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Abstract: The existing nonuniformity correction methods generally have the defects of image blur,
artifacts, image over-smoothing, and nonuniform residuals. It is difficult for these methods to meet
the requirements of image enhancement in various complex application scenarios. In particular,
when these methods are applied to dim small target images, they may remove dim small targets
as noise points due to the image over-smoothing. This paper draws on the idea of a residual
network and proposes a two-stage learning network based on the imaging mechanism of an infrared
line-scan system. We adopt a multi-scale feature extraction unit and design a gain correction sub-
network and an offset correction sub-network, respectively. Then, we pre-train the two sub-networks
independently. Finally, we cascade the two sub-networks into a two-stage network and train it. The
experimental results show that the PSNR gain of our method can reach more than 15 dB, and it can
achieve excellent performance in different backgrounds and different intensities of nonuniform noise.
Moreover, our method can avoid losing texture details or dim small targets after effectively removing
nonuniform noise.

Keywords: nonuniformity correction; deep learning; dim small target; image over-smoothing; in-
frared line-scan image

1. Introduction

With the development of infrared remote sensing detection systems, infrared line-scan
detectors have been widely used in military and civilian fields such as battlefield surveying,
maritime surveillance, and urban traffic monitoring. However, restricted by factors such
as the level of manufacturing process, there is nonuniform noise in the response between
the detection elements of the line-scan sensor, resulting in a certain strip effect in the
original infrared image obtained. This requires that we need to first perform nonuniformity
correction on the image before performing target detection [1]. In addition, the infrared
remote sensing detection system not only has a long observation distance, but also is often
interfered with by complex background clutter and noise. Therefore, the targets often
show the characteristics of dim small targets such as low signal-to-noise ratio and lack of
effective structural information. According to the definition of the Society of Photo-Optical
Instrumentation Engineers (SPIE), the target with a local signal-to-noise ratio <5 dB and
a pixel size <9 x 9 is regarded as a weak target [2]. These characteristics of dim small
targets make them very easy to be regarded as noise points, which requires us to pay special
attention to the problem of image over-smoothing when removing strip noise.

For the fixed pattern noise (FPN) generated by infrared imaging systems, researchers
have proposed two kinds of nonuniformity correction methods, which are calibration-based
and scene-based [3].

The calibration-based correction method utilizes the two-point or multi-point response
between detection elements of the sensor to the black body radiation source and calculates
the correction parameters through mathematical fitting. The advantage of this kind of
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method is that the algorithm is simple, but its correction performance is affected by factors
such as ambient temperature and integration time changes. Therefore, the calibration-
based correction method needs to be performed periodically, and the detection system
needs to suspend the mission work while observing the blackbody radiation source for
calibration [4,5].

The scene-based correction methods can be divided into the multi-frame method
and single-frame method, which correct the nonuniformity of the image according to the
correlation of the scene. Since these kinds of methods do not need to observe the calibration
source, they has the advantage of not affecting the normal operation of the infrared system.

The classic multi-frame methods mainly include Neural Network [6], Constant Statis-
tics [7], Kalman Filtering [8], and Inter-frame Registration Algorithm [9]. However, the
multi-frame methods produce artifacts when the scene motion changes suddenly. In addi-
tion, due to the complexity of the algorithm, the real-time performance of such methods in
practical applications is often not ideal. Although some recent multi-frame methods such
as the Adaptive Deghosting Method in Neural Network [10], Temporal-Spatial Nonlinear
Filtering [11], parameter estimation [12], and Feature Pattern Matching [13] have made
some improvements to these shortcomings, in general, the single-frame method is still the
main research direction at present.

Single-frame methods mainly include Midway Histogram Equalization (MHE) [14],
1-D Guided Filtering (1D-GF) [15], Sparse Unidirectional Hybrid Total Variation [16], En-
hanced Low-rank Prior and Total Variation Regulation [17], Wavelet Decomposition and
Total Variation-Guided Filtering [18], Least Squares and Gradient Domain-Guided Filter-
ing [19], and so on. In addition, there are some methods that focus on over-smoothing. For
example, Mingxuan Li et al. proposed an adaptive edge-preserving operator (AEPO) based
on edge contrast to prevent the loss of edge details [20]. In another paper, the Multi-Scale
Wavelet Transform adopted by Mingxuan Li et al., can also protect non-stripe information
in infrared images [21]. The Fuzzy Matrix and Statistical Filtering method proposed by
Sichong Huang et al. also has a certain ability to retain detailed information [22].

In recent years, with the success of deep learning methods in various fields such as
image classification [23], target detection [24], face recognition [25], and even short-term
power load forecasting [26], more and more researchers are also applying deep learning
to the field of image nonuniformity correction. Currently, open-source deep learning
nonuniformity correction methods include SNRCNN [27], ICSRN [28], DLS-NUC [29], and
SNRWDNN [30]. In addition, there are Deep Multi-scale Residual Network [31], Cascade
Residual Attention CNN [32], Deep Multi-scale Dense Connection CNN [33], and so on.
Significantly, Timing Li et al. proposed that the use of long connections in deep networks
can solve the problem of image information loss caused by transposed convolution [34],
and Sifan Zhang et al. proposed a regularization method based on features extracted by
wavelet to help restore image details [35].

However, although some existing methods have achieved certain results in preserving
image details, they have not fundamentally solved the problem of image over-smoothing.
In this regard, based on the nonuniform noise model of line-scan detectors, we transform
the problem of nonuniformity correction into the problem of estimating noise parameters.
We designed a two-stage fully convolutional network including a gain correction sub-
network and an offset correction sub-network. At the same time, we produced datasets to
pre-train and train the network. In general, our contributions are as follows:

1. A destriping method based on a noise parameter estimation two-stage network is
proposed, which can adapt to the input image size and effectively correct the real
nonuniformity infrared image;

2. According to the nonuniformity response model of the line-scan detector, a deep learning
dataset for strip noise parameter estimation and image reconstruction is produced;

3. A multi-scale feature extraction unit is designed to use image information more effec-
tively, and the proposed network has excellent generalization to different intensities
of nonuniform noise and different backgrounds;
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4. The noise parameter estimation mechanism in our network can fundamentally solve
the problem that texture details and dim small targets may be removed due to image
over-smoothing.

2. Methods

In this paper, two deep learning sub-networks for estimating the gain correction
coefficient and estimating the offset correction factor are designed, respectively. After
pre-training the sub-networks, we cascade the two sub-networks through a multiplication
structure and an addition structure as a two-stage network. Finally, we train the two-stage
network, and the resulting network model can perform nonuniformity correction on real
infrared images.

2.1. Nonuniformity Response Model and Datasets

Our two-stage deep learning network model requires a large amount of data for train-
ing; however, due to less research on deep learning methods for nonuniformity correction,
no ready-made datasets are available. We downloaded the MS-COCO datasets [36], con-
verted the images in the datasets into grayscale images as clean infrared images, and then
added nonuniform noise to these clean infrared images according to the nonuniformity
response model of the infrared line-scan detector to produce our datasets.

The nonuniformity response of an infrared line-scan detector can be expressed
as follows:

Yij = &iXij + 0i, )

where x;; and y;; represent the actual response and observed value of the detector unit i
scanned to the row j, respectively; g; and o; represent the gain and offset of the detector
unit i, respectively.

The image nonuniformity correction is essentially to remove the nonuniform noise
generated by each detector unit shown in Equation (1) from the observed signal y;;, so as

to obtain the estimated value x;; of the actual response x;;. The process can be expressed
as follows:

xij = Giyij + O;, 2
where G; and O; are the gain correction coefficient and the offset correction factor, respec-
tively:

Gi =1/ gis (3)

O; = —0i/gi, (4)

Therefore, the problem of image nonuniformity correction is the problem of estimating
the gain correction coefficient G; and the offset correction factor O;.

Based on the above nonuniformity response model, we produced our datasets. First,
we cropped the image of size 128 x 128 from the image in the MS-COCO dataset. Second,
we converted the cropped image to grayscale image, and we backed up the grayscale
image as “Ori”. Third, we added noise to the grayscale image according to Equation
(1) and save the noised image as “Nuf”. At the same time, we substituted the noise
factors g; and o; into Equation (3) and Equation (4), respectively, for calculation to obtain
correction factors G; and O;. Finally, we obtained the mat data of {“Nuf”,”Ori”, “G”, “O"},
where “Nuf” are grayscale image of size 128 x 128 with nonuniform noise added, “Ori”
are the corresponding un-noised original grayscale image of size 128 x 128, “G” are the
corresponding nonuniformity gain correction coefficients of size 1 x 128, and “O” are
the corresponding nonuniformity offset correction factors of size 1 x 128. The specific
operation of producing the datasets in this paper is shown in Figure 1.
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Step 1: Crop a 128x128 image.

Step 2: Gray processing.

Generate random values g; and o;
from a certain distribution.

yy‘ = gl'xlf + 01

Step 3: Add nonuniform noise.

[E-ve [@l=-/s

Step 4: Save data in mat format.

Figure 1. The specific operation of producing the datasets.

It should be noted that in the step 3, the multiplicative noise g; of the same image
obeys the uniform distribution of (1 —0og, 1+ (Tg) , the additive noise o; of the same image
follows a Gaussian distribution with a mean of 0 and a standard deviation of ¢,, and each
image corresponds to a different random standard deviation, ¢, € [0,0.2], 0, € [0,32].

As above, we generated 500,000 nonuniformity images, of which 200,000 images were
used to pre-train our two sub-networks, and the other 300,000 images were used to train
the two-stage network with the two sub-networks cascaded.

2.2. Network Design

Our two-stage network mainly consists of two parts, including a gain correction sub-
network and an offset correction sub-network. Our network adopts the design principle of
fully convolutional network (FCN), which can adapt to the size of the input images [37]. In our
network, the convolutional layer is a multi-scale feature extraction unit, as shown in Figure 2.

| Previous layer |

v

v v 1x5Conv(32)
1x1Conv(32) 3x3Conv(64) Lea k\i fely
Leaky Relu Leaky Relu 5x1Conv(32)
Leaky Relu
A A
| Concat |

Figure 2. A multi-scale feature extraction unit.

As can be seen from Figure 2, we cascade 32 asymmetric convolution kernels of
1 x 5 and 32 asymmetric convolution kernels of 5 x 1 and connect the cascade with
32 convolution kernels of 1 x 1 and 64 convolution kernels of 3 x 3 in parallel. In addition,
the cascade of asymmetric convolution kernel of 1 x 5 and asymmetric convolution kernel
of 5 x 1 is equivalent to a 5 x 5 convolution kernel in the perceived field of view [38].
Moreover, each convolution operation is followed by a Leaky ReLU activation function [39]
to introduce nonlinearity. Then, we concatenate the multi-scale features obtained by
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convolution in the channel direction. At last, we adopt a convolution kernel of 1 x 1 to fuse
the features across channels and reduce the dimension. By adopting multi-scale feature
extraction units, we can not only increase the adaptability to targets of different scales, but
also improve the network expression ability without increasing the network depth to avoid
the phenomenon of gradient dispersion.

Shown in the Figure 3 is the gain correction sub-network structure. We use 8 convo-
lution layers with multiple feature extraction units, and then use a convolution kernel of
1 x 1 to reduce the output to a single channel, so as to obtain an output with the same size
as the input image. At last, we use the column mean of this output as an estimate of the
gain correction coefficient.

|

l |

Multiscale Feature Multiscale Feature
Extraction Unit 1 Extraction Unit2 - 8

1x1 Conv (1)

128x128

4 L eeeees - L ——>| 128x128

Column 1
128x128x64 128x128x64 mean

Nuf | Ori | G; O; |.mat
| |

Figure 3. The gain correction sub-network structure.

In this sub-network, we used the nonuniformity infrared image “Nuf” as input, the
saved gain correction coefficient “G;” as the true value label, and the mean square error as
the loss function for pre-training, where the loss function of the gain correction sub-network
can be expressed as:

(Gl -G, 5)

1=

Lg—mse = (1/W)

1

I
—

where W is the width of the image, G/ is the estimated value of the gain correction coefficient
output by the gain correction sub-network, and G; is the saved true value of the gain
correction coefficient.

Shown in the Figure 4 is the offset correction sub-network structure. In this sub-
network, we use 15 convolution layers with multi-feature extraction units and a convolution
kernel of 1 x 1, and finally use the column mean of the output as the estimate of the offset
correction factor.
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Multiscale Feature Multiscale Feature
Extraction Unit 1 Extraction Unit 2 - 15

1x1 Conv (1)

128x128

b L eeeens 9 | 128x128
[ Column 1
128x128x64 128x128x64 mean
0,1x128

Figure 4. The offset correction sub-network structure.

Since the offset correction sub-network and the gain correction sub-network are pre-
trained independently, both sub-networks can use the same nonuniformity infrared image
datasets. Different from the gain correction sub-network, the offset correction sub-network
uses the image obtained by multiplying the saved nonuniformity infrared image “Nuf”
and the gain correction coefficient “G;” as input and uses the saved offset correction factor
“0;"” as the true value label. In this sub-network, we also use the mean square error as the
loss function for pre-training, as shown in the formula:

W

Lo-mse = (1/W)Y_ (0} - 0;)?%, (6)
i=1

where W is the width of the image, O] is the estimated value of the offset correction
coefficient output by the offset correction sub-network, and O; is the saved true value of
the offset correction coefficient.

Shown in Figure 5 is the two-stage deep learning network structure of gain and offset
correction. In our network, since the gain correction coefficient and offset correction factor
of the line-scan detector are estimated by column, and the “small” feature of the dim small
target makes it impossible to have a decisive influence on the estimation of the column, the
problem that may lead to image over-smoothing and remove the dim small targets when
reconstructing the images pixel by pixel based on image correlation in traditional methods
can be avoided.

It is important to emphasize that the training set of the cascaded two-stage network
cannot be the same as the training set of the two sub-networks. When training the cascaded
two-stage network, we use the nonuniformity infrared image “Nuf” as input, use the saved
clean infrared image “Ori” as the true value label, and use the mean square error as the
loss function, as shown in the formula:

2

W H
Li—mse = [1/(W-H)]} Z(Ii/j - Iij) . 7)

i=1j=1

where W is the width of the image, H is the height of the image, I j 1s the reconstructed
image output by the network model, Il-]- is the saved clean image, and i and j are the pixel
coordinates of the image.
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TrTrTrTrT T Stage 2: Offset Correction N

Figure 5. The two-stage deep learning network structure of gain and offset correction.

3. Results

In experiments, to verify the effectiveness of our method, we selected the most com-
monly used traditional methods for comparison, including MHE [14] and 1D-GF [15].
At the same time, we also compare our method with already open-source deep learning
methods, including SNRCNN [27], ICSRN [28], DLS-NUC [29], and SNRWDNN [30].

3.1. Network Model Training

We used TensorFlow software (San Francisco, CA, USA) to build the network model and
used the adaptive momentum optimizer (AdamOptimizer) in TensorFlow to pre-train and train
the network model on a single GPU NVIDIA Tesla V100S-PCle-32GB (Santa Clara, CA, USA).

In the pre-training of the gain correction sub-network and the offset correction sub-
network, we randomly initialized the parameters: the batch number was set to 16, the
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initial learning rate was set to 0.001, the learning rate was reduced to 0.0001 after 25 epochs,
and the total number of training epochs was set to 50. In the training of the cascaded
two-stage network, we initialized with the parameters obtained in the pre-training of the
two sub-networks: the number of batches was set to 16, the initial learning rate was set to
0.0001, the learning rate was reduced to 0.00001 after 25 epochs, and the total number of
training epochs was set to 50.

3.2. Quality Evaluation Metrics

In the experiments on simulated nonuniformity infrared dim small target images, we
mainly compare the correction performance of each method for different intensity nonuni-
formity, and the influence of these methods on the dim small targets in nonuniformity
infrared images. In the simulation experiments, we conducted a comparative analysis
through five objective evaluation metrics, including root mean square error (RMSE) [40],
peak signal-to-noise ratio (PSNR) [41], structural similarity (SSIM) [42], image roughness
(IR) [43], and signal-to-clutter ratio (SCR) [44,45].

RMSE is the root mean square error of the clean reference image and the de-noised
image, which is the error of image reconstruction. The smaller the RMSE, the better the
performance of image reconstruction, which is defined as:

H
RMSE = | [1/(W-H)] Z(e,j —r,]) , (8)

0 Mg

where W is the width of the image, H is the height of the image, ¢;; is the image to be
evaluated output by the network model, r;; is the clean image for reference, and i and j are
the pixel coordinates of the image.

PSNR is one of the most commonly used evaluation metrics for image reconstruction
quality, which is calculated from RMSE. The larger the PSNR, the better the performance of
image reconstruction, which is defined as:

PSNR = 20 x 1g(255/ RMSE), )

Structural similarity is a metric to evaluate the similarity of the clean reference image
and the de-noised image based on the characteristics of the human visual system, and
mainly considers the three key features of image luminance, contrast, and structure. The
value range of the structural similarity is (0, 1); the larger the value, the more similar the
two images are, and the better the image reconstruction performance is. The definition is

as follows:
(Z,Mr,”e + Cl)(zo're + CZ)

(12 +pu2+c1) (07 + 02 +c2)

where r and e are the image for reference and the image to be evaluated, respectively; y, and
1o are the mean of r and e, respectively; o7 and o7 are the variance of r and e, respectively;
0y is the covariance of r and e. Constraints ¢; = (k;L)?, ¢ = (kyL)?, L = 255 (for 8-bit
grayscale images) are the dynamic range of image pixel values, and the default values for
k1 and ky are 0.01 and 0.03, respectively.

Image roughness is an important metric to measure image sharpness. The smaller the
image roughness, the better the image quality, which is defined as:

SSIM(r,e) = (10)

|h=el + HhT *e”l

IR =
lelly

, (11)

where e is the reconstructed image to be evaluated, = [1, —1] is the horizontal mask, I/
as the transpose of 1 is the vertical mask, the asterisk denotes discrete convolution, || ||;
denotes the L; norm, |le||; is the sum of all pixel values of the image, and ||/ x¢|; and
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|7 = eHl are the sum of differences between pixels in the horizontal and vertical directions
of the reconstructed image, respectively.

The signal-to-clutter ratio is an important metric to measure the difficulty of detecting
dim small targets. The higher the signal-to-clutter ratio of dim small targets, the easier it is
to be detected. Its definition is as follows:

SCR = |.ut_]’lb|, (12)
b
where y; is the average pixel value of the target, j;, is the average pixel value of the
target neighborhood background, and oy is the standard deviation of the pixel value of the
target neighborhood background. Figure 6 shows the small target and its neighborhood
background, in which the height i and width w of the small target are not greater than 5,
and we set the width 4 of the neighborhood background as 5.

Target

Neighborhood Background

Figure 6. Small target and its neighborhood background.

In the experiments on real nonuniformity infrared images, we mainly verified the
correction performance of each method on real images and compared the effects of each
method on texture details. Since there is no corresponding clean infrared image for the
real nonuniformity infrared image, we can only use non-reference evaluation metrics.
In the field of image processing, compared with the reference index, the non-reference
index generally has certain defects. In addition to the above IR metrics, in order to
comprehensively evaluate the denoising performance and the ability to preserve image
details of each method, we also adopted the inverse coefficient of variation (ICV) [46,47]
and the mean relative deviation (MRD)) [48]. However, all of these metrics are affected by
factors other than algorithm performance. Therefore, we performed edge detection [49] on
the images processed by each method to help us compare the impact of each method on
image texture details more objectively.

The inverse coefficient of variation (ICV) is an indicator for evaluating the smoothness
of an image homogeneous region, which can measure the destriping performance of each
method. It is defined as:

cv =", (13)
Oh
where yj, and o0y, are the mean and standard deviation of pixel values in a homogeneous
region, respectively. In general, the larger the ICV, the smoother the homogeneous region
of the image, and the better the destriping performance.



Remote Sens. 2022, 14, 5056

10 of 24

In contrast to ICV, the mean relative deviation (MRD) is an indicator for evaluating
the relative distortion of a sharp region, which is defined as:

W H
L L [s'i —sif
MRD =[1/ (W'H)]%, (14)
g
where s';; and s;; are the pixel pair before and after destriping in a sharp region. In general,
the smaller the MRD, the less distortion in the sharp region of the image, and the better the
ability to retain details.

However, although ICV and MRD are more targeted than IR metrics, these two metrics
also have certain limitations due to the need for us to manually delineate the homogeneous
and sharp region of the image.

Edge detection is to highlight the structural information by finding the points with
obvious brightness changes in the image. In this paper, we use the Sobel operator for edge
detection. We convolve the image to be detected with the Sobel operator to obtain the gradient
values of each pixel in the horizontal and vertical directions, and then use the gradient of each
pixel as the pixel value of the edge detection image, as shown in the formula:

Gx(x,y) = e(x,y) ® gx B
Gy(x,y) =e(x,y) ®gy} = El(x,y) = \/G,%(x,y) +G2(x,y), (15)

where the Sobel operator is as follows:

-1 0 1 -1 -2 -1
e=|-202[,¢=|0 0 0], (16)

-1 0 1 1 2 1

3.3. Method Comparison on Simulated Data with Different Intensities of Nonuniformity

We selected one real, clean infrared small target image from the SIRST dataset [50]. As
shown in Figure 7, the dim small target is located in the middle of the red box we marked.

Figure 7. A real, clean infrared small target image.

We added different intensities of nonuniform noise to this image. As a low-intensity
nonuniformity, its multiplicative noise g; obeys a uniform distribution of (1 — 0.05,1 + 0.05),
and its additive noise 0; obeys a Gaussian distribution with a mean of 0 and a standard
deviation of 5. As a medium-intensity nonuniformity, its multiplicative noise g; obeys



Remote Sens. 2022, 14, 5056 11 of 24

a uniform distribution of (1 —0.10,1 + 0.10), and its additive noise o; obeys a Gaussian
distribution with a mean of 0 and a standard deviation of 15. As a high-intensity nonunifor-
mity, its multiplicative noise g; obeys a uniform distribution of (1 —0.15,1 4 0.15), and its
additive noise o0; obeys a Gaussian distribution with a mean of 0 and a standard deviation
of 25.

The results of correction methods for different intensities of nonuniformity infrared
dim small target images are shown as Figures 8-10, respectively. Shown in Figure 8 are
the correction results of different methods on a low-intensity nonuniformity infrared dim
small target image.

Figure 8. Comparison of methods using low-intensity nonuniformity infrared dim small target image:
(a) infrared dim small target image with low-intensity nonuniform noise added; (b) MHE; (c) 1D-GF;
(d) SNRCNN; (e) ICSRN; (f) DLS-NUC; (g) SNRWDNN; (h) ours.

Figure 9. Comparison of methods using medium-intensity nonuniformity infrared dim small tar-
get images: (a) infrared dim small target image with medium-intensity nonuniform noise added;
(b) MHE; (c) 1D-GF; (d) SNRCNN; (e) ICSRN; (f) DLS-NUC; (g) SNRWDNN; (h) ours.



Remote Sens. 2022, 14, 5056

12 of 24

(b)

() (8) (h)

Figure 10. Comparison of methods using high-intensity nonuniformity infrared dim small target
images: (a) infrared dim small target image with high-intensity nonuniform noise added; (b) MHE;
(c) 1D-GF; (d) SNRCNN; (e) ICSRN; (f) DLS-NUC; (g) SNRWDNN; (h) ours.

Shown in Figure 9 are the correction results of different methods on a medium-intensity
nonuniformity infrared dim small target image.

Shown in Figure 10 are the correction results of different methods on a high-intensity
nonuniformity infrared dim small target image.

According to the evaluation metrics described in Section 3.2, we compare the correc-
tion performance of each method for different intensities of nonuniform noise, as shown
in Table 1.

In order to more intuitively compare the generalization performance of each method
for different intensities of nonuniformity, we created a line graph of each method regarding
PSNR gain, as shown in Figure 11.

PSNR Gain on Images with Different Intensity Nonuniformity
20 T T T T T T

—&— MHE
——1D-GF
sk —«—SNRCNN | |

PSNR; -PSNR| (dB)

ICSRN
—+—DLS-NUC

SNRWDNN |
—— Ours

PSNR

1

N
>

4 1 1
18 20 22 24 26 28 30 32 34
Nonuniformity Image PSNR (dB)

Figure 11. The PSNR gain of each method on images with different intensities of nonuniformity. The
greater the PSNR along the abscissa direction, the lower the intensity of image nonuniformity.

3.4. Method Comparison on Simulated Data with Different Backgrounds

We selected 10 real, clean infrared dim small target images from the SIRST dataset [50],
measured the background complexity by the pixel value variance Byar (dynamic range of
0-255), and named these images in increasing complexity as Test-1 to Test-10. We then
added equal-intensity nonuniform noise to these images. The multiplicative noise g; obeys
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a uniform distribution of (1 —0.12,1+ 0.12), and its additive noise o; obeys a Gaussian
distribution with a mean of 0 and a standard deviation of 12. Figures 12-14 are the three
most representative experimental results we selected.

Table 1. Evaluation metric results of the methods on simulated data with different intensities of
nonuniform noise.

Experiment Methods RMSE PSNR (dB) SSIM IR SCR
Noise Image 5.77 32.9012 0.7309 0.0706 2.5708

MHE [14] 53.49 13.5652 0.7712 0.0381 3.1419

Low-Intensity 1D-GF [15] 1.51 44.5529 0.9965 0.0157 3.4791
Nonuniformity SNRCNN [27] 221 41.2492 0.9741 0.0205 3.0936
ICSRN [28] 1.62 43.9166 0.9937 0.0143 3.6239

DLS-NUC [29] 3.77 36.6104 0.9643 0.0145 3.5481

SNRWDNN [30] 1.87 42.7037 0.9906 0.0157 3.6770

Ours 1.03 47.8425 0.9993 0.0150 3.7283

Noise Image 16.84 23.6059 0.2904 0.1885 1.323

MHE [14] 51.04 13.9724 0.7529 0.0424 3.3484

Medium- 1D-GF [15] 5.40 33.4841 0.9623 0.0217 3.4443
Intensity SNRCNN [27] 12.28 26.3438 0.4895 0.1183 1.9014
Nonuniformity ICSRN [28] 8.77 29.2671 0.7530 0.0451 3.2835
DLS-NUC [29] 5.21 33.8014 0.9490 0.0183 3.4608

SNRWDNN [30] 3.21 38.0057 0.9864 0.0168 3.8070

Ours 2.45 40.3645 0.9978 0.0156 3.7163

Noise Image 25.62 19.96 0.1559 0.2914 0.7753

MHE [14] 56.02 13.16 0.7218 0.0444 3.4024

1D-GF [15] 6.06 32.48 0.9137 0.0334 3.4181

High-Intensity SNRCNN [27] 21.78 21.37 0.2382 0.2273 0.8014
Nonuniformity ICSRN [28] 16.01 24.05 0.4009 0.1155 1.1388
DLS-NUC [29] 793 30.14 0.8922 0.0272 2.7439

SNRWDNN [30] 4.72 34.66 0.9796 0.0191 3.8752
Ours 3.83 36.46 0.9953 0.0170 3.5277

Figure 12 is the nonuniformity correction results of Test-1 (Byar = 19).
Figure 13 is the nonuniformity correction results of Test-6 (Byar = 663).
Figure 14 is the nonuniformity correction results of Test-10 (Byar = 2880).

At the same time, we use the objective metrics described in Section 3.2 to quantitatively
evaluate the experimental results, as shown in Table 2.

In order to compare the performance of each method on PSNR more intuitively, we
created a line graph, as shown in Figure 15.

In order to verify the effectiveness of our method in solving the problem of image
over-smoothing, we used the clean infrared image roughness as the abscissa reference and
created a line graph for each method performance on the IR, as shown in Figure 16.
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Figure 12. The nonuniformity correction results of Test-1: (a) the real, clean infrared dim small target
image (Byar = 19), the dim small target is located in the middle of the red box we manually marked;
(b) infrared dim small target image with nonuniform noise added; (c) MHE; (d) 1D-GF; (e) SNRCNN;
(f) ICSRN; (g) DLS-NUC; (h) SNRWDNN; (i) ours.

(8 (h) @

Figure 13. The nonuniformity correction results of Test-6: (a) the real, clean infrared dim small target
image (Byar = 663), the dim small target is located in the middle of the red box we manually marked;
(b) infrared dim small target image with nonuniform noise added; (c) MHE; (d) 1D-GF; (e) SNRCNN;
(f) ICSRN; (g) DLS-NUC; (h) SNRWDNN; (i) ours.
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Figure 14. The nonuniformity correction results of Test-10: (a) the real, clean infrared dim small
target image (Byar = 2880), the dim small target is located in the middle of the red box we manually
marked; (b) infrared dim small target image with nonuniform noise added; (c) MHE; (d) 1D-GF;
(e) SNRCNN; (f) ICSRN; (g) DLS-NUC; (h) SNRWDNN; (i) ours.

Effect of Background Varlance on PSNR Gain
Tept-1 Test 6 Test- 10

ZUW |

PSNR, - PSNR (dB)

—&— MHE
—4—1D-GF
—=— SNRCNN
—*—ICSRN
—+—DLS-NUC
SNRWDNN
) ) ) ) —— Ours
0 500 1000 1500 2000 2500 3000 3500
Background Variance (0-255)

PSNR,

Figure 15. Line graph of each method performance on PSNR. The abscissa is the variance of the
image background pixel value, and the ordinate is the difference between the corrected image PSNR
and the nonuniformity image PSNR.
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Table 2. Evaluation metric results of the methods on simulated data with different backgrounds.

Experiment Methods RMSE PSNR (dB) SSIM IR SCR
Noise Image 14.73 24.7683 0.2990 0.1691 1.1610
MHE [14] 71.15 11.0873 0.5375 0.0530 2.3561
1D-GF [15] 3.78 36.5751 0.9757 0.0137 4.2120
Test — 1 (Byar = 19) SNRCNN [27] 10.09 28.0508 0.5531 0.0946 1.6311
ICSRN [28] 7.30 30.8667 0.7791 0.0374 2.9876
DLS-NUC [29] 3.26 37.8533 0.9756 0.0118 5.4496
SNRWDNN [30] 2.32 40.8198 0.9909 0.0104 6.1065
Ours 1.47 44.8026 0.9984 0.0099 6.7038
Noise Image 12.63 26.1042 0.3894 0.2218 1.6516
MHE [14] 75.02 10.6272 0.6675 0.0518 2.2701
1D-GF [15] 3.39 37.5167 0.9799 0.0318 3.2332
Test — 6 (Byar = 663) SNRCNN [27] 8.04 30.0243 0.6737 0.1139 2.0920
ICSRN [28] 491 34.3105 0.9033 0.0429 3.0031
DLS-NUC [29] 4.01 36.0683 0.9741 0.0285 3.5229
SNRWDNN [30] 2.90 38.8949 0.9817 0.0286 3.5026
Ours 1.98 42.1847 0.9973 0.0271 3.7157
Noise Image 15.39 24.3859 0.4616 0.1848 1.0346
MHE [14] 12.54 26.1627 0.9194 0.0677 0.6328
Test — 1D-GF [15] 9.23 28.8261 0.9491 0.0600 0.8926
10 (Byar — 2880) SNRCNN [27] 11.44 26.9595 0.6576 0.1227 1.1425
var ICSRN [28] 8.58 29.4648 0.8342 0.0731 1.2652
DLS-NUC [29] 16.00 24.0461 0.7921 0.0521 1.2424
SNRWDNN [30] 7.52 30.6026 0.9400 0.0605 0.8147
Ours 2.12 41.6190 0.9958 0.0587 0.8182
Noise Image 15.17 24.56 0.3562 0.1791 1.0014
MHE [14] 45.90 16.39 0.7360 0.0622 2.0396
1D-GF [15] 4.89 34.82 0.9667 0.0311 2.3881
Test-1-10 Average SNRCNN [27] 10.71 27.64 0.5824 0.1062 1.3462
ICSRN [28] 7.75 30.59 0.7827 0.0515 2.0673
DLS-NUC [29] 8.75 31.10 0.8967 0.0280 2.5928
SNRWDNN [30] 3.89 36.87 0.9763 0.0293 2.6957
Ours 1.87 42.90 0.9970 0.0275 2.8335
Noise Image 1.6458 0.9419 0.0578 0.0728 0.4267
MHE [14] 21.083 5.8496 0.1008 0.0285 0.9088
1D-GF [15] 1.8051 2.7607 0.0178 0.0237 1.2596
Test-1-10 Standard SNRCNN [27] 1.6787 1.3723 0.0644 0.0423 0.5564
Deviation ICSRN [28] 1.7758 2.0871 0.0887 0.0229 1.0465
DLS-NUC [29] 6.3683 5.3226 0.0930 0.0226 1.4446
SNRWDNN [30] 1.4669 2.9825 0.0141 0.0250 1.5914
Ours 0.3615 1.9141 0.0012 0.0229 1.6913

At the same time, in order to verify the friendliness of our method to dim small targets,
we used the clean infrared image SCR as the abscissa reference and created a line graph for
each method performance on the SCR, as shown in Figure 17.
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Figure 16. The line graph of each method performance on the IR. The abscissa is the clean image
roughness, and the ordinate is the corrected image roughness. The better the fitting with the baseline,
the lower the possibility of image over-smoothing.
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Figure 17. The line graph of each method performance on the SCR. The abscissa is the clean image
SCR, and the ordinate is the corrected image SCR. The better the fitting with the baseline, the lower
the possibility of removing dim small targets as noise points.

3.5. Method Comparison on Real Data

We compared the methods using a real nonuniformity infrared image, which was
captured by an uncooled long-wave infrared camera and especially has many texture
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details [29]. As shown in Figure 18a, we cropped out the (1:400, 1:480) area of the image as
the real data 1, cropped out the (271:480, 481:640) area of the image as the real data 2, and
the red dividing line in the figure is our cropping diagram. Figure 18b is the edge detection
image, and the homogeneous region inside the blue box and the sharp region outside the
blue box were used to calculate the evaluation metrics ICV and MRD.

(a) (b)

Figure 18. Real nonuniformity infrared image and its edge detection image: (a) real nonuniformity

infrared image, upper left region as real data 1, bottom right region as real data 2; (b) the edge
detection image.

Figure 19 shows the correction results of the real data 1 and the edge detection images
of the correction results. Figure 20 shows the correction results of the real data 2 and the
edge detection images of the correction results. In the experiment with real nonuniformity
infrared images, we also compared the correction performance of each method according
to the above evaluation metrics, as shown in Table 3.

Table 3. Evaluation metrics results of the methods on real data.

Real Data 1 Real Data 2
Methods

IR ICV MRD IR ICV MRD

Noise Image 0.1309 2.0711 0.2907 2.4919
MHE [14] 0.0859 1.9908 0.0647 0.1772 2.4026 1.9515
1D-GF [15] 0.0786 2.0977 0.0647 0.1557 2.6051 0.2139
SNRCNN [27] 0.0803 2.0942 0.0501 0.1651 2.5885 0.1627
ICSRN [28] 0.0537 2.1001 0.0676 0.1097 2.588 0.2167
DLS-NUC [29] 0.0591 2.1453 0.0930 0.1142 2.6736 0.3349
SNRWDNN [30] 0.0790 2.0897 0.0648 0.1573 2.6013 0.2228

Ours 0.0792 2.1017 0.0649 0.1574 2.6247 0.2303
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Figure 19. The correction results of the real data 1 and the edge detection images of the correction
results. The red circle is our manual annotation of texture details in the image: (a) real data 1;
(b) MHE; (c) 1D-GF; (d) SNRCNN; (e) ICSRN; (f) DLS-NUC; (g) SNRWDNN; (h) ours.
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Figure 20. The correction results of the real data 2 and the edge detection images of the correction
results. The red circle is our manual annotation of texture details in the image: (a) real data 2;
(b) MHE; (c) 1D-GF; (d) SNRCNN; (e) ICSRN; (f) DLS-NUC; (g) SNRWDNN; (h) ours.
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4. Discussion

The experimental results show that our method has excellent generalization to dif-
ferent backgrounds, can effectively remove nonuniform noise of different intensities, and
was effectively verified on real data. In addition, our method can avoid the image over-
smoothing problem, and mechanically ensures that texture details including weak objects
will not be removed in the process of nonuniformity correction.

4.1. Analysis of Simulation Experiment Results for Different Intensities of Nonuniformity

In the simulation experiments for different intensities of nonuniformity, MHE reduces
the IR, but it performs poorly in the PSNR and SSIM metrics. The 1D-GF method can
perform effective correction on low- and medium-intensity nonuniformity images, but there
is still a certain degree of residual strip noise. In addition, it is difficult for the 1D-GF to meet
the needs of practical application with the image with high-intensity nonuniform noise.
As a preliminary attempt of a deep learning method in the field of image nonuniformity
correction, the SNRCNN method can remove nonuniform noise to a certain extent, but
the correction ability cannot meet the needs of practical applications. Compared with
SNRCNN, the correction ability of ICSRN is slightly improved, but it can only meet the
needs of low-intensity nonuniformity correction. The correction ability of the DLS-NUC
is comparable to the traditional classical algorithm 1D-GF, which can basically meet the
nonuniformity correction requirements. The SNRWDNN has good performance on images
with different intensities of nonuniformity.

Compared to the above methods, our method has the best correction performance
for nonuniform noise of different intensities. The PSNR of our corrected image can be
improved by at least 15 dB compared to the PSNR of the uncorrected image, and the SSIM
of the simulation experiments all reached above 0.995. In addition, it can be seen from
Figure 11 that the greater the intensity of nonuniformity, the higher the PSNR gain of MHE
and DLS-NUC, while the lower the PSNR gain of the SNRCNN, ICSRN, and 1D-GF. At the
same time, SNRWDNN and our method do not change much in PSNR gain. In comparison,
our method has the best generalization performance to different intensities of nonuniform
noise among these methods.

4.2. Analysis of Simulation Experiment Results for Different Backgrounds

In the experiment of Section 3.4, we added the same intensity of nonuniform noise
to 10 infrared dim small targets images with different backgrounds. From Table 2 and
Figure 15, it can be seen that our method not only has the highest average PSNR, but
also has the highest PSNR of the correction results for each image. At the same time,
our method also shows excellent performance compared to other methods on the SSIM.
More notably, the standard deviation of the PSNR in our experiments is also the smallest,
which shows that our method has an excellent generalization ability to infrared images
with different backgrounds. In contrast, the standard deviation of the PSNR of MHE and
DLS-NUC is high, indicating that their correction performance is very easily affected by
different backgrounds. Furthermore, as can be seen from Figures 16 and 17, our method
fits the baseline best in terms of IR and SCR, which demonstrates the effectiveness of our
proposed mechanism based on noise parameter estimation. Compared with other methods
for suppressing the image over-smoothing, our method fundamentally avoids the problem
that dim small targets or texture details may be removed in the correction process through
the innovation of the mechanism.

4.3. Analysis of Real Experimental Results

In the correction experiment for real nonuniformity infrared images, the MHE method,
the GF method, and the SNRCNN method all have very obvious strip noise residuals. From
the edge detection images of each correction result, other methods all have the phenomenon
of losing texture details.



Remote Sens. 2022, 14, 5056 22 of 24

From the objective metrics in Table 3, compared with other methods, although our
method performs poorly on IR, it is not far behind other methods. In the experiments of
real data 1, DLS-NUC achieves the best performance on ICV, SNRWDNN achieves the
best performance on MRD, and our method achieves a suboptimal performance on both
metrics. At the same time, based on the correction results of real data 1 in Figure 19, it
can be considered that our method achieved a very good balance on these two metrics.
That is, our method can effectively remove strip noise and preserve image details well. In
experiments on real data 2, we still achieve a suboptimal performance. However, on the
MRD metric, both SNRCNN and ICSRN, which performed poorly in qualitative results,
achieved top performance. We hypothesize that this is because the residual strip noise
reduces the deviation between the correction result and the noisy image.

5. Conclusions

The main contribution of this paper is to propose a two-stage deep learning network
based on a noise parameter estimation mechanism, which is able to perform nonuniformity
correction on a single-frame infrared line-scan image. Our network model abandons the
pixel-by-pixel estimation mechanism of the traditional end-to-end image reconstruction
network, but estimates by column, so that when our network is applied to dim small target
images, it can ensure that dim small targets are not removed as noise points. According to
the infrared line-scan imaging mechanism, we produced a noise parameter estimation and
image reconstruction dataset and trained our nonuniformity correction model with this
dataset. In general, compared with existing methods, our method has many advantages,
including excellent performance, intelligence, and friendliness to texture details and dim
small targets. Of course, our model still has some room for improvement in real time.
Therefore, in the future work, we plan to simplify our model by migrating learning to
improve the processing speed of the model and obtain better practical value.
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