warming and the
consequent varied freeze–thaw states in cold regions may accelerate the occurrence and
development of landslides [3,4]. Thaw-related landslide activities (such as retrogressive
thaw slumps and active layer detachment) are increasing extensively in the permafrost
regions of both the Arctic [5–8] and the Qinghai-Tibet Plateau (QTP) [9–11], a phenomenon
that is mainly related to extremely warm summers and extensive summer precipitation.
Even in very cold permafrost regions, extreme warming events can cause slope failure due
to the thawing of ice-rich permafrost [12]. However, slope failures on the boundaries of
permafrost and seasonally frozen ground remain little characterized or understood.

Optical and radar remote sensing techniques are becoming one of the most impor-
tant tools for investigating the activity and kinematics of landslides, especially in rural
and mountainous regions [13,14]. The occurrence and development of landslides can be
obtained from optical remotely sensed images [15–19]. Rapid and abrupt slope movements
can be quantified according to the differences in DEM from two successive orthorectified
images [20–22] or from single-pass InSAR observations [23,24]. However, optical images
are prone to the effects of atmospheric conditions and revisit time, which impede the quan-
tification of landslide activities. In addition, optical-based slope movement is insensitive
to gradual slope movement or creep, which is often a sign of slope stability. Interfero-
metric synthetic aperture radar (InSAR) has been increasingly explored and successfully
applied to identify and monitor gradual slope deformation with centimeter-to-millimeter
accuracy [13,25–28]. The advantage of InSAR is that it is less affected by cloudy weather
and works regardless of whether day or night conditions. Recently, the development of
unmanned aerial vehicle (UAV) cameras allows the generation of very-high-resolution
optical images and digital surface models (DSMs). The combination of InSAR and UAV
data has advanced the understanding of crack development, landslide evolution, and sus-
ceptibility [29–34].

In this study, we combine multisource optical and radar remote sensing images to
investigate the activity and kinematics of two adjacent landslides (hereafter referred to as
“twin landslides”) located in the boundary regions of permafrost and seasonally frozen
ground on Qilian Mountain in the QTP. High-resolution optical satellite and UAV-based
images are used to investigate the activity of the twin landslides. InSAR measurements are
used to map and quantify the gradual slope movement before and after the failure of the
twin landslides. The triggering mechanisms of the twin landslides and their potential risks
are analyzed.

2. Study Area

In this study, we investigate two adjacent landslides occurring on the slope of the
middle and lower reaches of Datong River on the southeast slope of Qilian Mountain.
For convenience, we named the two adjacent landslides as twin landslides and refer to
them as “QLDT01” and “QLDT02” throughout the paper (Figure 1C). The study area is
located between Tuolai Mountain in the north and Datong Mountain in the south, both of
which belong to branches of the Qilian Mountains. The Wari Gaqu River rises from the
Tuolai Mountains and ultimately joins the Datong River. A number of brooks from the
Datong Mountains = discharge into the Datong River (Figure 1A). Therefore, the study
area is a place where many rivers converge. The Tuolaishan and Datongshan faults are
distributed in the northwest and southwest of the study area, respectively. The altitude
in the study area ranges from 3400 to 3600, which is in the lower boundary of permafrost
and seasonal frozen ground on the QTP. The permafrost distribution map is shown in
Figure 1B [35].

Qilian Mountain is dominated by a continental alpine semi-humid mountain climate,
which is characterized by long, cold, and dry winters and short, cool, and moist summers.
Annual average air and ground surface temperatures are approximately −2.4 and 2.9 ◦C,
respectively [36]. The coldest January averages below −11 ◦C, and the warmest July
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averages below 25 ◦C; most of the Qilian Mountains are below 0 ◦C from December
to March, and the highest temperatures range from 4 to 15 ◦C from April to October.
Precipitation ranges from 300 to 500 mm annually and is mainly concentrated during May
to September in the form of rainfall [37,38].

Figure 1. Study area and field photos. (A) The locations of the twin landslides (QLDT01 and QLDT02)
are marked by yellow dots within the black rectangle. The background map is the hill-shaded
DEM. The mountains, rivers, and roads in our study area are marked. (B) The distribution map of
permafrost and seasonal frozen ground in the QTP [35]. The black rectangle presents the location
of our study area. The inner map in the bottom right-hand corner shows the location of the QTP
in China. (C) An unmanned aerial vehicle (UAV) photograph of the twin landslides taken in April
2021. The white arrow denotes the direction of the landslide movement. The yellow polygons are the
boundaries of the twin landslides.

3. Data and Methods
3.1. Data Sources

To investigate the activity and kinematics of the twin landslides, multisource high-
resolution optical and radar data were acquired during 2009–2020. Google images with a
spatial resolution of 0.65 m were acquired using Map Tile Downloader (version number:
release 2.3, developed by Centmap Co., LTD., located in Hefei, Anhui Province, China).
The details of the remotely sensed images are listed in Table 1. Gaofen-2 is a Chinese
high-resolution optical satellite that was launched in August 2014 and carries two panchro-
matic and multispectral charge-coupled device camera sensors. We used panchromatic
images with a spatial resolution of 0.8–1 m, which were obtained from the China Centre
for Resources Satellite Data and Application (http://www.cresda.com/CN/, accessed
on 10 October 2021). Based on the selection of images free of cloud and snow cover, four
Google and three Gaofen-2 images obtained during 2019–2020 were used.

http://www.cresda.com/CN/
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The L-band Phased Array type L-band Synthetic Aperture Radar (PALSAR) sensor
is mounted on the Advanced Land Observation Satellite (ALOS)-1/2. Six ALOS-1 (Path:
477, Frame: 750, incidence angle: 38.7◦, heading angle: −10.1◦, range resolution: 4.66 m,
azimuth resolution: 3.16 m) and thirteen ALOS-2 (Path: 147, Frame: 750, incidence angle:
36.3◦, heading angle: −10.4◦, range resolution: 4.29 m, azimuth resolution: 3.77 m) SAR
images were chosen to map and quantify the ground movements of the twin landslides.
We expected better performance from the L-band PALSAR data with a wavelength of about
24 cm. This is because L-band electromagnetic waves can penetrate deeper into snow and
vegetated surfaces [39], leading to higher interferometric coherence [40].

To investigate potential unstable zones, we conducted a UAV survey and used
structure-from-motion/multiview stereo photogrammetry to map the twin landslides
and their surroundings on 29 April 2021. We used the DJI Phantom 4 RTK flying platform
with an altitude of 100 m above the ground surface. The heading and lateral overlap of
flying were 85% and 60%, respectively. We obtained the very-high-resolution (VHR) images
and a DEM with a resolution of around 5 cm/pixel using Agisoft PhotoScan software.
The uncertainty of the relative positions was estimated to be around 2–3 cm.

The temperature and precipitation data in the Qilian Mountains from 2000 to 2019
obtained by the National Meteorological Station of China were used to describe the climatic
conditions (http://www.cma.gov.cn/, accessed on 10 November 2021).

Table 1. Summary of the remotely sensed dataset used in this study. The acquisition dates of ALOS
PALSAR-1/2 can be found in Table 2.

Data Resolution (m) Date (YYYYMM) Number of Scenes

Google 0.65 200910, 201006, 201712, 202007 4
Gaofen-2 0.8 201512, 201811, 202008 3

ALOS PALSAR-1 7 2008–2010 6
ALOS PALSAR-2 7 2015–2020 13

UAV 0.05 202104 1

3.2. Mapping of Twin Landslides from Optical Remote Sensing

Google, Gaofen-2, and PALSAR-1/2 satellite images were used to determine the oc-
currence and development of the twin landslides. The Gaofen-2 images were geometrically
corrected using ENVI5.3 software. Then, the one arc-second Shuttle Radar Topography
Mission (SRTM) DEM product was used for image orthorectification. Due to destruction of
the integrity of the original stratum, landslide features such as changed vegetation and soil
collapse can be identified from high-resolution optical images [16,41]. The boundaries of
the twin landslides and adjacent shorelines were outlined based on visual inspection by
three experienced researchers. To further evaluate the change characteristics, we estimated
the rate of landslide areal growth ∆Aarea [6]:

∆Arate =
A2 − A1

t2 − t1
(1)

where A1 and A2 are the total area (m2) of landslide in different timeframes and t1 and t2
(year) are the corresponding time points.

VHR optical images have proven useful in identifying landslide features such as small
cracks or ground discontinuities [42,43]. In this study, to map the potential unstable zones
surrounding the twin landslides, we identified cracks through visual inspection of the VHR
UAV optical images. As the spatial resolution of UAV images is 5 cm, cracks with width
larger than 5 cm were very likely to be identified.

3.3. InSAR for Ground Deformation Monitoring

The InSAR technique detects ground movements by comparing the phase differences
between SAR images acquired from slightly different positions at different times [44]. Differ-

http://www.cma.gov.cn/


Remote Sens. 2022, 14, 5059 5 of 19

ential InSAR (DInSAR) and multi-temporal InSAR (MTInSAR) have frequently been used
to measure slope movements in both permafrost and nonpermafrost regions [27,28,45–47].
As there are very limited descending PALSAR-1/2 images, all the archived ascending
PALSAR-1/2 images available that covered our study area were examined for ground
deformation monitoring. The interferometric coherence decreases rapidly in the thaw
season (May–October) and is slower in the freeze season (November–next April). To miti-
gate the decorrelation impact, we selected image pairs with temporal spans of less than
150 days and perpendicular baselines shorter than 500 m. Considering the accuracy of
SRTM DEM and the maximum perpendicular baseline (591 m in our case), we estimated
that the residual topographic phase would be about 0.8 radians, corresponding to 1.5 cm in
the InSAR measurements. Relying on the interferometric coherence and phase quality, only
six ALOS PALSAR-1 images and thirteen ALOS PALSAR-2 images, taken during 2009–2010
and 2015–2020, respectively, were selected. This causes severe disconnection between SAR
images and does not allow the use of MTInSAR approaches such as small-baseline subset
InSAR [48].

We calculated ground movement using the DInSAR technique, which was conducted
using the commercial GAMMA software [49]. We constructed three and nine interferograms
for PALSAR-1 and -2, respectively. The range and azimuth look numbers were 2 and 5
for PALSAR-1 and 2 and 4 for PALSAR-2, generating ground pixels of approximately
15 m × 15 m. The one arc-second SRTM DEM product was used to remove the topographic
phase of each interferogram. The temporal and perpendicular baselines are presented
in Table 2. We applied a power spectrum adaptive filter to mitigate the phase noise and
mask out decorrelation areas with a coherence threshold of 0.6 [50]. We unwrapped all the
interferograms using the minimum cost flow approach [51]. To compare the deformation
between PALSAR-1 and -2, a local reference point with high coherence nearby the twin
landslides was selected for calibration of the unwrapped phase. Tropospheric artifacts
may contaminate the ground deformation in mountainous regions. As our study area
was very small, we mitigated tropospheric artifacts by fitting the topographic-related
components [52]. Residual atmospheric and orbital errors were mitigated using a linear
deramping approach.

Table 2. The interferogram pairs from ALOS PALSAR-1/2 and their temporal and perpendicular
spatial baselines.

ALOS PALSAR-1 ALOS PALSAR-2

ID Master–Slave
(YYYYMMDD)

Time Span
(Days) B⊥ (m) ID Master–Slave

(YYYYMMDD)
Time Span

(Days) B⊥ (m)

1 20090630–20090815 46 −32 1 20151009–20151218 70 200
2 20091231–20100215 46 491 2 20171201–20180209 70 −98
3 20100703–20100818 46 116 3 20180209–20180601 112 −44

4 20180601–20180727 56 −6
5 20181116–20190125 70 15
6 20190125–20190531 126 −60
7 20190531–20190726 56 78
8 20190726–20190906 42 −10
9 20200306–20200529 84 169

We calculated the light-of-sight (LOS) movement from each interferogram. By dividing
the time interval between the interferogram pairs, we calculated the deformation velocities
along the LOS direction. Assuming the slopes move purely along the downslope direction,
the InSAR-estimated LOS velocities (Vlos) can be projected into the downslope velocities
(Vds) with the following equation [47,53]:
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Vds =
Vlos

sin(αaspect − β) sin θinc cos αslope + cos θinc sin αslope
(2)

where αaspect and αslope are the aspect and slope angles, respectively, which can be calculated
using the SRTM DEM data; β is the flight direction of the SAR satellite; and θinc is the
local incidence angle, which can be calculated using the SAR geometry and SRTM DEM
data. To reduce the noise in the calculation of slope, aspect, and local incidence angles, we
applied a Gaussian filter with a 7 × 7 window (around 200 m) to the SRTM DEM.

3.4. Climatic Factors

Air temperature and precipitation data from 2000 to 2019 were used to analyze their
impacts on the evolution of the twin landslides. We calculated four temperature indica-
tors: mean annual air temperature (MAAT), thawing index, warming days, and average
temperature in the coldest month of the year. To account for warming days, we calculated
the number of days with a daily temperature higher than 10 ◦C. The thawing index TI is
the cumulative number of degree days above 0 ◦C for a given thaw season, which can be
calculated by [54]:

TI =
NT

∑
i=1

Ti, Ti > 0 (3)

where Ti is the daily temperature on day i and NT is the number of days in a year with a
temperature greater than 0 ◦C.

We calculated the annual total precipitation, precipitation intensity, extreme precipi-
tation, and the number of consecutive drought days in a year. The precipitation intensity
is the ratio between the total precipitation and the duration of precipitation days, and
represents the average amount of precipitation in a certain duration. Daily precipita-
tion of between 10 and 25 mm is defined as moderate rainfall by the World Meteoro-
logical Organization. However, because the annual precipitation is about 450 mm, we
consider a daily precipitation of higher than 15 mm to be extreme precipitation in our study.
The consecutive drought days is the number of days without precipitation.

3.5. Risk Assessment

We evaluated the potential risks related to the twin landslides and their surroundings
in the same slopes. A landslide dam forms when a landslide reaches the bottom of a valley
and causes partial or complete blockage of a river [55]. The sudden collapse of landslide
dams and the rapid release of water storage poses a great risk of flooding downstream [56].
The dimensionless blockage index (DBI) has been developed for the prediction of potential
risks of a landslide dam by linking the stability of a landslide dam to three geomorphic
parameters [57]. The dam volume Vd controls the dam height Hd, and is considered as
the main stabilizing factor. The watershed area Ab indirectly controls the channel flow
and flow power, and is the main factor influencing dam instability. The dam height is an
important variable for evaluating the stability of landslide dams against overtopping and
pipeline failure. Thus, the DBI can be expressed as [57]:

DBI = log(
Ab × Hd

Vd
) (4)

As only QLDT01 has caused the formation of a landslide dam, we calculated the DBI
only for QLDT01. The dam height was obtained from UAV-based DEM data. The volume of
the landslide dam was calculated from high-resolution UAV-based DEM using the cut-and-
fill volume tool in the Global Mapper software. The hydrological analysis tool was used to
calculate the catchment area from UAV-based DEM in ArcGIS (version number: release 10.7,
developed by Environmental Systems Research Institute, Inc., located in RedLands, CA, USA).
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4. Results
4.1. Spatiotemporal Variations of the Twin Landslides

The occurrence and development of the twin landslides are shown below (QLDT01 in
Figure 2 and QLDT02 in Figure 3). Based on visual interpretation of optical and PALSAR-
1/2 SAR backscatter images, we infer that QLDT01 occurred between October and De-
cember of 2009, whereas QLDT02 occurred sometime between October and November of
2015. The failure of QLDT01 caused the mud and rubble to slide into the river channel and
almost blocked the Datong River (Figure 2B). Crack features can be found in the headwall
regions for both QLDT01 and QLDT02 as far back as 2009 (Figures 2A and 3A). As there
are no high-resolution images in our study before 2009, we cannot precisely determine
the exact initialization time of these cracks. Compared to 2009, the cracks in QLDT02 had
significantly enlarged during 2009–2015 before its failure. The development of QLDT01 is
slow, and its slide into the Datong River almost stopped during 2010–2018. Contrary to
QLDT01, the headwall of QLDT02 continued to slowly retreat during 2009–2015. The mass
of QLDT02 slid along the northwest side of the headwall region and caused the formation
of a dammed lake at the foot of the slope.

Figure 2. Temporal variations of landslide QLDT01: (A,B) Google satellite images of landslide
boundary changes in 2009 and 2010 and (C) landslide evolution in 2010, 2017, and 2020.

The total area of the QLDT01 slide is about 76.5 × 103 m2 following the slope failure
in 2009. The landslide body slid into and dammed the Datong River. QLDT01 slowly ex-
panded at an areal growth rate of 0.5 × 103 m2 during 2011–2018 (Figure 2C). The total area
for slope failure of QLDT02 is about 131 × 103 m2, which is about double that of QLDT01
(Figure 3C). A small dammed lake has formed at the toe of QLDT02. The areal growth
rate of QLDT01 is 10.7 × 103 m2 during 2016–2018, which has slowed to 5.5 × 103 m2

during 2018–2020.
The slope failure of QLDT01 completely dammed the Datong River and rerouted its

flow (Figure 4). The width of the Datong River beneath QLDT01 was 66 m before the slope
failure in 2009. The landslide body slid into the river and reached to about 4 m beyond the
northern bank when the slope collapsed. The river quickly expanded towards the northern
bank, whereas the river’s width changed to 16 m in 2010. Under continuous fluvial erosion,
the northern bank expanded northward by about 30 m during 2010–2017, whereas the
river’s width changed to 48 m in 2017. In other words, the average bank erosion rate was
about 4 m/year during 2010–2017.
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Figure 3. Temporal variations of landslide QLDT02: (A,B) landslide in Google satellite and Gaofen-2
satellite images from 2009 and 2015; the yellow arrow is the direction of movement of the landslide.
(C) Landslide characteristics recorded by Gaofen-2 satellite images in 2015, 2018, and 2020. A dammed
lake is formed at the toe of the slope, as shown in (D).

Figure 4. River bank changes of Datong River beneath the twin landslides in 2009, 2010, and 2017.
In 2009, the thinnest section of the Datong River was about 66 m. In 2010, the southern river bank
expanded northward due to the collapse of Landslide QLDT01, and the width was about 16 m.
In 2017, the north bank continued to expand northward, and the thinnest section of the Datong River
was 48 m.

4.2. InSAR-Derived Downslope Movement of the Twin Landslides

We derive the downslope movement of twin landslides before and after their fail-
ure from PALSAR-1/2 InSAR measurements during 2009–2010 and 2015–2020 (Figure 5).
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Significant downslope movement is observed within the twin landslides, whereas the
maximum displacement rate reaches up to 15 mm/day. We observe strong displacement of
up to 5 mm/day outside the twin landslides. To evaluate the potential risks related to the
twin landslides and their surroundings, we outline one polygon adjacent to the QLDT02
based on the phenomenological features from UAV images (potential risk zone (PRZ) in
Figure 5L).

During the summer before the failure of QLDT01, significant downslope velocities
up to 15 mm/day are observed in the boundary and central regions of the landslide body,
whereas the mean value is about 4 mm/day (Figure 5A). Five years later, after the failure of
the slope, the mean downslope velocities are smaller than 0.5 mm/day in both the summer
and winter seasons during 2015–2020 (Figure 5D–F).

We observe that for QLDT02 the mean downslope velocities are about 1.6 mm/day
with a maximum value of 5 mm/day from July 2009 to August 2010, i.e., the periods just
before and after the failure of QLTD01 (Figure 5A–C). A distinct scarp can be observed
in the high-resolution optical image at the head of the landslide body (Figure 3A), which
may cause severe InSAR decorrelation and result in no measurements in these regions.
The failure of QLDT02 occurred during October and December of 2015; however, there are
no valid InSAR measurements due to this severe decorrelation. We observe that significant
downslope velocities with mean values of about 2.3 mm/day are pronounced in QLDT02
during July–February of 2016–2020 after slope failure (Figure 5E,H,K). On the contrary,
QLDT02 is inactive during March–June (Figure 5F,G,I,J,L).

Figure 5. The downslope velocity is derived from line-of-sight (LOS) deformation using Equation (2).
The background map is the shaded relief map derived from UAV DEM. The twin landslides (QLDT01
and QLDT02) and the potential risk zone (PRZ) are marked by red polygons in the bottom right-hand
corner of the subfigures. The positive values refer to the movement in the downslope direction.
The red triangle denotes the location of the reference point.
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5. Discussion
5.1. Triggering Mechanisms
5.1.1. Precipitation

In general, changing precipitation patterns increase subsurface saturation and pore
pressure, which increase the likelihood of slope failure [58]. Extensive or extreme precipita-
tion and rapid snow/ice melt are therefore likely to increase the frequency and magnitude
of landslides [59,60]. The precipitation data near the twin landslides show fluctuating
upward trends during 2000–2019 (Figure 6A). The annual precipitation is 451 mm in 2009
and 448 mm in 2015, which is significantly higher than the mean annual precipitation
since 2000. The annual precipitation in the preceding year is higher than in the year of
slope failure.

Figure 6. Variations of precipitation during 2000–2019: (A) variations in annual precipitation, (B) pre-
cipitation intensity, (C) number of consecutive drought days in a year.

To evaluate the impacts of precipitation events on the occurrence of the twin landslides,
we graphed the daily precipitation before slope failure (Figure 7). An extreme precipitation
event of 35.8 mm is recorded in August 2009. The accumulated precipitation was about
193 mm during August–September 2019 (Figure 7). The number of consecutive drought
days is among the lowest during 2000–2009 (Figure 6C). Extensive rainwater may increase
the pore water pressure and reduce the shear strength in weak soil layers. Thus, we infer
that the occurrence of QLDT01 may have been primarily triggered by extensive precipi-
tation. In 2015, there was no extreme precipitation event such as that in 2009, however,
the annual precipitation was higher than the 20-year average (Figure 6A). The number of
consecutive drought days was below the average (Figure 6C). Therefore, we presume that
increased precipitation is likely one of the triggering factors of landslide QLDT02.
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Figure 7. Daily and cumulative precipitation during August–December, 2019. A maximum daily
precipitation of 35.8 mm was recorded in August 2009.

5.1.2. Freeze–Thaw Processes

Climate warming and disturbance may have strong impacts on slope stability in cold
environments [3,4]. In permafrost areas, rocks are glued together by ice filling their cracks
and crevices. Freeze–thaw processes are characterized by variability in subsurface tem-
perature and moisture content, which results in substantial fluctuations of shear strength
(cohesion and friction angle) and drives landslide initiation [61]. The transition from
perennially frozen to seasonally frozen ground accelerates the effect of freeze–thaw pro-
cesses on both bedrock and unconsolidated material [62]. As the air temperature increases,
the warming and thawing of permafrost may weaken rock faces and the inherent stability of
permafrost, leading to slope failure [63]. In mountain permafrost regions, e.g., the European
Alps, Canada, and the Tibetan plateau, researchers have recorded an increasing tendency
of landslide activities due to the warming climate [9,64,65].

The MAAT shows an obvious warming trend during 2000–2019 (Figure 8A). The MAAT
in 2009 and 2015 is 2.32 and 2.36 ◦C, respectively, which is about 0.3 ◦C above the 20-year
average (Figure 8A). The MAAT values in the preceding years (2008 and 2014) are about
0.7 ◦C lower than in the failure years. The strong fluctuations in air temperature may
amplify freeze–thaw processes and thus affect slope stability. In 2009, the warming days
(the number of days with air temperature above 10 ◦C), the thawing index, and the average
temperature in the coldest month were all above their 20-year averages (Figure 8B–D). This
suggests that the warming events in 2009 might have been one of the triggers of QLDT01
failure. On the contrary, the warming days and thawing index in 2015 are lower than their
averages. However, the mean temperature of the coldest month in 2015 is about 0.7 ◦C)
above the 20-year average, which suggests a warm winter. Warm winters may slow down
freezing processes, allow the soil water to remain in an unfrozen state for a longer time,
thereby increasing the risk of slope failure.
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Figure 8. Variations in air temperature during 2000–2019: (A) mean annual air temperature (MAAT),
(B) warming days with an annual average temperature greater than 10 ◦C, (C) thawing index, (D)
average temperature of the coldest month.

The activities and kinematic patterns in the twin landslides and their surroundings
have been derived from InSAR measurements. We observe that the average downslope
velocities in QLDT01 and QLDT02 exhibit distinct seasonality (Figure 9). During the
early thawing periods from May to early July, the slopes are in an inactive state. In this
stage, soil thawing is shallow and does not reach the sliding surface, resulting in limited
downslope movement. During the late thawing and early freezing periods from late July
to the next January the slopes are in an active state, with average downslope velocities up
to 4 mm/day. In the late thawing stage, the sliding surface is thawed, which results in
significant downslope movement. Despite the shallow soil being frozen during the early
freezing season, downslope movement remains significant, as the sliding surface is in a
thawed state. During the early freezing period from February to April the slopes become
inactive, as the sliding surface is in a frozen state.
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Figure 9. Temporal variations for 2000–2019 in mean daily air temperature (MDAT), mean daily
precipitation (MDP), and average downslope velocities of QLDT01, QLDT02, and potential risk zone
(PRZ) (Figure 5L). The squares present the average downslope velocities, whereas the corresponding
lines show the start and end date of the SAR image pair. The error bars denote the standard deviation
of downslope velocities within the red polygons. The bottom panel plots the MDAT and MDP.

The seasonality of significant downslope movement during both the pre- and post-
failure stages suggest that the occurrence and development of the twin landslides were
strongly influenced by freeze–thaw processes. The seasonal pattern is different from the
seasonal deformation corresponding to freeze uplift and thaw subsidence due to ice–water
phase change constraints in the active layer [66,67]. To put this work in a spatial context,
we compare our study with several freeze–thaw-related slope instability studies on the
QTP. Meng et al. and Hao et al. [34,45] observed deformation velocity up to 100 mm/year
with a linear trend assumption using the multi-temporal InSAR technique on an earthflow
in Yushu, QTP. Dini et al. [68] characterized different magnitudes of LOS deformation over
different types of slope instability in the eastern Himalayas. Hu et al. [53] found similar
seasonal patterns of downslope velocity up to about 3 mm/day during the active stage
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in several rock glaciers in the East Kunlun Mountains. The less pronounced downslope
velocity may be primarily related to the kinematic behaviors of rock glaciers.

5.1.3. Other Triggering Factors

The slope failure of QLDT01 may be partially attributed to fluvial erosion at the slope
toe and its geomorphological characteristics. QLDT01 is situated at the confluence of
several rivers. The north bank of the Datong River facing landslide QLDT01 is the Wari
Gaqu River, which flows into the Datong River. This results in high runoff flow of the
Datong River, which is usually accompanied by transverse expansion when it is scoured
downward along the river. Under continuous erosion by river flow or streams, the slope
toe becomes too steep to hold itself, consequently resulting in slope failure [69]. Moreover,
QLDT01 has a slope of about 17.5 degrees on average, with a slope height of about 66 m,
which make it prone to slope failure.

Shaking from earthquakes may be a direct triggering factor of the QLDTL02 failure.
According to data from the China Earthquake Networks Center (http://www.ceic.ac.cn,
accessed on 10 November 2021), a Mw 5.2 earthquake occurred on 23 November 2015,
with a focal depth of 10 km and a direct distance of 24 km from QLDT02 (Figure 1A).
The Tuolaishan fault is the seismogenic fault of this earthquake according to the Qinghai
Earthquake Administration, China (www.qhdzj.gov.cn, accessed on 10 November 2021).
Earthquakes increase the occurrence of landslides due to ground shaking, liquefaction
of susceptible sediments, and swelling of soil materials caused by shaking, which allows
water to seep in rapidly. In addition, earthquakes can alter friction at the base of landslides,
thus accelerating their movement over several days or weeks [70,71].

5.2. Hazard Analysis

We evaluate the stability of the landslide dam of QLDT01 based on the DBI calcu-
lation. According to the DBI criterion proposed by Ermini and Casagli [57], the state of
landslide dam can be categorized as a stable domain (DBI < 2.75), an uncertain domain
(2.75 < DBI < 3.08), and an unstable domain (DBI > 3.08). The height of the landslide dam
ranges from 0 m at the toe of the landslide to about 40 m at the south bank of the Datong
River. The landslide dam volume and catchment area are 69 × 103 m3 and 4.4 × 103 m2,
respectively. Relying on different dam heights, the calculated DBI ranges from 2.55 to 2.97,
with an average of 2.78 (Figure 10). We find that the toe (Hd < 3.5 m) and top (Hd > 29 m) of
the slope in QLDTL01 can be considered as a stable domain, as their DBI is lower than 2.75.
The landslide dam is in the uncertain domain in the middle of the slope (3.5 m < Hd < 29 m),
which accounts for 70% of the entire slope. Thus, we infer that the QLDT01 is at risk of
further slope collapse.

While only a portion of the slope (QLDT02) has collapsed, we evaluate the stability
of the noncollapsed regions of the slope and the potential risks. Two long cracks (about
300–400 m) could be observed as of 2009. While one crack (QLDT01) collapsed in 2009,
only a small portion of another crack developed into a landslide (QLDT02) in 2015. Based
on the high-resolution UAV DEM (Figure 11B), we find that the slope height varies signifi-
cantly and the slope gradient is large, providing geomorphological conditions for slope
creep. In addition, many new cracks are found in the noncollapsed regions of the slope
(Figure 11A), suggesting the occurrence of strong internal movement. Moreover, continu-
ous InSAR-derived downslope movements are observed, further confirming the instability
of the noncollapsed slope (PRZ in Figures 5 and 9). The volume of the PRZ region is about
12 × 105 m3, which is 1.6 times larger than that of landslide QLDT01. In addition, there
are temporary houses in the area for locals to graze animals. A potential slope failure may
completely block the Datong River and cause a catastrophic disaster.

http://www.ceic.ac.cn
www.qhdzj.gov.cn
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Figure 10. The dimensionless blockage index (DBI) diagram of landslide QLDT01. When the landslide
dam is at the height of 3.5 to 29 m, the mean value of DBI is 2.87, which is in the uncertain domain
(UD). When the height of landslide dam is lower than 3.5 m and higher than 29 m, the average DBI is
2.66, which is in the stable domain (SD).

Figure 11. (A) The orthophoto map acquired by UAV in April 2021; the red lines denote the cracks.
(B) The UAV-derived DEM map.

6. Conclusions

We have documented the spatiotemporal evolution of two adjacent landslides on
the southeast slope of Qilian Mountain during their pre-failure and post-failure stages
from 2008 to 2020 by integrating multisource optical and radar remote sensing techniques.
The main conclusions are as follows:

1. The occurrence and development of the twin landslides and the adjacent river bank
have been determined using high-resolution optical and radar images.

2. Significant downslope movements are observed within the twin landslides (up to
15 mm/day) and their surrounding slopes (up to 5 mm/day). The downslope move-
ment exhibits distinct seasonality. During February-early July, the downslope velocity
is nearly inactive; during late July-next January, mean velocity of about 4 mm/day is
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observed. The seasonality of downslope movement during both pre- and post-failure
stages suggests that the occurrence and development of the twin landslide are strongly
influenced by freeze–thaw processes.

3. Combining data on precipitation, air temperature, and InSAR-based deformation his-
tory, we infer that the occurrence of the twin landslides is mainly related to extensive
precipitation, warm winters, and freeze–thaw processes.

4. From the UAV-based geomorphological features, InSAR-derived downslope move-
ments, and dimensionless blockage index, we infer that new collapse and slope failure
events may occur within the twin landslides and their surroundings, which may
completely block the Datong River and cause a catastrophic disaster.

Our study demonstrates the capability of multisource high-resolution remote sensing
techniques to monitor landslide activities in cold regions. As the impacts of climate warm-
ing becoming more extensive, freeze–thaw-related slope instability in climate-sensitive
regions (the boundary regions of permafrost and seasonally frozen ground, in this case)
should be afforded greater attention.
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